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Abstract

Many modern programming languages support basic generics, sufficient to implement type-

safe polymorphic containers. Some languages have moved beyond this basic support, and

in doing so have enabled a broader, more powerful form of generic programming. This

paper reports on a comprehensive comparison of facilities for generic programming in eight

programming languages: C++, Standard ML, Objective Caml, Haskell, Eiffel, Java, C# (with

its proposed generics extension), and Cecil. By implementing a substantial example in each of

these languages, we illustrate how the basic roles of generic programming can be represented

in each language. We also identify eight language properties that support this broader

view of generic programming: support for multi-type concepts, multiple constraints on type

parameters, convenient associated type access, constraints on associated types, retroactive

modeling, type aliases, separate compilation of algorithms and data structures, and implicit

argument type deduction for generic algorithms. We find that these features are necessary

to avoid awkward designs, poor maintainability, and painfully verbose code. As languages

increasingly support generics, it is important that language designers understand the features

necessary to enable the effective use of generics and that their absence can cause difficulties

for programmers.

1 Introduction

Generics are an increasingly popular and important tool for software development

and many modern programming languages provide basic support for them. For

example, the use of type-safe polymorphic containers is routine programming prac-

tice today. Some languages have moved beyond elementary generics to supporting

a broader, more powerful form of generic programming, enabling the development

of highly reusable algorithms. Such extensive support for generics has proven

valuable in practice. Generic programming has been a particularly effective means for

constructing reusable libraries of software components, one example of which is the

Standard Template Library (STL), now part of the C++ Standard Library (Stepanov

& Lee, 1994; ISO 1998). As the generic programming paradigm gains momentum,

the need for a clear and deep understanding of the language issues increases. In
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particular, it is important to understand what language features are required to

support this broader notion of generic programming.

To aid in this process, we present results of a study comparing eight programming

languages that support generics: Standard ML (Milner et al., 1997), Objective

Caml (Leroy, 2000), C++ (ISO, 1998), Haskell (Peyton Jones et al., 1999), Eiffel (Meyer,

1992), Java (Gosling et al., 2005), C# (Kennedy & Syme, 2001; Microsoft Corpor-

ation, 2002), and Cecil (Litvinov, 1998). Seven of these languages currently support

generics, and they have been implemented and proposed for the next revision of

C#. These languages were selected because they are widely used or represent the

state of the art in programming languages with generics. This paper is a revised and

extended version of an earlier paper (Garcia et al., 2003), featuring updated analyses

and the addition of two languages, Objective Caml and Cecil.

Our goals for this study were the following:

• To understand which language features are necessary to support generic

programming;

• To understand the extent to which specific languages support generic pro-

gramming;

• To provide guidance for development of language support for generics; and

• To illuminate for the community some of the power and subtleties of generic

programming.

It is decidedly not a goal of this paper to demonstrate that any one language is

“better” than any other. This paper is also not a comparison of generic programming

to any other programming paradigm, be it object-oriented, functional, or otherwise.

To conduct the study, we designed a model library by extracting a small but

significant example of generic programming from an existing generic library (the

Boost Graph Library (Siek et al., 2002)). We then implemented the model library

in each target language. This library exercises a variety of generic programming

techniques and could therefore expose many subtleties of generic programming. We

attempted to create a uniform implementation across all of the languages while still

using the standard techniques and idioms of each language. For each implementation,

we evaluated the language features available to realize the different roles of generic

programming. In addition, we evaluated each implementation with respect to

software quality issues such as modularity, safety, and economy of expression. The

full implementations for each language are available (Graph Library URL, 2005).

This process yielded two main results, which are the focus of this paper. First, we

have identified how generic programming can be expressed in each language. Generic

programming requires the fulfillment of several roles (introduced in the next section).

Our study shows what features of each language can fulfill those roles. Second, we

have identified eight language properties that are important to generic programming.

Table 1 lists these properties and shows each language’s level of support for them;

the language properties themselves are described in Table 2. We find these properties

necessary for the development of high-quality generic libraries. Incomplete support

for them leads to awkward designs, poor maintainability, and painfully verbose

code. As languages increasingly support generics, it is important that language
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Table 1. The level of support for important properties for generic programming in the

evaluated languages. A black circle indicates full support, a white circle indicates poor

support, and a half-filled circle indicates partial support. The rating of “-” in the C++

column indicates that C++ does not explicitly support the feature, but one can still

program as if the feature were supported due to the permissiveness of C++ templates

C++ SML OCaml Haskell Eiffel Java C# Cecil

Multi-type concepts - � � �∗ � � � ��

Multiple constraints -

�� �� � �† � � �
Associated type access � � �� ��

�� �� �� ��

Constraints on assoc. types - � � � �� �� �� �
Retroactive modeling - � � � � � �� �
Type aliases � � � � � � � �
Separate compilation � � �� � � � � ��

Implicit arg. deduction � � � � � � �� ��

∗Using the multi-parameter type class extension to Haskell (Peyton Jones et al., 1997).
�Using the functional dependencies extension to Haskell (Jones, 2000).
†Planned language additions.

Table 2. Glossary of evaluation criteria

Criterion Definition

Multi-type concepts Multiple types can be simultaneously constrained.

Multiple constraints More than one constraint can be placed on a type

parameter.

Associated type access Types can be mapped to other types within the context

of a generic function.

Constraints on associated types Concepts may include constraints on associated types.

Retroactive modeling The ability to add new modeling relationships after a

type has been defined.

Type aliases A mechanism for creating shorter names for types is

provided.

Separate compilation Generic functions can be type checked and compiled

independent of calls to them.

Implicit argument deduction The arguments for the type parameters of a generic

function can be deduced and do not need to be explicitly

provided by the programmer.

designers understand the features necessary to provide powerful generics and that

their absence causes serious difficulties for programmers.

The rest of this paper is organized as follows. Section 2 provides a brief

introduction to generic programming and defines the terminology we use in the

paper. Section 3 describes the design of the generic graph library that forms the basis

for our comparisons. Sections 4 through 11 present the individual implementations

of the graph library in the selected languages. By explaining how the graph library
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Generic programming is a sub-discipline of computer science that deals with finding

abstract representations of efficient algorithms, data structures, and other software

concepts, and with their systematic organization. The goal of generic programming

is to express algorithms and data structures in a broadly adaptable, interoperable form

that allows their direct use in software construction. Key ideas include:

• Expressing algorithms with minimal assumptions about data abstractions, and vice

versa, thus making them as interoperable as possible.

• Lifting of a concrete algorithm to as general a level as possible without losing

efficiency; i.e., the most abstract form such that when specialized back to the concrete

case the result is just as efficient as the original algorithm.

• When the result of lifting is not general enough to cover all uses of an algorithm,

additionally providing a more general form, but ensuring that the most efficient

specialized form is automatically chosen when applicable.

• Providing more than one generic algorithm for the same purpose and at the same

level of abstraction, when none dominates the others in efficiency for all inputs. This

introduces the necessity to provide sufficiently precise characterizations of the domain

for which each algorithm is the most efficient.

Fig. 1. Definition of generic programming, from Jazayeri et al. (1998).

was implemented, we illustrate what features of each language fulfill the roles of

generic programming. These sections also evaluate the level of support each language

provides for generic programming. Section 12 discusses in detail the most important

issues we encountered during the course of this study. Section 13 concludes the paper.

2 Generic programming

Definitions of generic programming vary. Typically, generic programming involves

type parameters for data types and functions. Although type parameters are required

for generic programming, there is much more to generic programming than just type

parameters. Inspired by the STL, we take a broader view of generic programming

and use the definition from an earlier paper (Jazayeri et al., 1998) reproduced

in Figure 1. The next section discusses the terminology and techniques that have

emerged to support generic programming.

Terminology

The notion of abstraction is fundamental to realizing generic algorithms: generic

algorithms are specified in terms of abstract properties of types, not in terms of

particular types. Following the terminology of Stepanov and Austern, we adopt

the term concept to mean the formalization of an abstraction as a set of syntactic

and semantic requirements on one or more (abstract data) types (Austern, 1998).

A concept may incorporate the requirements of another concept, in which case the

first concept is said to refine the second. Types that meet the requirements of a

concept are said to model the concept. Note that it is not necessarily the case that

a concept specifies requirements on just one type – sometimes a concept involves

multiple types and establishes relationships between them. In this sense, concepts

generalize the interfaces of abstract data types.
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Table 3. The roles of language features used for generic programming

Language Algorithm Concept Refinement Modeling Constraint

C++ template docs docs docs docs

ML functor signature include implicit param sig

OCaml
polymorphic

function
class interface inherit interface class type

Haskell
polymorphic

function
type class subclass instance context

Eiffel generic class deferred class inherit inherit conformance

Java generic method interface extends implements extends

C# generic method interface inherit inherit inherit

Cecil
parameterized

method

abstract

object
subtyping subtyping

type

constraint

Concepts play an important role in specifying generic algorithms. Since a concept

may be modeled by any concrete type that meets its requirements, algorithms

specified in terms of concepts must be able to be used with multiple types. Thus,

generic algorithms must be polymorphic. Languages that explicitly support concepts

use them to constrain the type parameters to those algorithms.

Traditionally, a concept consists of associated types, valid expressions, semantic

constraints, and complexity guarantees. The associated types of a concept are opaque

types that are required by the concept (e.g., used in valid expressions) and must be

defined by any model of the concept. Valid expressions specify the operations that

must be implemented for the modeling type (or types). Type systems typically do

not include semantic constraints and complexity guarantees. For the purpose of this

study, we thus state that for a type to model a concept, it suffices that the associated

types and valid expressions specified by the concept are defined.

The basic roles of generic programming – generic algorithms, concepts, refinement,

modeling, and constraints – are realized in different ways in our target programming

languages. The specific language features used to support generic programming are

summarized in Table 3.

Example

A simple example illustrates generic programming and its issues. The following is

an example of a generic algorithm, realized as a C++ function template:

template <class T>
const T& pick(const T& x, const T& y) {

if (better(x, y)) return x; else return y;

}

This algorithm applies the better function to its arguments and returns the first

argument if better returns true, otherwise it returns the second argument.

Not just any type can be used with pick. The Comparable concept represents

types that may be used with pick. Unfortunately, C++ does not support concepts
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directly so naming conventions and documentation styles have been established to

represent them (Austern, 1998). In particular, the Comparable concept is documented

as follows:

Comparable concept

better(a, b) convertible bool

The required valid expressions are in the left column, and requirements on their

return types in the right column. A type T is a model of Comparable if it satisfies

the above requirements, where objects a and b are of type T. If we wish to make int

model Comparable, we simply define a better function for ints:

bool better(int x, int y) { return x > y; }

In C++ it is customary to identify concepts by appropriately naming template

parameters. Under that guideline, pick would normally be written as follows:

template <class Comparable>
const Comparable& pick(const Comparable& x, const Comparable& y) {

if (better(x, y)) return x; else return y;

}

Now consider two data types, apple and orange:

struct apple {
apple(int r) : rating(r) {}
int rating;

};
bool better(const apple& x, const apple& y) { return x.rating > y.rating; }

struct orange {
orange(const string& s) : name(s) { }
string name;

};
bool better(const orange& x, const orange& y) {

return lexicographical compare(y.name.begin(), y.name.end(),

return lexicographical compare(x.name.begin(), x.name.end());
}

The apple and orange types model the Comparable concept implicitly via the existence

of the better function for those types. The following illustrates calling the generic

algorithm pick with arguments of types int, apple, and orange:

int main(int, char∗[]) {
int i = 0, j = 2;

apple a1(3), a2(5);

orange o1(”Navel”), o2(”Valencia”);

int k = pick(i, j);

apple a3 = pick(a1, a2);
orange o3 = pick(o1, o2);

return 0;

}
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signature Comparable = sig
type value t

val better : value t ∗ value t → bool

end

functor MakePick(C : Comparable) = struct

type value t = C.value t
fun pick (x, y) = if C.better(x, y) then x else y

end

structure Apple = struct

datatype value t = Apple of int
fun create n = Apple n

fun better ((Apple x), (Apple y)) = x > y

end

structure PickApples = MakePick(Apple)

val a1 = Apple.create 3 and a2 = Apple.create 5
val a3 = PickApples.pick (a1, a2)

Fig. 2. Apples to Apples in Standard ML.

class type comparable = object (’a) method better : ’a → bool end

class apple init = object (self : ’a)
val value : int = init

method better (y : ’a) = self#value > y#value

method value = value ;
end

let pick ((x : #comparable as ’a), (y : ’a)) : ’a =

if x#better y then x else y

let a1 = (new apple 3);;

let a2 = (new apple 1);;

let a3 = pick (a1, a2);;

Fig. 2 (cont.). Apples to Apples in OCaml.

Figure 2 shows how this example is implemented in the other seven languages.

3 A generic graph library

To evaluate support for generic programming, we implemented a generic graph

library in each language. The library provides generic algorithms associated with

breadth-first search, including Dijkstra’s single-source shortest paths and Prim’s min-

imum spanning tree algorithms (Dijkstra, 1959; Prim, 1957). The design presented

here descends from the generic graph library reported in Lee et al. (1999), which

evolved into the Boost Graph Library (BGL) (Siek et al., 2002).
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class Comparable t where
better :: (t, t) → Bool

pick :: Comparable t ⇒ (t, t) → t
pick (x, y) = if (better(x, y)) then x else y

data Apple = Apple Int

instance Comparable Apple where
better (Apple x, Apple y) = x > y

a1 = Apple 3; a2 = Apple 5
a3 = pick (a1, a2)

Fig. 2 (cont.). Apples to Apples in Haskell.

deferred class COMPARABLE[T]

feature
better (a: T) : BOOLEAN is deferred end

end

class PICK[T→ COMPARABLE[T]]

feature
go (x: T; y: T) : T is do

if x.better(y) then Result := x

else Result := y end
end

end

class APPLE inherit COMPARABLE[APPLE] end

create make

feature
make(r: INTEGER) is do rating := r end

better (y: APPLE) : BOOLEAN is do Result := rating > y.rating end

end
feature {APPLE} rating : INTEGER end

class ROOT CLASS
create make

feature make is

local a1, a2, a3 : APPLE; picker: pick[APPLE]; do
create picker; create a1.make(3); create a2.make(5);

a3 := picker.go(a1, a2);

end
end

Fig. 2 (cont.). Apples to Apples in Eiffel.
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public interface Comparable<T> {
boolean better(T x);

}
public class pick {

public static <T extends Comparable<T>>
T go(T x, T y) {

if (x.better(y)) return x; else return y;
}

}
public class Apple implements Comparable<Apple> {

public Apple(int r) { rating = r; }
public boolean better(Apple y)

{ return rating > y.rating; }
private int rating;

}
public class Main {

public static void main(String[] args) {
Apple a1 = new Apple(3), a2 = new Apple(5);
Apple a3 = pick.go(a1, a2);

}
}

Fig. 2 (cont.). Apples to Apples in Java.

public interface Comparable<T> {
bool better(T x);

}
public static class pick {

public static T go<T>(T x, T y) where T : Comparable<T> {
if (x.better(y)) return x; else return y;

}
}
public class Apple : Comparable<Apple> {

public Apple(int r) {rating = r;}
public bool better(Apple y)

{ return rating > y.rating; }
private int rating;

}
public static class main {

public static int Main(string[] args) {
Apple a1 = new Apple(3), a2 = new Apple(5);
Apple a3 = pick.go(a1,a2);

return 0;

}
}

Fig. 2 (cont.). Apples to Apples in C# generics.
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abstract object my comparable[‘T];
signature better(:my comparable[‘T], :T): bool;

template object apple isa my comparable[apple];
field rank(@:apple): int;

method better(x@:apple, y@:apple): bool {x.rank > y.rank}

method pick(x: ‘T <= my comparable[T], y: T): T {
better(x, y).if({x}, {y})

}

method test pick(): void {
let a1 := object isa apple {rank := 3};
let a2 := object isa apple {rank := 5};
let a3 := pick(a1, a2);

}

Fig. 2 (cont.). Apples to Apples in Cecil.

Fig. 3. Graph algorithm parameterization and reuse within the graph library. Arrows for

redundant models relationships are not shown. For example, the type parameter G of breadth-

first search must also model Incidence Graph because breadth-first search uses graph search.

Figure 3 depicts the graph algorithms, how they are related, and how each is

parameterized. Each large box represents an algorithm and the attached small boxes

represent type parameters. An arrow labeled <uses> from one algorithm to another

specifies that one algorithm is implemented using the other. An arrow labeled

<models> from a type parameter to an unboxed name specifies that the type para-

meter must model that concept. For example, the breadth-first search algorithm has

three type parameters: G, C, and Vis. Each of these has requirements: G must model

the Vertex List Graph and Incidence Graph concepts, C must model the Read/Write

Map concept, and Vis must model the BFS Visitor concept. Furthermore, breadth-first

search is implemented using the graph search algorithm. In order to minimize clutter,

Figure 3, as indicated in its caption, does not show redundant models relationships.

The core algorithm of this library is graph search, which traverses a graph and

performs user-defined operations at certain points in the search. The order in which
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vertices are visited is controlled by a type parameter B that models the Bag concept.

This concept abstracts a data structure with insert and remove operations but no

requirements on the order in which items are removed. When B is bound to a FIFO

queue, the traversal order is breadth-first. When it is bound to a priority queue based

on distance to a source vertex, the order is closest-first, as in Dijkstra’s single-source

shortest paths algorithm. Graph search is also parameterized on actions to take

at event points during the search, such as when a vertex is first discovered. This

parameter, Vis, must model the Visitor concept (which is not to be confused with the

Visitor design pattern). The graph search algorithm also takes a type parameter C

for mapping each vertex to a color, a means for keeping track of which vertices have

been visited during the search. The type parameter C must model the Read/Write

Map concept.

The Read Map and Read/Write Map concepts represent variants of an important

abstraction in the graph library: the property map. In practice, graphs represent

domain-specific entities; and have values associated with their vertices and edges.

For example, a graph might depict the layout of a communication network,

its vertices representing endpoints and its edges representing direct links. Each

vertex of a communication network graph might have a name and each edge a

maximum transmission rate. Some algorithms require access to domain information

associated with the graph representation. For example, Prim’s minimum spanning

tree algorithm requires “weight” information associated with each edge in a graph.

Property maps provide a convenient implementation-agnostic means of expressing,

to algorithms, relations between graph elements and domain-specific data. Some

graph data structures directly contain associated values with each node; others use

external associative data structures to express these relationships. Interfaces based

on property maps work equally well with either representation.

The graph algorithms are parameterized on the graph type. Breadth-first search

takes a type parameter G, which must model two concepts, Incidence Graph and Vertex

List Graph. The Incidence Graph concept defines an interface for accessing out-edges

of a vertex and Vertex List Graph defines an interface for accessing the vertices of a

graph in an unspecified order. The Bellman-Ford shortest paths algorithm (Bellman,

1958) requires a model of the Edge List Graph concept, which provides access to all

the edges of a graph.

The partitioning of the graph capabilities into three concepts illustrates generic

programming’s emphasis on minimal algorithm requirements. The Bellman-Ford

shortest paths algorithm requires of a graph only the operations described by the

Edge List Graph concept. Breadth-first search, in contrast, requires the functionality

of two separate concepts. By partitioning the functionality of graphs, each algorithm

can be used with any data type that meets its minimum requirements. If the

three fine-grained graph concepts were replaced with one monolithic concept, each

algorithm would require more from its graph type parameter than necessary and

would thus restrict the set of types with which it could be used.

The graph library design is suitable for evaluating generic programming cap-

abilities of languages because its implementation involves a rich variety of generic

programming techniques. Most of the algorithms are implemented using other library
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algorithms: breadth-first search and Dijkstra’s shortest paths use graph search,

Prim’s minimum spanning tree algorithm uses Dijkstra’s algorithm, and Johnson’s

all-pairs shortest paths algorithm uses both Dijkstra’s and Bellman-Ford shortest

paths. Furthermore, type parameters for some algorithms, such as the G parameter

to breadth-first search, must model multiple concepts. In addition, the algorithms

require certain relationships between type parameters. For example, consider the

graph search algorithm. The C type argument, as a model of Read/Write Map, is

required to have an associated key type. The G type argument is required to have

an associated vertex type. Graph search requires that these two types be the same.

The graph library is used throughout the remainder of this paper as a common

basis for discussion. Though the entire library was implemented in each language,

discussion is limited for brevity. We focus on the interface of the breadth-first search

algorithm and the infrastructure surrounding it, including concept definitions and

example use of the algorithm.

4 Graph Library in C++

C++ generics were intentionally designed to exceed what is required to implement

type-safe polymorphic containers. The resulting template system provides a platform

for experimentation with, and insight into the expressive power of, generic program-

ming. Before templates were added to the language, C++ was primarily considered

an object-oriented programming language. Templates were added to C++ for the

same reason that generics were added to several other languages in our study:

to provide a means for developing type-safe containers (Stroustrup, 1994). Greater

emphasis was placed on clean and consistent design than restriction and policy.

For example, although function templates are not necessary to develop type-safe

polymorphic containers, C++ has always supported classes and stand-alone functions

equally; supporting function templates in addition to class templates preserves that

design philosophy. Early experiments in developing generic functions suggested that

more comprehensive facilities would be beneficial. These experiments also inspired

design decisions that differ from the object-oriented generics designs (Java, C#

generics, and Eiffel). For example, C++ does not contain any explicit mechanism for

constraining template parameters. During C++ standardization, several mechanisms

were proposed for constraining template parameters, including subtype-based con-

straints. All proposed mechanisms were found to either undermine the expressive

power of generics or to inadequately express the variety of constraints required in

practice (Stroustrup, 1994).

Two C++ language features combine to enable generic programming: templates

and function overloading. C++ provides both function templates and class templates,

but function templates are more central to generic programming.

In C++, templates are not separately type checked. Instead, type checking is

performed after instantiation at each call site. Type checking of the call site can only

succeed when the input types satisfy the type requirements of the function template

body. Unfortunately, because of this, if a generic algorithm is invoked with an

improper type, complex, long, and potentially misleading error messages may result.
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template <class G, class C, class Vis>
void breadth first search(const G& g,

typename graph traits<G>::vertex s, C c, Vis vis);
// constraints:

// G models Vertex List Graph and Incidence Graph

// C models Read/Write Map

// map traits<C>::key == graph traits<G>::vertex

// map traits<C>::value models Color

// Vis models BFS Visitor

Fig. 4. Breadth-first search as a function template.

class AdjacencyList {
public:

...

private:
vector< list<int> > adj lists;

};
template <> struct graph traits<AdjacencyList> {

typedef int vertex;

typedef pair<int, int> edge;

typedef AdjListOutEdgeIter out edge iter;
...

};

Fig. 5. Sketch of a concrete graph implementation.

4.1 Implementation

We implement the breadth-first search algorithm as the breadth first search function

template, declared in Figure 4. C++ does not provide direct support for constraining

type parameters; standard practice is to express constraints in documentation in

conjunction with meaningful template parameter names (Austern, 1998). Techniques

for checking constraints in C++ exist in library form (Siek & Lumsdaine, 2000;

McNamara & Smaragdakis, 2000). These techniques, however, do not constitute

actual language support and involve the addition of compile-time assertions to the

bodies of generic algorithms.

The graph traits class template used in Figure 4 provides access to the associated

types of the graph type. In particular, the vertex type is referenced using the type

expression graph traits<G>::vertex. Traits classes are an idiom used in C++ to map

types to other types or functions (Myers, 1995). A traits class is a class template.

For each type in the domain of the map a specialized version of the class template

is created containing nested type definitions and member functions. Figure 5 shows

a specialization of graph traits for the AdjacencyList class, which models Graph.

Inside the breadth first search function, calls to functions associated with the

concepts, such as out edges from Incidence Graph, are resolved by the standard

function overloading rules for C++. Each call is resolved to the most specific overload

for the types of its arguments.
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Table 4. Documentation for the graph concepts. Object g is of type G, e is of type

edge, and v is of type vertex

Graph concept

graph traits<G>::vertex

graph traits<G>::edge
src(e, g) vertex

tgt(e, g) vertex

Incidence Graph refines Graph

graph traits<G>::out edge iter models Iterator

The value type of out edge iter is edge.
out edges(v, g) pair<out edge iter>
out degree(v, g) int

Vertex List Graph

graph traits<G>::vertex iter models Iterator

The value type of vertex iter is vertex.

vertices(g) pair<vertex iter>
num vertices(g) int

Documentation for the graph concepts is shown in Table 4. In addition to valid

expressions, concept documentation specifies how to access associated types such as

the vertex, edge, and iterator types using the graph traits class, same-type constraints,

and refinement relationships.

A sketch of a concrete adjacency list implementation is shown in Figure 5. The

AdjacencyList class models the Incidence Graph and Vertex List Graph concepts, but

since C++ has no mechanism for specifying models, these relationships are implicit.

The graph traits class is specialized for AdjacencyList so its associated types can be

accessed within function templates.

The Read/Write Map and Read Map concepts are defined in Table 5; the BFS Visitor

concept is defined in Table 6.

The code below presents an example use of the breadth first search function to

output vertices in breadth-first order:

typedef graph traits<AdjacencyList>::vertex vertex;

struct test vis : public default bfs visitor {
void discover vertex(vertex v, const AdjacencyList& g)

{ cout << v << ” ”; }
};

int main(int, char∗[]) {
int n = 7;

typedef pair<int,int> E;
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Table 5. Documentation for the property map concepts. Object m is of type M, object

k is of type key, and v is of type value

Read Map concept

map traits<M>::key

map traits<M>::value
get(m, k) value

Read/Write Map concept refines Read Map

put(m, k, v)

Table 6. Documentation for the BFS Visitor concept. Object vis is of type V, g is of

type G, e is of type graph traits<G>::edge, and v is of type

graph traits<G>::vertex

BFS Visitor

vis.discover vertex(v, g)
vis.finish vertex(v, g)

vis.examine edge(e, g)

vis.tree edge(e, g)
vis.non tree edge(e, g)

vis.gray target(e, g)

vis.black target(e, g)

E edges[] = { E(0,1), E(1,2), E(1,3), E(3,4), E(0,4), E(4,5), E(3,6) };
AdjacencyList g(n, edges);

vertex s = get vertex(0, g);

vector property map color(n, white);
breadth first search(g, s, color, test vis());

return 0;

}

The test vis visitor overrides the discover vertex function: empty implementations of

the other visitor functions are provided by default bfs visitor. A graph is constructed

using the AdjacencyList class, and then breadth first search is called. The body of

the breadth first search function template is type checked at its call site. This type

check ensures that the argument types satisfy the needs of the body of the generic

function, but it does not verify that the types model the concepts required by the

algorithm (because the needs of the body may not be consistent with the documented

constraints for the function).
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4.2 Evaluation of C++

C++ templates enable the expression of generic algorithms, even for large and

complex generic libraries. It is relatively easy to convert concrete functions to

function templates, and since they support implicit argument deduction, calling

function templates does not syntactically differ from calling non-generic functions.

The traits mechanism provides an effective way to access associated types. Since C++

uses structural matching to type check generic function calls, retroactive modeling is

automatic (see Section 12.4) and constraints on associated types and type parameters

are implicit. Multi-type concepts are easily accommodated in this model. Finally,

complex type names can be aliased to simpler names using the typedef keyword.

The C++ template mechanism has drawbacks, however, with respect to modularity.

The complete implementations of templates reside in header files (or an equivalent).

Thus, code that calls a template function must be recompiled if the template imple-

mentation changes. In addition, at call sites to function templates, the arguments are

not type checked against the interface of the function – the interface is not expressed

in the code – but instead the body of the function template is type checked. As a

result, when a function template is misused, the resulting error messages point to

lines within the function template. The internals of the library are thus needlessly

exposed to the user and the real reason for the error becomes harder to find.

Another problem with modularity is introduced by the C++ overload resolution

rules. During overload resolution, functions within namespaces that contain the

definitions of the types of the arguments are considered in the overload set

(“argument-dependent lookup”). As a result, any function call inside a function

template may resolve to functions in other namespaces. Sometimes this may be

the desired result, but other times not. Typically, the operations required by the

constraints of the function template are meant to bind to functions in the client’s

namespace, whereas other calls are meant to bind to functions in the namespace

of the generic library. With argument-dependent lookup, these other calls can be

accidentally hijacked by functions with the same name in the client’s namespace.

Nevertheless, C++ templates provide type safety with genericity: there is no need to

use downcasts or similar mechanisms when constructing generic libraries. Of course,

C++ itself is not fully type safe because of various loopholes that exist in the type

system. These loopholes, however, are orthogonal to templates. The template system

does not introduce new issues with respect to type safety.

5 Graph library in Standard ML

To implement a generic library in Standard ML we leverage three language features:

structures, signatures, and functors. Structures group program components into

named modules. They manage the visibility of identifiers and at the same time

package related functions, types, values, and other structures. Signatures constrain

the contents of structures. A signature prescribes what type names, values, and

nested structures must appear in a structure. A signature also specifies a type for

each value and a signature for each nested structure. In essence, signatures play the
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same role for structures that types play for values. Functors are templates for creating

new structures and can be parameterized on values, types, and structures. Multiple

structures of similar form can be represented using a single functor that captures

characteristics the structures hold in common. Differences between these structures

are represented by the functor’s parameters. The following discussion demonstrates

how structures, signatures, and functors together enable generic programming.

5.1 Implementation

We express concepts in SML using signatures. The following code shows SML

representations of graph concepts for the breadth-first search algorithm:

signature GraphSig = sig

type graph t

eqtype vertex t
end

signature IncidenceGraphSig = sig
include GraphSig

type edge t

val out edges : graph t → vertex t → edge t list
val out degree : graph t → vertex t → int

val source : graph t → edge t → vertex t

val target : graph t → edge t → vertex t
end

signature VertexListGraphSig = sig
include GraphSig

val vertices : graph t → vertex t list
val num vertices : graph t → int

end

For signature names, we use the convention of affixing Sig to the end of corres-

ponding concept names. The GraphSig signature represents the Graph concept and

requires graph t and vertex t types. Additionally, vertex t must be an equality type,

meaning vertex t values must be comparable using the equality (=) operator.

IncidenceGraphSig and VertexListGraphSig both demonstrate how to express

concept refinement in SML. The clause include GraphSig in each signature imports

the contents of the GraphSig signature. The include directive cannot, however,

represent all refinements between concepts. Though a signature may include many

other signatures, each type or value must be specified only once, either in one of

the included signatures or in the body of the signature that is being defined. As

illustrated shortly, this limitation has negative implications for generic programming.

Program components that model concepts are implemented as structures. The

following code shows the adjacency list graph implemented in SML:

structure AdjacencyList = struct

datatype graph t = Data of int list Array.array
type vertex t = int

type edge t = int ∗ int

fun create(nv : int) = Data(Array.array(nv,[]))
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fun add edge ((Data g),(src:int),(tgt:int)) =

( Array.update(g,src,tgt::Array.sub(g,src)); ())

fun vertices (Data g) = List.tabulate(Array.length g,fn a ⇒ a);

fun num vertices (Data g) = Array.length g
fun out edges (Data g) v = map (fn n ⇒ (v,n)) (Array.sub(g,v))

fun out degree (Data g) v = List.length (Array.sub(g,v))

fun adjacent vertices (Data g) v = Array.sub(g,v)
fun source (Data g) (src,tgt) = src

fun target (Data g) (src,tgt) = tgt

fun edges (Data g) =

#2(Array.foldl (fn (tgts:int list,(src,sofar:(int∗int) list)) ⇒
(src+1,(map (fn n ⇒ (src,n)) tgts) @ sofar))

(0,[]) g)

end;

The AdjacencyList structure encapsulates types that represent graph values and

functions that operate on them. Because it meets the requirements of the GraphSig,

VertexListGraphSig, and IncidenceGraphSig signatures, AdjacencyList is said to

model the Graph, Vertex List Graph, and Incidence Graph concepts. AdjacencyList

also defines functions that fall outside the requirements of the three signatures. The

create function, for example, constructs a value of type graph t, which represents a

graph with nv vertices.

In SML, we can implement algorithms using functors. The following code

illustrates the general structure of a generic breadth-first search implementation:

functor MakeBFS(

structure G1 : IncidenceGraphSig
structure G2 : VertexListGraphSig

structure C : ColorMapSig

structure Vis : BFSVisitorSig
sharing G1 = G2 = Vis

sharing type C.key t = G1.vertex t

) = struct
fun breadth first search g v vis map = ...

end;

Generic algorithms are instantiated by way of functor application. When a functor

is applied to arguments that satisfy certain requirements, it creates a new structure

specialized for the functor parameters. A functor’s parameters are specified using the

same syntax as the body of a signature. This notation is convenient for expressing

constraints on those parameters. The MakeBFS functor takes four structures as

parameters and enforces concept requirements by constraining the structures with

signatures. The G1 structure, for example, is constrained by the IncidenceGraphSig

signature.

Our generic breadth-first search algorithm can be applied to any single graph type

that models two concepts: Vertex List Graph and Incidence Graph. Generic algorithms

in SML are parameterized to take structures that must match a specific signature.

Thus, breadth-first search in SML should ideally take one graph structure whose

signature combines the constraints of the two required graph concept signatures.
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Unfortunately it is not always possible to combine two existing signatures as desired.

For example, since signatures can be constructed inline, one might attempt to write:

(∗ ERROR: VertexListGraphSig and IncidenceGraphSig overlap ∗)
functor MakeBFS(

structure G : sig include IncidenceGraphSig

structure G : sig include VertexListGraphSig
structure G : end

...) = ...

to express that structure G conforms to both interfaces; but this does not work

because VertexListGraphSig and IncidenceGraphSig overlap: both signatures define

the graph t and vertex t types, which they included from the GraphSig signature.

However, this technique works for signatures that do not share identifiers.

Since the necessary signature cannot be constructed programmatically, a signa-

ture VertexListAndIncidenceGraphSig to combine the identifiers from the original

signatures could be implemented by hand. Doing so, however, imposes the burden

of manually keeping the related signatures consistent.

The method we used to implement breadth-first search differs from the techniques

just described. Instead, an algorithm that would otherwise require a model of the

Vertex List and Incidence Graph concept instead requires two arguments, a model of

Vertex List Graph and a model of Incidence Graph, and places additional restrictions

on those arguments. When the MakeBFS functor is applied, the same structure is

used for both arguments, thereby providing the two necessary views on the same

model, at the cost of an extra functor parameter.

In addition to listing required structures, MakeBFS specifies that some type

names in the structures must refer to identical types. These are denoted as sharing

specifications. Two sharing specifications appear in the MakeBFS definition. The

first is a structure sharing specification among G1, G2, and Vis. It states that if the

three structures share any nested element name in common, then the name must

refer to the same entity for all three structures. For example, both G1 and G2 are

required by their signatures to contain a nested type vertex t. The sharing specifies

that G1.vertex t and G2.vertex t must refer to the same type. The second sharing, a

type sharing specification, declares that C.key t and G1.vertex t must be the same as

well. In addition to the requirements they express using concepts, algorithms require

certain relationships between their type arguments. Sharing specifications capture

and enforce those relationships.

The following code shows a call to breadth first search:

structure BFS =

MakeBFS(structure G1 = AdjacencyList

MakeBFS(structure G2 = AdjacencyList
MakeBFS(structure C = ALGColorMap

MakeBFS(structure Vis = VisitImpl)

BFS.breadth first search g src (VisitImpl.create())

BFS.breadth first search (ALGColorMap.create(graph));

First, the algorithm is instantiated by applying MakeBFS to a set of structures that

meet the MakeBFS requirements. The AdjacencyList structure is assigned to both
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the G1 and G2 parameters, matching the IncidenceGraphSig and VertexListGraphSig

signatures respectively. Though awkward, this formulation avoids the explicit defin-

ition of a VertexListAndIncidenceGraphSig signature. The ALGColorMap structure

models the Read/Write Map concept. The VisitImpl structure models the BFS Visitor

concept and encapsulates user-defined callbacks. The three structures together meet

the sharing requirements specified above. Application of the MakeBFS functor real-

izes the BFS structure, which encapsulates a breadth first search function specialized

with the above structures. Finally, BFS.breadth first search is called with arguments

that match the now concrete type requirements.

5.2 Evaluation of Standard ML

SML signatures and structures conveniently express concepts and concept models

using nested types to represent both the modeled types and associated types and

using functions to implement valid expressions. A multi-type concept simply has

more than one type that is considered primary. Associated types can be required to

model a concept using nested structures and sharing specifications within the concept

signature. The structure representation of concept models promotes modularity by

managing identifier visibility. Functors can express any generic algorithm of similar

complexity to the described graph library algorithms. Signatures effectively constrain

generic algorithms with respect to the concepts upon which the algorithms are

parameterized.

In SML, long and complicated type names can be abbreviated using the type

mechanism. Since SML structures can implicitly conform to signatures, retroactive

modeling is automatic: no mechanism is needed to tie a new signature to an old

structure. Thus, a generic SML algorithm, written in terms of signatures, can operate

on any structures that meet its requirements. Unfortunately, a generic algorithm’s

representative functor must be explicitly instantiated before calling the function.

Standard ML does not support separate compilation of modules in general;

however, generic algorithms specified as described here can be type checked and

compiled independent of calls to them. All the parameters to the functor that defines

a generic algorithm can be related using sharing specifications. The functor body can

then be type checked with respect to the sharing specifications, independent of any

application of the functor. Sharing specifications express the constraints imposed

by an algorithm on its arguments that are not imposed by concepts. All necessary

sharing relationships between functor parameters must be declared explicitly. If not,

the type checker will issue type checking errors when the functor is analyzed. When

a functor is applied, SML verifies that the functor’s arguments meet the sharing and

signature requirements.

A language that supports generic programming should facilitate modularity by

statically checking models against their concepts, independent of their use with

generic algorithms. To do this in SML, a structure’s definition may be constrained

by a signature In this manner a structure’s conformity to a signature can be confirmed

apart from its use in a generic algorithm. However, constraining a structure with a

signature limits its interface to that described by the signature. This may not be the
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desired result if the structure defines members that the signature does not declare.

For example, if the AdjacencyList structure were declared:

structure AdjacencyList : IncidenceGraphSig = ...

then it would no longer meet the VertexListGraphSig requirements because vertices

and num vertices would not be visible.

Rather than constrain the structure directly, the conformity of AdjacencyList to

the necessary signatures can be checked as shown in the following code outline:

structure AdjacencyList = struct ... end

structure AdjacencyListCheck1 : IncidenceGraphSig = AdjacencyList;
structure AdjacencyListCheck2 : VertexListGraphSig = AdjacencyList;

The structures AdjacencyListCheck1 and AdjacencyListCheck2 are assigned

AdjacencyList and constrained by the IncidenceGraphSig and VertexListGraphSig

signatures respectively. Each of these structures confirms statically that AdjacencyList

conforms to the corresponding signature without limiting access to its structure

members. This technique as a side effect introduces the unused AdjacencyListCheck1

and AdjacencyListCheck2 structures.

As previously described, the include mechanism for signature combination in

SML can often be used to implement a concept that refines another concept or to

express multiple constraints on a parameter to an algorithm; but this mechanism

does not work if any of the concepts involved overlap. SML programs sometimes

use structure containment to approximate signature combination. For example, the

Vertex List Graph and Incidence Graph concepts might have been combined as follows:

signature VertexListAndIncidenceGraphSig = sig
structure VLG : VertexListGraphSig

structure IG : IncidenceGraphSig

sharing VLG = IG
end

Rather than attempting to include the signatures for the above two concepts, this

signature contains them and applies a sharing specification that requires all shared

structure between the two to be the same. A generic algorithm could then be written

in terms of the above signature.

This idiom for combining signatures is roughly equivalent to passing two separate

instances of the same structure to an algorithm, the mechanism that we used above.

This combination, however makes a somewhat different tradeoff. For instance, the

breadth-first search algorithm could be specified as follows:

functor MakeBFS(

structure G : VertexListAndIncidenceGraph
structure C : ColorMapSig

structure Vis : BFSVisitorSig
sharing G.G1 = Vis

sharing type C.key t = G.G1.vertex t

) = struct
structure G1 : IncidenceGraph = G.IG

structure G2 : VertexListGraphSig = G.VG
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fun breadth first search g v vis map = ...

end;

Here, the MakeBFS functor takes a VertexListAndIncidenceGraphSig structure and

internally decomposes the combination. The algorithm could then be instantiated

as follows:

structure BFS =

MakeBFS(struct

MakeBFS( structure G1 = AdjacencyList
MakeBFS( structure G2 = AdjacencyList

MakeBFS(end

MakeBFS(structure C = ALGColorMap
MakeBFS(structure Vis = VisitImpl)

Here, a new structure is created inline to model the combined concepts. One

advantage of this formulation is that the inline structure used above could be created

out-of-line and used to instantiate other algorithms. Furthermore, the signature

encapsulates the sharing specification between the two instances of the structure

in one place. This style, however, requires the implementation of new structures

for every combination of graph concepts required by algorithms. The extra syntax

used to decompose the structure within an algorithm cancels out the syntactic

abbreviation used in the functor parameter list. Ideally, SML would specify an

algebra of signatures by which multiple signatures could be combined to form a

single new signature. An ML-style module system is extended in (Ramsey et al.,

2005) to provide an expressive signature language that supports composition and

other useful operations on signatures. Using this extension, the breadth-first search

algorithm appears as follows:

functor MakeBFS(

structure G : VertexListGraph andalso IncidenceGraph
...) = struct ... end

This formulation clearly expresses that the structure G must meet the constraints

of both VertexListGraph and IncidenceGraph. The signature language semantics can

coalesce the shared structure of these signatures because they meet the language

extension’s notion of compatibility.

Functors are not the only means for implementing generic algorithms. SML

programmers often use polymorphic functions and parameterized data types to

achieve genericity. An example of this style of programming follows.

(∗ concept ∗)

datatype ’a Comparable = Cmp of (’a → ’a → bool);

(∗ models ∗)

datatype Apples = Apple of int;
fun better apple (Apple x) (Apple y) = x > y;

datatype Oranges = Orange of int;
fun better orange (Orange x) (Orange y) = x > y;

(∗ algorithm ∗)

fun pick ((Cmp better):’a Comparable) (x:’a) (y:’a) =
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if (better x y) then x else y;

(∗ examples ∗)
pick (Cmp better apple) (Apple 4) (Apple 3);

pick (Cmp better orange) (Orange 3) (Orange 4);

This example implements the better algorithm in terms of the Comparable concept.

Here a concept is realized using a parameterized data type that holds a table

of functions, often called a dictionary. The concept’s associated types become

type parameters to the data type, and its valid expressions become the dictionary

functions. In addition to other arguments, a generic algorithm takes a dictionary for

each concept model it requires. The algorithm is then implemented in terms of the

functions from the dictionaries.

This style of generic programming in SML, though possible, is not ideal. In larger

SML programs, managing dictionaries manually becomes cumbersome and increases

the code base significantly. This situation is analogous to manually implementing

virtual function tables in C rather than leveraging the object-oriented programming

features of C++. In fact, some Haskell implementations effectively translate programs

that use generics (type classes) to equivalent Haskell programs expressed in this

dictionary-passing style. Automating the mechanisms of generic programming is

preferable to implementing them manually.

6 Graph library in OCaml

Objective Caml (Leroy, 2000) comes from the ML family of programming languages.

It has a functional core, much like Standard ML, augmented with a novel and flexible

object system (Rémy & Vouillon, 1997). The OCaml module system is semantically

close to that of Standard ML and can support the same functor-driven generic

programming style with the same level of effectiveness (OCaml adds support for

higher-order functors, but their effect on generic programming is minimal). However,

the OCaml object system enables another style of generic programming and we

explore that alternate style in this section.

OCaml’s object system differs markedly from those of the other object-oriented

languages under study, especially in that it explicitly distinguishes classes from object

types. A class is a blueprint for creating objects. It determines the data that is private

to an object and defines the behavior that an object supports. Object types are the

types assigned to objects by the type system; an object type is basically a set of

method signatures. The following code is an example of a class definition in OCaml.

class myclass = object

method m x = x + 7
end

This definition accomplishes three tasks. First, the name myclass is bound to the class

created by the class expression object ... end. Second, the name myclass becomes a

synonym for the structural object type <m : int → int>. This contrasts with most

object-oriented languages where each class is a new unique type. Overloading the

name myclass for both the class and the object type is not a problem because the
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two meanings are used in different contexts. Finally, once a class has been declared,

objects of that class can be created, and its methods called, as in the following:

let x = new myclass in

x#m 35

The new expression creates a myclass object; the m method is invoked on object x

using the hash (#) notation.

Object types may be used to declare the type of a parameter to a function. For

example, consider the following:

let call m (x : <m : int → int>) = x#m 35

Here <m : int → int> is the type of the parameter x. The call m function accepts

as its argument any object whose class provides exactly one public function named

m that when applied to a value of type int returns a value of type int. An object of

class myclass is an acceptable argument to this function, but so is an object of the

following class:

class anotherclass = object

method m a = 35 + a

end

Once declared, the class names myclass and anotherclass both serve as abbreviations

for the object type <m : int → int> and may be used in its place, for example:

let call m (x : myclass) = x#m 35

The use of the class name as an abbreviation for an object type somewhat blurs

the distinction between classes and object types for the sake of usability. Object

types provide a structural means for limiting the possible arguments to a function.

This differs from most mainstream object-oriented languages, in which the types for

classes with similar structure but different names are always distinct.

The call m function defined above is more restrictive than one might desire

because it accepts only objects whose class contains exactly one function named m.

To achieve more flexibility, OCaml has open object types that match any object type

containing at least the required methods and possibly more methods. For example,

consider the following function:

let call m2 (x : <m : int → int; ..>) = x#m 35

The object type of parameter x is open, denoted by .., so it can match with a type

such as yourclass.

class yourclass z = object

method m (x:int) = x + z

method n (y:int) = y + z
end

let y = new yourclass 7 in
call m2 y

A class (or class type) name prefixed with # denotes the corresponding open type.

So the following definition of call m2 function is equivalent to the one above.

let call m2 (x : #mytype) = x#m 35
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The underlying mechanism that allows y to be passed to call m2 is not sub-

typing polymorphism, as is typical for most object-oriented languages, but instead

parametric polymorphism. A function such as call m2 with a parameter that has

an open type is implicitly a polymorphic function. There is a hidden parameter,

called a row variable, associated with the .. of the open type. The reliance on

parametric polymorphism instead of subtyping leads to many subtle and important

differences from other object-oriented languages. For example, it allows OCaml to

easily deal with programming situations where binary methods or virtual types are

needed (Leroy et al., 2003; Rémy & Vouillon, 1998), situations that are problematic

for most object-oriented languages.

OCaml provides class types as a means to conveniently define, name, and combine

object types. Their form is similar to that of class expressions, though the definition

starts with the syntax class type and the methods are replaced with signatures. For

example, the definition:

class type mytype = object
method m : int → int

end

introduces the name mytype as an abbreviation for the object type <m : int → int>.

Using this definition, the call m function can be rewritten as follows:

let call m (x : mytype) = x#m 35

In addition to serving as abbreviations, class types can be combined to establish

new class types. Consider the following two class types:

class type onetype = object

onemethod : unit
anothermethod : unit

end

class type twotype = object

anothermethod : unit
yetanothermethod : unit

end

Each class type describes an object type. Under some circumstances, it may be

desirable to describe a class that combines the functionality of both of the above

class types. Then one may duplicate the information above as in the following:

class type bigtype = object
onemethod : unit

anothermethod : unit
yetanothermethod : unit

end

Alternatively, one may describe the above class type using the inherit syntax, as in

the following:

class type bigtype = object
inherit onetype

inherit twotype
end
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The inherit syntax imports the members of the named class type into the class

type being defined. In the case of multiple inherit statements, the method names

declared in the inherited class types must be compatible. In the above example, both

onetype and twotype declare methods named anothermethod. The two declarations

of anothermethod are identical, so they are unified for the definition of bigtype

(Standard ML signatures do not support such combination; see Section 5.1).

6.1 Implementation

In OCaml, we represent concepts as object types, expressed using class types. The

following code shows OCaml representations of graph concepts for the breadth-first

search algorithm:

(∗ Vertex List Graph concept ∗)

class type [’vertex t] vertex list graph = object
method vertices : ’vertex t list

method num vertices : int

end

(∗ Edge concept ∗)

class type [’vertex t] edge = object
method source : ’vertex t

method target : ’vertex t

end

(∗ Incidence Graph concept ∗)

class type [’vertex t, ’edge t] incidence graph = object
constraint ’edge t = ’vertex t #edge

method out edges : ’vertex t → ’edge t list
end

Similarly to other object-oriented languages under study, OCaml exhibits some

limitations with respect to the representation of associated types. Specifically, OCaml

does not provide a concise mechanism for mappings from types to types, such as

nested type names in C++ classes and ML structures. Instead, associated types are

expressed as type parameters. For example, the incidence graph class type captures

two associated types, ’vertex t and ’edge t, as type parameters. Associated types

expressed in this manner contribute to cluttered syntax because every associated

type must be named in every context where the concept is used, regardless of the

associated type’s relevance. If a concept has many associated types, the resulting

code may be tedious to write and difficult to read. However, OCaml does have a

mechanism for expressing constraints on associated types. We use a constraint clause

in the incidence graph class type, so that the ’edge t type is required to meet the

edge interface. We discuss this issue in more detail in Section 12.1.

Valid expressions are represented using class methods. Class methods can be poly-

morphic and recursively typed. Where other object-oriented languages provide mem-

ber function templates, which are member functions parameterized on inheritance-

constrained types, OCaml methods can have polymorphically typed parameters. For

the purpose of generic programming, either is adequate.
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Like the other object-oriented languages under study, models of concepts are

represented using classes. The following code implements an adjacency-list based

graph type that models the Incidence Graph and Vertex List Graph concepts:

class algraph edge (s:int) (t:int) = object
val src = s

val tgt = t

method source = src
method target = tgt

end

class adjacency list (num vertices ) = object

val g = Array.make num vertices []

method add edge (src,tgt : int∗int) = g.(src)<−(tgt::g.(src))

method vertices =
let rec floop (i:int) =

if i = num vertices then [] else i::floop (i+1)

in floop 0

method num vertices = num vertices

method out edges v = List.map (fun n → new algraph edge v n) g.(v)

method adjacent vertices v = g.(v)

method edges =

let ( ,result) = Array.fold left

(fun (src,(sofar:(algraph edge) list)) (tgts:int list) →
(src+1, List.append

(List.map (fun n → new algraph edge src n)

tgts) sofar))
(0,[]) g in result

method create property map : ’a. ’a → ’a array =
fun def → Array.make num vertices def

end

Algorithms are expressed as polymorphic functions constrained by open object

types. The following code shows the signature of the graph search algorithm as

implemented in OCaml:

let graph search

(graph : ((’vertex t,’edge t) #incidence graph) as ’graph t)

(v : ’vertex t)
(q : ’value t #buffer)

(vis : (’graph t, ’vertex t, ’edge t) #visitor)

(map : (’color t, ’key t) #color map) = ...

The parameters to the algorithm are qualified by the open variants of the object

types. These types limit valid arguments to only those that structurally meet the

class type requirements.
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In Standard ML, sharing specifications explicitly specify that certain associated

types are the same. To express the same constraints in OCaml, the type variable name

for each associated type is shared among the relevant object types. For example, the

type variables ’vertex t and ’edge t in the above code name parameters to multiple

class types. The function will thus type check only for combinations of classes whose

object types match the expansions of the object types specified above. Furthermore,

the complex type of the graph parameter is given the name graph t, using the as

syntax, and graph t is subsequently used to constrain the vis parameter.

6.2 Evaluation of OCaml

The combination of object types and row variable polymorphism conveniently

expresses the concepts present in the graph library. As with the other object-

oriented languages, OCaml provides limited support for associated types. They must

be represented as parameters to a class interface and as such they must all be named

wherever an object type is referenced. However, OCaml provides a mechanism

for constraining associated types using constraint clauses. Section 12.1 discusses

problems related to constraining associated types in Java and C#.

OCaml does not support multi-type concepts, for object types and objects are

the units of generic programming. As with classes in the more mainstream object-

oriented languages, an object type constrains only one primary type.

OCaml provides no convenient means to constrain an algorithm parameter

with more than one concept. As a consequence, a special-case class type must

be introduced whenever an algorithm parameter must model multiple concepts. For

example, consider the following code:

class type [’vertex t, ’edge t] vertex list and incidence graph = object
inherit [’vertex t] vertex list graph

inherit [’vertex t, ’edge t] incidence graph

end

This class type captures both the Vertex List Graph and Incidence Graph concepts.

In essence, it defines the Vertex List and Incidence Graph concept as a refinement

of the two component concepts. This technique works but it introduces a possible

combinatoric explosion of uninteresting concepts that simply combine meaningful

concepts without adding meaning themselves.

Object types define only the structural properties of objects, so retroactive

modeling is merely a matter of structural conformance. Structural conformance

gives retroactive modeling for free.

OCaml supports type aliases with its type form. Complex and long type names

can be abbreviated using this mechanism. Furthermore, the as form is a convenient

means to define type aliases within function parameter lists for type expressions that

are used as constraints. The graph search algorithm definition shows an example use

of the as form.

OCaml functions need not be explicitly instantiated. Object types capture function

requirements in a manner compatible with traditional parametric polymorphism.
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Objects are our models, so the arguments to an algorithm carry their valid operations

with them as methods.

With respect to support for separate compilation of generic algorithms and

models, our implementation of the graph library brought to light a rather striking

property of the OCaml type system. Open type annotations on function parameters

participate symmetrically in the type inference process. The constraints specified on

type parameters may not completely determine the externally-visible type of the

function. Consider the following valid code:

class type conceptA = object

method fn1 : int

end
let algo (x : #conceptA) : int = x#fn2 + 1

It declares a class type conceptA that has one method signature fn1. The function

algo accepts one parameter that is constrained by conceptA and returns an int.

The body of algo contains a call to the fn2 method of x. The algorithm passes

type checking, but the inferred type is <fn1 : int, fn2 : int, ..> → int rather than

<fn1 : int, ..> → int. This occurs because the row variable in the #conceptA object

type unifies with the inferred type of the function body, yielding a type definition

that accurately expresses the type of the body. Open type annotations on function

arguments cannot limit the operations in terms of which the function body is defined.

The difference between the type annotations and the inferred type may go unnoticed

by a library developer and thereby place undue burden on library users. In order

to avoid this issue, an algorithm implementor may initially constrain parameters

with closed types, only replacing them with open variants after the implementation

is complete. For example the algo function rewritten as follows would fail to type

check and thereby alert the implementor that the function body exceeds the set of

operations allowed by the type annotations.

let algo (x : conceptA) : int = x#fn2 + 1

Of course, adding and removing #’s is a tedious business.

Finally, OCaml, like Standard ML, does not provide a mechanism for verifying

that a class models a concept without introducing additional class names or hiding

unrelated class functionality. Effective use of the module system to hide undesirable

names might limit the visibility of any unwanted class names.

7 Graph library in Haskell

The Haskell community uses the term “generic” to describe a form of generative

programming with respect to algebraic datatypes (Backhouse et al., 1999; Hinze &

Jeuring, 2003; Jeuring & Jansson, 1996). Thus the typical use of the term “generic”

with respect to Haskell is somewhat different from our use of the term. However,

Haskell does provide support for generic programming as we have defined it here

and that is what we present in this section.

The specification of the graph library in Figure 3 translates naturally into

polymorphic functions in Haskell. In Haskell, a function is polymorphic if an
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otherwise undefined type name appears in the type of a function; such a type is

treated as a parameter. Constraints on type parameters are given in the context of

the function, the code between :: and ⇒ . The context contains class assertions. In

Haskell, concepts are represented with type classes. Although the keyword Haskell

uses is class, type classes are not to be confused with object-oriented classes; in

traditional object-oriented terminology, one talks of objects being instances of a

class, whereas in Haskell, types are instances of type classes. A class assertion

declares which concepts the type parameters must model. In Haskell, the term

instance corresponds to our term model. So instead of saying that a type models a

concept, one would say a type is an instance of a type class.

7.1 Implementation

We express the graph library concepts in Haskell with the following type classes:

class Edge e v | e → v where

src :: e → v

tgt :: e → v

class (Edge e v) ⇒ IncidenceGraph g e v | g → e, g → v where
out edges :: v → g → [e]

out degree :: v → g → Int

class (IncidenceGraph g e v) ⇒ BidirectionalGraph g e v where

in edges :: v → g → [e]

in degree :: v → g → Int
degree :: v → g → Int

class VertexListGraph g v | g → v where
vertices :: g → [v]

num vertices :: g → Int

The use of contexts within type class declarations, called subclassing, is the Haskell

mechanism for concept refinement and for placing constraints on associated types.

For example, the Bidirectional Graph concept is a refinement of the Incidence Graph

concept and the Incidence Graph concept requires its edge type to model Edge.

Associated types are handled in Haskell type classes differently from C++ or

ML. In Haskell, all the associated types of a concept must be made parameters

of the type class. This is analogous to how the object-oriented languages under

study implement associated types, including Objective Caml. The graph concepts

are parameterized not only on the main graph type, but also on the vertex and

edge types. If we had used an iterator abstraction instead of plain lists for the out-

edges and vertices, the graph type classes would also be parameterized on iterator

types. In the Haskell 98 standard, type classes are restricted to a single parameter,

but many Haskell implementations support multiple parameters. The syntax g → e

denotes a functional dependency, another extension to Haskell (Jones, 2000; Peyton

Jones et al., 1997). The meaning of g → e is that for a given graph type g there is

must be unique edge type e. Without functional dependencies it would be difficult

to construct a legal type in Haskell for breadth first search. The problem is that

the IncidenceGraph type class has three parameters, including an edge parameter e.
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However, breadth first search does not include an actual parameter that is an edge,

so the type system would not be able to deduce the argument type for e. With the

functional dependency g → e, the type system can deduce the type argument for

e from the type argument for g and the instance declarations. In Section 12.3 we

discuss how the lack of functional dependencies (or an equivalent mechanism) forces

programmers to write explicit instantiations in languages such as C# and Cecil.

The BFSVisitor type class, shown below, is parameterized on the graph, queue,

and output types. The queue and output types are needed because Haskell is a pure

functional language and any state changes must be passed around explicitly, as is

done here, or implicitly using monads. The BFSVisitor concept is also parameterized

on the vertex and edge types because they are associated types of the graph. The

BFSVisitor type class has default implementations of its valid expressions that do

nothing.

class (Edge e v) ⇒ BFSVisitor vis q a g e v | g → v, g → e where
discover vertex :: vis → v → g → q → a → (a,q)

examine edge :: vis → e → g → q → a → (a,q)

...
discover vertex vis v g q a = (a,q)

examine edge vis e g q a = (a,q)

...

The implementation of the AdjacencyList type, as well as the explicit instance

declarations to establish that AdjacencyList is a model of the concepts Incidence

Graph and Vertex List Graph, are shown below:

data AdjacencyList = AdjList (Array Int [Int]) deriving (Read, Show)

data Vertex = V Int deriving (Eq, Ord, Read, Show)
data Edge = E Int Int deriving (Eq, Ord, Read, Show)

adj list :: Int → [(Int,Int)] → AdjacencyList
adj list n elist =

AdjList (accumArray (++) [] (0, n−1) [(s, [t]) | (s, t) ← elist])

instance Edge Edge Vertex where

src (E s t) = V s

tgt (E s t) = V t

instance IncidenceGraph AdjacencyList Edge Vertex where

out edges (V s) (AdjList adj) = [ E s t | t ← (adj!s) ]
out degree (V s) (AdjList adj) = length (adj!s)

instance VertexListGraph AdjacencyList Vertex where

vertices (AdjList adj) = [V v | v ← (iota n) ]

where (s,n) = bounds adj
num vertices (AdjList adj) = n+1

where (s,n) = bounds adj

The Haskell signature for the breadth-first search function is shown below. The

first line gives the name, and the following two lines give the context of the

function which expresses constraints on the type parameters. Haskell can infer

constraints, so we could leave out the context, but we prefer to make the constraints

explicit to provide documentation and check that the documentation is correct. The
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breadth first search function is curried; it has five parameters and the return type is

a, a user defined type for the output data accumulated during the search.

breadth first search ::

(VertexListGraph g v, IncidenceGraph g e v,
ReadWriteMap c v Color, BFSVisitor vis a g e v) ⇒

g → v → c → vis → a → a

The following shows an example use of the breadth first search function to create

a list of vertices in breadth-first order.

n = 7::Int

g = adj list n [(0,1),(1,2),(1,3),(3,4),(0,4),(4,5),(3,6)]
s = vertex 0

data TestVis = Vis
instance BFSVisitor TestVis q [Int] AdjacencyList Edge Vertex where

discover vertex vis v g q a = ((idx v):a,q)

color = init map (vertices g) White

res = breadth first search g s color Vis ([]::[Int])

Here, the idx function converts a vertex to an integer. At the call site of a polymorphic

function, the Haskell implementation checks that the context requirements of the

function are satisfied by looking for instance declarations that match the types of

the arguments. A compilation error occurs if a match cannot be found.

7.2 Evaluation of Haskell

The Haskell type class mechanism, with the extensions for multiple parameters in

type classes and functional dependencies, provides a flexible system for expressing

complex generic libraries. However, the support for associated types in Haskell is

less than ideal. The addition of associated types to the parameter list of a type

class is burdensome, especially when type classes are composed. For example, the

BFSVisitor type class has six parameters. However, only three parameters are needed

in principle and the other three are associated types. Two of the parameters are

associated types of the graph (edge and vertex) and one is an associated type of

the visitor (its output type). In response to our earlier paper (Garcia et al., 2003), a

proposal was formulated to add direct support for associated types to Haskell type

classes, first in the form of nested datatypes (Chakravarty et al., 2005b), and later

also in the form of nested type synonyms (Chakravarty et al., 2005a).

Haskell provides the ability to place constraints on associated types via subclassing.

An example of this is in the IncidenceGraph type class, which constrains the edge

type to be an instance of the Edge type class.

Retroactive modeling is provided in Haskell by instance declarations: instance

declarations are separate from type definitions. Haskell supports type aliases. In

fact, type aliases can be parameterized, which we found to be useful in the graph

library implementation. The modularity provided by type classes is excellent. Name

lookup for function calls within a generic function is restricted to the namespace of

the generic function plus the names introduced by the constraints. Generic functions
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and calls to generic functions are type checked separately, each with respect to the

interface of the generic function.

However, type errors tend to be difficult to understand. We believe this is because

the Haskell type system is based on type inference. When the deduced type of the

body of a generic function does not match the type annotation for the function, the

error message points to the type annotation. However, the more important piece

of information is which expression within the function body caused the mismatch.

Recent work targets this issue and promising results have been achieved (Haack &

Wells, 2003). We developed the graph library initially with the Hugs release from

November 2002 and we later experimented with GHC 6.2. The error messages from

GHC were a considerable improvement over Hugs, but the issue described above

was still a problem.

In Haskell, invoking a polymorphic function is almost as easy as invoking a non-

generic function. The type arguments for the polymorphic function are implicitly

deduced as part of Haskell’s type inference system. However, in some cases users of

a polymorphic function must do extra work to declare their types to be instances

of the type classes that are used as constraints on the polymorphic function. This

adds textual overhead to calling a generic function compared to a normal function.

On the other hand, instance declarations add a level of safety by forcing clients to

think about whether their types model the required concepts at a semantic as well

as a syntactic level.

8 Graph Library in Eiffel

Eiffel supports generics through parameterized classes; formal type parameters follow

the class name within square brackets. The design of the graph library leverages

Eiffel’s conformance relation (Eiffel’s term for substitutability) to express constraints

on the type parameters to generic algorithms. In Eiffel, each type parameter can be

accompanied by a constraint, a type to which the actual type argument must conform.

Syntactically, the arrow (→) symbol attaches a constraint to a type parameter. If

a constraint is omitted, it defaults to the ANY class, the root of the Eiffel class

hierarchy. The constraining type may refer to other type parameters.

8.1 Implementation

Concepts are represented as deferred classes (cf. abstract classes in C++). Figure 6

shows the implementations of three graph concepts. Eiffel classes offer no direct

mechanism for attaching types to classes; thus, associated types are expressed as

type parameters, as in OCaml and Haskell. The V and E parameters are examples of

this. Concept refinement is represented using inheritance between deferred classes;

the VERTEX LIST AND INCIDENCE GRAPH class demonstrates refinement. To

model a concept, a type inherits from the class representing the concept; the

ADJACENCY LIST class is an example of this.

The interface of the breadth-first search algorithm, shown in Figure 7, is rep-

resentative of the generic algorithms in the Eiffel graph library implementation.
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deferred class VERTEX LIST GRAPH[V]
feature

vertices: ITERATOR[V] is deferred end
num vertices: INTEGER is deferred end

end

deferred class INCIDENCE GRAPH[V, E]

feature

out edges(v: V) : ITERATOR[E] is deferred end
out degree(v: V) : INTEGER is deferred end

end

deferred class VERTEX LIST AND INCIDENCE GRAPH[V, E]

inherit

VERTEX LIST GRAPH[V]
INCIDENCE GRAPH[V, E]

end

class ADJACENCY LIST

inherit

VERTEX LIST AND INCIDENCE GRAPH
[INTEGER, BASIC EDGE[INTEGER]]

feature {NONE}
data : ARRAYED LIST[LINKED LIST[INTEGER]]
...

Fig. 6. Two graph concepts and a class that conforms to these concepts. V and E stand for

the vertex type and edge type, respectively.

class BREADTH FIRST SEARCH[V, E→ GRAPH EDGE[V],

G→ VERTEX LIST AND INCIDENCE GRAPH[V, E]]

feature
go(g: G; src: V; color: READWRITE MAP[V, INTEGER];

vis: BFS VISITOR[G, V, E]) is ...

Fig. 7. Interface of the breadth-first search algorithm in Eiffel.

Eiffel does not support parameterized methods. Therefore, generic algorithms are

implemented as parameterized classes with a single method, which we chose to name

go. The graph type G is required to model the Vertex List Graph and Incidence Graph

concepts. The combined set of requirements of these two concepts is included in

the class VERTEX LIST AND INCIDENCE GRAPH[V, E], shown in Figure 6.

This combination class is necessary because Eiffel does not currently support

constraining a single type parameter with multiple classes. Constraints frequently

refer to associated types, such as the vertex and edge types. Since associated types

are type parameters of the concept classes, a generic algorithm must have a type

parameter for each distinct associated type of any concept that constrains that

algorithm.

The graph library implementation in Eiffel necessarily deviates from the design

described in Figure 3 in that it uses fewer type parameters. For example, the classes

that implement graph concepts have no type parameters for vertex and edge iterator
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types. In early attempts to rigorously follow the original design, calls to generic

algorithms were overly verbose. The reasons for this, explicit instantiation and the

inability to properly encapsulate associated types, are discussed below. Furthermore,

this section discusses how Eiffel’s support for covariant type parameters can lead to

the compiler rejecting reasonable code as potentially unsafe. This was encountered

frequently with the original library design. Unfortunately, with fewer type parameters,

not all of the exact types of the arguments or return values of generic algorithms

can be expressed. For example, in Figure 6 the return type of the vertices method

is ITERATOR[V], not the exact vertex iterator type. Similarly, the static type of

the vis parameter in the BREADTH FIRST SEARCH algorithm in Figure 7 is not

the exact type of the visitor object. This loss of type accuracy has no performance

implications in the Eiffel compilation model, since exact types are not exploited

for static dispatching. However, inexact types can result in situations where either

downcasting or relying on covariance in type parameters is needed.

8.2 Evaluation of Eiffel

Among object-oriented languages, Eiffel was an early provider of constrained

generics. In Eiffel, generic classes are type checked independent of their uses, allowing

type errors to be caught before a generic class is instantiated, and enabling separate

compilation of generic classes. We found, however, that notable difficulties follow

from other design choices of Eiffel, in particular from (1) the need to explicitly

instantiate generic algorithms, (2) the mechanisms for representing and accessing

associated types, (3) the lack of support for multiple constraints on a single type

parameter, and (4) allowing covariant change in type parameters.

Eiffel requires explicit instantiation: the caller of a generic algorithm must provide

both the actual function arguments and the type arguments. Assuming the function

arguments have the following types:

g: ADJACENCY LIST; src: INTEGER;
color: HASH MAP[INTEGER, INTEGER]; vis: MY BFS VISITOR

the call to the breadth-first search algorithm in Eiffel is:

bfs: BREADTH FIRST SEARCH
[INTEGER, BASIC EDGE[INTEGER], ADJACENCY LIST]

create bfs

bfs.go(g, src, color, vis)

Explicit instantiation makes calls to generic functions verbose, particularly when

the function has many type parameters. In the above example, with three type

parameters, the type parameter list is already much longer than the entire function

call. In addition, Eiffel lacks static methods, and thus an object must be explicitly

created before the algorithm can be invoked. Another effect of explicit instantiation

is that calls to generic algorithms often carry unnecessary dependencies on the

actual types of the function arguments. For example, changing the graph object g

to some other compatible graph type requires changing all bfs call sites that use g,

because they explicitly mention g’s type. Section 12.3 discusses the effect of explicit

instantiation in detail.
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Associated types and constraints imposed on them are part of concept require-

ments but cannot be properly encapsulated with Eiffel classes. Instead, every use

of a concept as a constraint must repeat all of its associated types and their

constraints. The constraint VERTEX LIST AND INCIDENCE GRAPH[V, E] in

Figure 7, for example, must mention the type parameters V and E that correspond to

the associated vertex and edge types. This example does not demonstrate repetition

of constraints, as none are placed on V and E. Examples of constraint repetition

are postponed until Section 12.1, which discusses this common phenomenon in

Eiffel, Java, and C#. Eiffel’s Anchored types (Meyer, 1992) do not provide a means

to encapsulate associated types because anchored types cannot express arbitrary

dependencies between types.

Another set of problems arises as the combined effect of explicit instantiation and

using type parameters to represent associated types. First, verbose calls to generic

algorithms are exacerbated. When instantiating generic algorithms explicitly inside

other generic components, the type arguments are often themselves instances of

generic classes. As a result, specifying the type arguments explicitly can become a

significant programming overhead. In an earlier implementation that followed the

original library design, the graph search algorithm had eight type parameters. In

Dijkstra’s shortest-path algorithm, counting nested type arguments, the internal call

to the graph search algorithm required 35 type arguments. This effect made us alter

the library design to reduce the number of type parameters. Second, in addition to

being dependent on the function’s argument types, call sites of generic algorithms

become dependent on all associated types of the argument types. For example, the

bfs function does not take an edge as a parameter, but since it is an associated type of

the graph type, it appears as a type parameter to that function. Thus, changing just

the associated edge type of the ADJACENCY LIST data structure would require

revisiting all calls to bfs with ADJACENCY LIST as a type parameter. Section 12.3

gives full details of this problem.

Eiffel does not support constraining a type parameter with multiple classes.

To work around this, we define classes that represent combinations of concepts:

instead of the two classes VERTEX LIST GRAPH and INCIDENCE GRAPH,

the graph type G in Figure 6 is required to derive from just one class. This

class, VERTEX LIST AND INCIDENCE GRAPH, inherits from both of the above

classes, and adds no new method requirements. The requirements of generic

algorithms determine which combinations of concepts need such classes. Adding a

new algorithm that requires a previously unused combination of concepts necessitates

the creation of a new class for this combination. This problem surfaces with

OCaml as well (see Section 6.1), but is more serious in Eiffel: adding a new

combination class may require non-local modifications elsewhere in the library.

The new class may need to be added to the base classes of concrete graph

classes, or to previously defined classes representing combinations of concepts.

For instance, a graph type that directly inherits from VERTEX LIST GRAPH and

INCIDENCE GRAPH is not usable as an algorithm’s input type that is constrained

with VERTEX LIST AND INCIDENCE GRAPH. In OCaml, this phenomenon

does not occur, as conformance is determined by structural properties, which do not
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change in this scenario. Multiple constraints is an open issue in Eiffel standardization

and a likely future addition to the language (Meyer, 2002; ECMA, 2005).

Eiffel has been criticized for type-safety problems (Bruce, 1996; Cook, 1989). In

particular, type conformance checking is based on its subclass relation, which allows

instance variables and parameters of routines to change covariantly. Eiffel applies

covariance to generic parameters as well, which makes the type-safety problems

a concern for generic programming. Under these rules the subclass relation does

not imply substitutability, and additional measures must be taken to guarantee

type-safety. Suggested approaches include a link-time system validity check (Meyer,

1992) that requires a whole-program analysis, and a ban of so-called polymorphic

catcalls (Meyer, 1995). A recent proposal (Howard et al., 2003) requires programmers

to add explicit handler functions for each potentially type-unsafe program point.

The current draft specification of the Eiffel standard (ECMA, 2005) proposes two

measures: a keyword frozen to signify that no covariant change is allowed on a

particular type parameter, and requiring the type checker to force programmers to

add object tests (checked dynamic casts) where covariance may compromise type

safety. To our knowledge, no publicly available compiler implements any of these

approaches, and they are thus not considered in our evaluation.

According to the current Eiffel conformance rules, type B[U] conforms to the

type A[T] if the generic class B derives from A, and if U conforms to T. This

either leads to type safety problems or, under overly conservative assumptions, to

the rejection of useful and reasonable code. It is not too difficult to fabricate an

example of the former case, leading to a program crash, but in practice we ran into

the latter issue more often. Here is an example that demonstrates the problem:

deferred class READWRITE MAP[KEY, VALUE]
...

put (k: KEY; val: VALUE) is deferred end

...
end

class WHITEN VERTEX [V, CM → READWRITE MAP[V, INTEGER]]
inherit COLORS end

feature

go(v: V; color map : CM) is do color map.put(v, WHITE); end
end

Several graph algorithms attach state information to vertices using property maps.

The state is represented as integer constants WHITE, BLACK, and GRAY. The

WHITEN VERTEX algorithm above sets the state of a given vertex to WHITE.

The algorithm takes two method parameters, the vertex v and the property map

color map, and their types as type parameters V and CM.

The call color map.put(v, WHITE) in the example fails. The map color map

is of some type CM that inherits from READWRITE MAP[V, INTEGER] and

thus one may expect put(key: V; val: INTEGER) to be the signature of the put

method. However, due to possible covariance of type parameters, the compiler

must assume differently. Suppose the generic class MY MAP[A, B] inherits from

READWRITE MAP[A, B], D VERTEX inherits from B VERTEX, and D INT
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from INTEGER. Now MY MAP[D VERTEX, D INT] conforms to the class

READWRITE MAP[B VERTEX, INTEGER], making the following instantiation

seemingly valid:

WHITEN VERTEX[B VERTEX, MY MAP[D VERTEX, D INT]]

In this instantiation, the put method is called with arguments of types B VERTEX

and INTEGER. This is an obvious error, as the signature of the method is

put(k: D VERTEX; val: D INT). To prevent errors such as this, some compilers,

as an attempt to partially solve the covariance problem, reject the definition of

the go method in the WHITEN VERTEX class, at the same time disallowing its

legitimate uses. Other compilers accept the definition, making programs vulnerable

to uncaught type errors. In sum, the covariance rule causes code that seems to be

perfectly reasonable to be rejected, or leads to type unsafety.

An immediate fix is to change the type of the color map parameter:

go(color map: READWRITE MAP[V, INTEGER]; v: INTEGER)

Now color map is of type READWRITE MAP[V, INTEGER], and the put sig-

nature is guaranteed to be put(k: V; val: INTEGER). However, along with this

change, the exact type of the actual argument bound to color map is lost. In this

particular case, that would not be critical. Suppose, however, the algorithm kept

the original map intact and returned a modified copy of the map as a result. The

signature of such a method would be:

go(color map: READWRITE MAP[V, INTEGER]; v: INTEGER)

: READWRITE MAP[V, INTEGER]

Regardless of the type of the actual argument bound to color map, the return value

is coerced to READWRITE MAP[V, INTEGER], losing any additional capabilities

of the original type.

The interface of Johnson’s algorithm illustrates how covariance can be exploited

to decrease the number of type parameters. One of the parameters of Johnson’s

algorithm is a map of maps storing distances between vertex pairs in a graph. The

type constraint for this argument is:

READ MAP[V, READWRITE MAP[V, DISTANCE]];

A concrete type, such as

MY MAP[INTEGER, MY MAP[INTEGER, REAL]]

where V is bound to INTEGER and DISTANCE to REAL, does not conform to

the above constraint without covariance.

Generic programming does not seem to fundamentally benefit from covariance on

type parameters. We resorted to covariance only to reduce difficulties arising from

the lack of implicit instantiation and support for associated types. In particular, we

were able to reduce the number of type parameters in a few situations where it would

not have been possible without covariance. More notably, however, the covariance

rules reduced flexibility. The restrictions introduced to guarantee type safety lead

to the compiler rejecting code for reasons that are not easy for a programmer to

discern.
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public interface VertexListGraph<Vertex,
VertexIterator extends Collection<Vertex>,

VerticesSizeType extends Integer> {
VertexIterator vertices();

VerticesSizeType num vertices();

}

public interface IncidenceGraph<Vertex, Edge,

OutEdgeIterator extends Collection<Edge>,
DegreeSizeType extends Integer> {

OutEdgeIterator out edges(Vertex v);

DegreeSizeType out degree(Vertex v);
}

public class adjacency list
implements VertexListGraph<Integer, Collection<Integer>, Integer>,

implements IncidenceGraph<Integer, adj list edge<Integer>,

implements InCollection<adj list edge<Integer>>, Integer>
{ ... }

Fig. 8. Two interfaces representing graph concepts in Java, and an adjacency list data

structure that models these concepts.

9 Graph library in Java

Java 5 includes generics with type parameters for classes, interfaces, and meth-

ods (Gosling et al., 2005). We used version 5.0 of the JDK to compile and test our

implementation of the graph library. Java generics follow a similar design to those

in Eiffel, but with several differences that proved to be significant. In Java generic

methods can be implicitly instantiated and type parameters can be constrained to be

subtypes of multiple other types. By default, all type parameters must be subtypes

of Object; all user-defined types satisfy this property, but primitive types such as int

and double do not. A unique feature of Java is so-called wildcards, which can be

characterized as unnamed type parameters (Torgersen et al., 2004). In addition to

subtype constraints, wildcards can be constrained from below, that is, required to

be supertypes of particular types.

9.1 Implementation

In Java, we represent concepts by interfaces. A type declares that it models a

concept by implementing the corresponding interface. Figure 8 shows the Java

representations of two graph concepts and an adjacency list graph data structure

modeling these concepts. The implements clause makes adjacency list a model of the

Vertex List Graph and Incidence Graph concepts. Although not shown in this figure,

concept refinement is represented by inheritance between interfaces using the extends

keyword.

As in the Eiffel implementation, associated types are expressed as type parameters

to the interface representing the concept. For example, the IncidenceGraph interface

in Figure 8 has three associated types: OutEdgeIterator, Vertex, and Edge. The

adjacency list graph type demonstrates connecting concrete associated types to the
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public class breadth first search {
public static <

GraphT extends VertexListGraph<Vertex, VertexIterator, ?> &
IncidenceGraph<Vertex, Edge, OutEdgeIterator, ?>,

Vertex,

Edge extends GraphEdge<Vertex>,
VertexIterator extends Collection<Vertex>,

OutEdgeIterator extends Collection<Edge>,

ColorMap extends ReadWritePropertyMap<Vertex, ColorValue>,
Visitor extends BFSVisitor<GraphT, Vertex, Edge>>

void go(GraphT g, Vertex s, ColorMap c, Visitor vis);

}

Fig. 9. Breadth-first search interface using Java.

type parameters of the IncidenceGraph interface: the vertex type is Integer, the edge

type is adj list edge<Integer>, and so on.

Generic algorithms are most straightforwardly expressed as free-standing func-

tions. In a language not supporting them, they can be emulated by static methods,

either as parameterized methods in non-parameterized classes or non-parameterized

methods in parameterized classes (as in Eiffel). Parameterized methods in Java can

be implicitly instantiated, and so we use them to implement generic algorithms.

Following the convention we chose with Eiffel, we name the static method go.

Figure 9 shows the interface for the breadth-first search algorithm. This algorithm

takes seven type parameters and four method parameters. Four of the type paramet-

ers are types of method parameters; the other three (plus Vertex) are associated types

of the graph type. Since Java supports implicit instantiation, calling a generic method

is no different from calling a non-generic method. For example, the breadth-first

search algorithm is invoked as follows:

breadth first search.go(g, src, color map, visitor);

9.2 Evaluation of Java

Overall, Java provides enough support for generic programming to allow a type-

safe implementation of the generic graph library. Interfaces provide a mechanism to

represent concepts within the language. Type parameter constraints can be expressed

directly and are enforced by the compiler, and multiple constraints can be applied

to the same type parameter. The arguments to generic algorithms and the bodies

of those algorithms are type checked separately against the concept requirements,

leading to good separation between the implementations of data structures used

as arguments to generic algorithms and the implementations of those algorithms,

and early detection of type errors. This also enables separate compilation of generic

components and their uses, which allows for faster compilation. Type arguments to

generic functions are automatically deduced from calls to those functions, greatly

reducing verbosity and increasing modularity.

Two problems related to subtyping-constrained polymorphism, and some ad-

ditional inconveniences, make generic programming in Java both restricted and
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cumbersome. The first originates from using inheritance to express the models

relation. The inheritance relation is fixed when a class is defined. Consequently,

existing classes cannot be made to model new concepts retroactively, unless their

definitions can be modified. Section 12.4 explains how this problem affects the task

of composing libraries.

The second problem relates to representing associated types. Java classes and

interfaces can only encapsulate methods and member variables, not types. Hence,

as in Eiffel, each concept’s associated types are represented as separate type

parameters. Referring to a concept in a generic algorithm requires repeating all

its type arguments. Representing associated types as type parameters results in

unnecessarily lengthy code and repetition of the type constraints. Wildcard types

can alleviate this to some extent: a ? symbol can be used in place of a type argument.

Any constraints on that type argument are assumed and need not be given. If a

type argument needs to be referred to, for example, to express that two associated

types of different concepts must be the same, then it cannot be replaced with a

wildcard. This proved to be the common case in the graph library implementation;

wildcards did reduce the verbosity to an extent but often they were not applicable.

Sections 12.1 and 12.2 discuss in more detail the problems caused by representing

associated types as type parameters.

Java syntax for declaring and initializing a variable requires the type of the

variable to be written twice. For example, the code to create an object of type

MyClass is:

MyClass x = new MyClass(...);

In this example, the name of the type is short. However, this is often not the case in

generic libraries. Many types used in the graph library implementation span several

lines; see Section 12.5 for an example. Repetition of such names is not only tedious,

but increases the possibility of errors. The repetition is unavoidable, as Java does

not have a type aliasing facility, such as typedef in C++. Wildcards cannot be used

for this purpose, as a wildcard defines a separate type, not just an automatically

inferred type name. In other words, an expression like A<?> a = new A<B>(...);

cannot be used in many cases, as A<?> defines a different, and more restricted,

type than A<B>. In particular, once the variable a is given the type A<?>, all

information that the type argument to A is B is lost to the compiler.

One of the design goals of Java generics was backward compatibility with existing

Java implementations. For this reason, the language is implemented using type

erasure. Certain type constraints cannot be expressed with a type-erasure-based

language, such as constraining one type variable to be a subtype of two different

parameterizations of a single generic interface. These restrictions cannot be resolved

in Java without sacrificing backward compatibility (Bracha et al., 1998). None of the

restrictions of type erasure were encountered in the graph library implementation.

10 Graph library in C# generics

C# generics extend the C# programming language with parameterized classes,

interfaces, and methods (Kennedy & Syme, 2001; Microsoft Corporation, 2005).
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public interface VertexListGraph<Vertex,VertexIterator>
where VertexIterator: IEnumerable<Vertex> {

VertexIterator vertices();
int num vertices();

}

public interface IncidenceGraph<Vertex, Edge, OutEdgeIterator>
where OutEdgeIterator: IEnumerable<Edge> {

OutEdgeIterator out edges(Vertex v);
int out degree(Vertex v);

}

public class adjacency list

: VertexListGraph<int, IEnumerable<int>>,

IncidenceGraph<int, adj list edge<int>,
IncidenceGraph<IEnumerable<adj list edge<int>>

{ ... }

Fig. 10. C# representations of two graph concepts and a type that models the concepts.

Apart from minor syntactic differences, generic class and method definitions are

similar to those in Java. Full separate type checking and compilation are supported.

Generics are a planned feature for version 2.0 of the .NET Framework, and a beta

release of that framework was used for compiling the graph library.

10.1 Implementation

Generic programming structures are implemented in C# generics using many of

the same techniques as are used in Java. Concepts are represented as interfaces,

and modeling a concept is represented as implementing the corresponding interface.

Refinement is expressed by one interface inheriting from another. Generic algorithms

are implemented by parameterized static methods, and concept constraints on the

parameters to those algorithms are represented by interface-based constraints. Also

as in other object-oriented languages, associated types are realized as extra type

parameters to interfaces and algorithms.

Figure 10 shows the interfaces representing the Vertex List Graph and Incidence

Graph concepts, as well as a graph data structure modeling these concepts.

The interface to the breadth-first search algorithm is shown in Figure 11. The

example invocation of this algorithm in Figure 12 illustrates the most significant

difference between Java and C# generics: the current language specification for

C# does not allow the inference of type arguments to a generic function from the

constraints of that function. For example, the following code:

public interface I<T> {}
public class C: I<int> {}

public static class Algorithm {
public static void go<T, U>(U b) where U: I<T> {}

}
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public static class breadth first search {
public static void go<G, Vertex, Edge, VertexIterator,

OutEdgeIterator, ColorMap, Visitor>
(G g, Vertex s, ColorMap c, Visitor vis)

where GraphT:

VertexListGraph<Vertex, VertexIterator, VerticesSizeType>,
IncidenceGraph<Vertex, Edge, OutEdgeIterator, DegreeSizeType>

where Edge: GraphEdge<Vertex>
where VertexIterator: IEnumerable<Vertex>
where OutEdgeIterator: IEnumerable<Edge>
where ColorMap: ReadWriteMap<Vertex, ColorValue>
where Visitor: BFSVisitor<G, Vertex, Edge>;

}

Fig. 11. Breadth-first search interface in C#. The IEnumerable interface provides the

iteration mechanism in C#.

breadth first search.go<
adjacency list, int, adj list edge<int>,
IEnumerable<int>,

IEnumerable<adj list edge<int>>,
simple property map<int, ColorValue>,

my bfs visitor<adjacency list, int, adj list edge<int>>>
(graph, src vertex, color map, visitor);

Fig. 12. Call to breadth-first search algorithm in C#.

public static class MainClass {
public static void Main(string[] args) {

C x = new C();

Algorithm.go(x);
}

}

does not work in the current version of C#, because the type argument T to

Algorithm.go() cannot be inferred, as T only occurs in the constraints of the go()

method, not in its parameter list. This problem can be avoided in either of two

ways: by using explicit instantiation in the cases where the type inference problem

occurs, which we chose for the C# implementation of the graph library; or by

compromising the design of the generic library to allow implicit instantiation by

replacing type parameters with their bounds, as we did in the Cecil implementation

of the graph library (Cecil has a similar limitation). The problems with both of these

workarounds are explained in Section 12.3. Since Java is capable of inferring type

arguments from constraints, it does not have this problem.

10.2 Evaluation of C# generics

C# generics avoid some of the inconveniences of Java; in particular, primitive types

can be used directly as arguments to generic components. Otherwise, its suitability

for generic programming is almost the same as that of Java. Like Java, C# does
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not support a representation for one concept simultaneously constraining multiple

independent types; both languages support multiple constraints on the same type

parameter. Associated types are represented as extra type parameters to interfaces

and generic methods, as in Java. The problems related to this are the same in both

languages, including added verbosity and the inability to encapsulate constraints

on associated types as part of a concept. C#, like Java, lacks a mechanism for

type aliases, although there is a syntax for defining shorthand names for concrete

types outside of a generic class or method. Because of this restriction, a type

containing type variables cannot be abbreviated in this way. Unlike Java, C#

supports retroactive modeling, though in a limited form, through the use of partial

classes. A class must be defined in a particular way to be extensible through that

mechanism, however, and all base interfaces must be found at compile-time; this

means, for example, that classes imported from a library in binary form cannot be

made to retroactively model concepts (Microsoft Corporation, 2005, ch. 23). C#,

similar to the other object-oriented languages studied, supports separate compilation

for generics.

A severe drawback of the .NET Framework 2.0 beta implementation of generics

in C# is its support for implicit instantiation, which we found insufficient for

convenient implementation of the graph library. The need to explicitly specify all

type arguments to generic methods leads to unnecessary type duplication and a loss

of modularity, as discussed in Sections 8.2 and 12.3.

11 Graph library in Cecil

Cecil is a research object-oriented language with support for subtype-constrained

polymorphism on both objects and methods (Litvinov, 1998; Chambers & the

Cecil Group, 2002). Cecil provides a static type system on top of a dynamically

typed core language. The static type system only generates warnings and does

not reject any code; error-producing type checks are all done at run-time and are

based on the dynamic types of objects. Cecil is prototype-based and thus does

not have classes: objects serve the same purposes as classes do in other languages.

In particular, objects contain fields and methods, and inherit behavior from other

objects. An abstract object is the analogue of an abstract class or interface in other

object-oriented languages; a template object corresponds to a generic class.

Generics in Cecil, compared to Java, Eiffel, or C#, add several features: multi-

methods, retroactive abstraction, and more powerful inference of type parameter

constraints. Multimethods bind method definitions to a combination of several

objects, not just to a single object, which is the case in mainstream object-oriented

languages. Retroactive abstraction allows subtype relationships, and other object

features, to be added to a type after it has been defined; this contrasts with several

popular object-oriented languages, in which the superclasses, fields, and methods

of a class are set at class definition time and cannot be changed elsewhere in the

program. Finally, Cecil can infer constraints on type parameters, based on their uses

in other constraint expressions. Our evaluation is based on version 3.2a of the Cecil

interpreter, prepared by Craig Chambers.
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abstract object vertex list graph[‘Vertex,
abstract object vertex list graph[‘VertexIterator <= collection[Vertex]];

signature vertices(:vertex list graph[‘Vertex, ‘VertexIterator]):
signature vertices(:vertex list graph[‘Vertex, ‘VertexVertexIterator;

signature num vertices(:vertex list graph[‘Vertex, ‘VertexIterator]): int;

abstract object incidence graph[‘Vertex, ‘Edge <= bgl graph edge[Vertex],

abstract object incidence graph[‘OutEdgeIterator <= collection[Edge]];

signature out edges(:incidence graph[‘Vertex, ‘Edge, ‘OutEdgeIterator],
signature out edges(:Vertex): OutEdgeIterator;

signature out degree(:incidence graph[‘Vertex, ‘Edge, ‘OutEdgeIterator],

signature out degree(:Vertex): int;

Fig. 13. Two abstract objects representing graph concepts in Cecil.

template object adjacency list

isa vertex list graph[int, array[int]],

isa incidence graph[int, adj list edge[int], array[adj list edge[int]]],
isa edge list graph[int, adj list edge[int], array[adj list edge[int]]];

field vertices (@:adjacency list): array[int] := object isa array[int];
method vertices(g@:adjacency list): array[int] {g.vertices }
method num vertices(g@:adjacency list): int {g.vertices .length}
−− Other field and method definitions for adjacency list

Fig. 14. Partial listing of the adjacency list data structure that models several graph concepts.

11.1 Implementation

Concepts in Cecil are represented as abstract objects. As an example, the first

two lines in Figure 13 define the abstract object for the Vertex List Graph concept.

The ‘Vertex syntax, a backquote preceding an identifier, is a concise syntax for

declaring a type parameter. Any later occurrences of the same identifier are written

without the backquote and refer to the same type parameter. Subtype constraints

follow a type parameter declaration after a <= symbol. A feature peculiar to

Cecil is that the method requirements, denoted using the signature keyword, are

completely separate from the definitions of the abstract objects. The two signature

declarations in Figure 13 following the declaration of vertex list graph demonstrate

this. Functions with these signatures must be defined for all objects inheriting from

vertex list graph. The separation of the object declaration and the method signatures

is a natural consequence of Cecil’s support for multimethods: no parameter of a

method is special (such as the this parameter in Java or C#). A concept in Cecil

thus consists of a declaration of an abstract object, and a set of signature definitions

on that object.

In Cecil, types are declared to model concepts by establishing the subtyping

relationship with the isa keyword. The declaration of the adjacency list template

object and the definitions of some of its fields and methods are shown in Figure 14.

Similar to the signatures of abstract objects, field and method definitions are separate

from the template object declaration.
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method breadth first search(
g: ‘Graph <= incidence graph[‘Vertex, ‘Edge, ‘OutEdgeIterator]

g: ‘Graph & vertex list graph[Vertex, ‘VertexIterator],
s: Vertex,

color: m table like[Vertex, color value],

vis: bfs visitor[Graph, Vertex, Edge]): void { ... }

Fig. 15. Breadth-first search interface using Cecil.

Cecil’s support for multimethods allows generic algorithms to be defined as

methods that do not belong to any particular object. Figure 15 shows the signature

of the breadth-first search algorithm. Cecil supports multiple constraints on a single

type parameter, demonstrated by the Graph type parameter: the <= symbol is

followed by the list of constraints separated by & symbols. The : symbol is used

to specify the static type of a method parameter or return type; the @ symbol

restricts the parameter at run-time to inherit from a particular object. We follow

Cecil conventions in the use of : and @.

Cecil supports implicit instantiation; thus, the type arguments to generic al-

gorithms do not need to be passed explicitly, and a call to a generic method is no

different from a call to a non-generic method. Cecil’s argument deduction capabilities

are, however, less powerful than those of Java. In particular, Cecil cannot infer

type arguments from a generic method’s constraints; C# generics also share this

restriction. The visitor type in the breadth-first search algorithm implementation is

not given a separate type parameter to work around this limitation. We discuss this

issue in more detail in Section 12.3.

As in other object-oriented languages, associated types of a concept are extra

type parameters to the abstract object representing the concept. For example,

the incidence graph abstract object in Figure 13 has three associated types, and

constraints on them. These same associated types appear in the breadth first search

algorithm in Figure 15. Unlike Java and C#, the constraints on associated types do

not need to be repeated; they are inferred from the constraints placed on the Graph

type parameter. For example, the constraint that OutEdgeIterator be a collection

does not need to be specified in breadth first search as it is already specified in the

incidence graph concept, shown in Figure 13.

In Cecil, retroactive modeling is implemented with retroactive abstraction: the

subtyping relation between two types can be established with a declaration separate

from the definitions of the types. Moreover, subtyping declarations can be generic,

and apply only to instantiations where type parameters satisfy predefined constraints.

The following code demonstrates these capabilities. The bgl graph edge object

represents the Graph Edge concept we used to describe the requirements for edge

types. The adj list edge object is a model of that concept.

abstract object bgl graph edge[‘Vertex];

signature source(:bgl graph edge[‘Vertex]): Vertex;
signature target(:bgl graph edge[‘Vertex]): Vertex;

template object adj list edge[‘Vertex] isa bgl graph edge[Vertex];

field source (@:adj list edge[‘Vertex]): Vertex;
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field target (@:adj list edge[‘Vertex]): Vertex;

method source(e@:adj list edge[‘Vertex]): Vertex {e.source }
method target(e@:adj list edge[‘Vertex]): Vertex {e.target }

Equality comparison between adj list edges can be defined based on equality of

vertices. The following code makes adj list edge retroactively a model of Comparable,

in all cases where its type parameter Vertex models Comparable:

extend adj list edge[‘Vertex <= comparable[Vertex]]

iisa comparable[adj list edge[Vertex]];

method =(e1@:adj list edge[‘Vertex <= comparable[Vertex]],
method =(e2@:adj list edge[Vertex]): bool {

(e1.source = e2.source ) & (e1.target = e2.target )

}

Note that this particular subtyping relation must be defined retroactively because

not all instances of adj list edge implement the functionality of Comparable.

11.2 Evaluation of Cecil

Cecil is an object-oriented language with some advanced features not found in

mainstream object-oriented languages. Of these features, inference of type parameter

constraints most significantly affects generic programming. This manifests as Cecil’s

improved support for associated types, as compared to Java and C#; constraints

placed on associated types in concept definitions need not be repeated when the

concepts are used to constrain type parameters. Associated types must, however, still

be given as extra type parameters in each generic algorithm, whether or not those

types are used. As a less notable effect, Cecil’s backquote syntax for declaring type

parameters makes generic definitions shorter. Type parameter constraints and the

function parameter list, however, become interleaved, which may not have an entirely

positive effect on code readability. Finally, Cecil provides retroactive abstraction: the

subtype relation is not fixed when particular classes or objects are defined; hence,

Cecil supports retroactive modeling and does not suffer from the problems described

in Section 12.4.

The current implementation of Cecil cannot infer type arguments from constraints;

Cecil shares this problem with C#. To preserve implicit instantiation we had to round

some type parameters to their constraints; Section 12.3 discusses this issue in more

detail.

Cecil has an undocumented polymorphic type aliasing mechanism (based on a

personal communication from Craig Chambers), but with similar restrictions to

the using declaration in C#, and so is not very useful for generic libraries; thus,

some type name duplication occurs in generic algorithms. Cecil’s syntax for variable

declaration, however, does not require duplication of type names, which makes the

problem less pronounced than in the other object-oriented languages we studied.

Defining methods separately from objects is convenient in many cases, but also

necessitates declaring the type parameters for each method of the same object. This

is occasionally repetitive. For example, in the implementation of Dijkstra’s shortest

https://doi.org/10.1017/S0956796806006198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006198


192 R. Garcia et al.

method initialize vertex(
@: dijkstra visitor[‘Graph, ‘Vertex, ‘Distance, ‘Edge, ‘QueueType,

@: dijkstra visitor[‘WeightMap, ‘PredecessorMap, ‘DistanceMap,
@: dijkstra visitor[‘DistanceCombine, ‘DistanceCompare],

u: Vertex, g: Graph): void {}

method discover vertex(

@: dijkstra visitor[‘Graph, ‘Vertex, ‘Distance, ‘Edge, ‘QueueType,

@: dijkstra visitor[‘WeightMap, ‘PredecessorMap, ‘DistanceMap,
@: dijkstra visitor[‘DistanceCombine, ‘DistanceCompare],

u: Vertex, g: Graph): void {}

Fig. 16. Two of the eight methods of the dijkstra visitor object used in the implementation

of Dijkstra’s shortest path algorithm.

paths algorithm (see Figure 16) the type of the visitor object with all ten of its type

parameters is repeated for each of the eight methods of the visitor.

Finally, to support the greater flexibility, Cecil requires a whole-program type

check to prevent ambiguous and undefined method calls (Chambers & the Cecil

Group, 2002, § 3.3).

12 Discussion

The following sections describe six specific issues brought to light in the course of

this study. The first regards limitations in how subtyping is used to constrain

type parameters in mainstream object-oriented languages. The second involves

repercussions of the way associated types are accessed in the surveyed languages. The

third emphasizes how explicit instantiation (or weaknesses in implicit instantiation)

combined with insufficient support for representing associated types can make

generic function calls dependent on the implementation details of their argument

types. The fourth concerns the effect of the type constraint mechanism on the

evolution of software systems, especially when new algorithms and concepts are

created. The fifth shows how the lack of a mechanism for type aliasing can

force unnecessary verbosity, especially when generic components must be explicitly

instantiated. Finally, the sixth discusses some aspects of language syntax that can

discourage the development of generic libraries.

12.1 Encapsulating type constraints in concepts

In all the purely object-oriented languages under study, we implemented generic

programming using analogous language facilities. Concepts are approximated in

Java and C# by interfaces, in Eiffel by deferred classes, and in Cecil by abstract

objects (in the following we use the term “interface” to refer to all of these). The

modeling relation between a type and a concept is approximated by the subtype

relation between a type and an interface, and the refinement relation between two

concepts by interface extension.

Concepts commonly group constraints concerning multiple types. For example, the

Vertex List Graph concept places constraints on a graph type as well as its associated
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vertex and vertex iterator types. In particular, the Vertex List Graph concept requires

that the vertex iterator type models the Collection concept. In the following, we

attempt to express the Vertex List Graph concept using a parameterized interface

with extra constraints on the type parameters. However, this attempt ultimately

fails. Consider the following Java implementation of the Vertex List Graph concept:

interface VertexListGraph<Vertex,

VertexIterator extends Collection<Vertex>,
VerticesSizeType extends Integer> {

VertexIterator vertices();

VerticesSizeType num vertices();
}

The VertexIterator parameter is constrained to require that it models the Collection

concept. Difficulties arise when VertexListGraph is later used to constrain an

algorithm’s graph type parameter. For example, in the following sketch of a

graph algorithm function we constrain G to extend VertexListGraph.

public static class graph algorithm {
public static <

G extends VertexListGraph<Vertex, VertexIterator, ...>,

Vertex,
VertexIterator>

void go(G g, Vertex s, VertexIterator i);

}

The above code fails to type check: the instantiation of VertexListGraph with

the type argument VertexIterator fails because VertexIterator does not implement

Collection<Vertex>. A constraint on an interface’s type parameter is a prerequisite

to instantiating the interface; it is not part of the interface itself. Thus the constraint

on the VertexIterator parameter resulted in the opposite behavior to what we

intended: the VertexListGraph constraint on the method go does not allow us to

assume that VertexIterator implements Collection but instead requires us to prove

that VertexIterator implements Collection.

The above code can be made to type check by adding a constraint on the

VertexIterator parameter of the go method:

public static class graph algorithm {
public static <

G extends VertexListGraph<Vertex, VertexIterator, ...>,

Vertex,
VertexIterator extends Collection<Vertex>, ...>

void go(G g, Vertex s, VertexIterator i);

}

This need to repeat the constraint implies that the Java interfaces (and their

equivalents in C# and Eiffel) cannot organize and group constraints on multiple

types. Instead the constituent constraints of such concepts must be repeated for

every generic algorithm.
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Approximating concept refinement with interface extension exhibits similar effects.

For example, the following Java declaration is not legal:

interface BidirGraph<Vertex, Edge, OutEdgeIter, InEdgeIter, ...>
extends IncidenceGraph<Vertex, Edge, OutEdgeIter, ...> {...}

The OutEdgeIter type must be declared to extend Collection<Edge> before instan-

tiating IncidenceGraph. Here is the corrected version:

interface BidirGraph<Vertex, Edge,

OutEdgeIter extends Collection<Edge>, InEdgeIter, ...>
extends IncidenceGraph<Vertex, Edge, OutEdgeIter, ...> {...}

Java, C#, and Eiffel all exhibit the above effects. In contrast, Cecil does not

require redundant constraint declarations analogous to those illustrated above. Our

recent work (Järvi et al., 2005) suggests changes to the type systems of Java and C#

to obviate redundant constraints.

12.2 Access to associated types

Generic functions need a mechanism to access associated types. For example, in

breadth-first search, the type of the second parameter (the source of the search)

is the vertex type associated with the graph type. In C++, the type expression

graph traits<G>::vertex exemplifies how the graph traits traits class provides a

mapping from a graph type G to its vertex type. In SML, such a mapping is

accomplished by nesting types within structures. The other languages we evaluated

do not currently provide a direct mechanism for expressing functions over types that

can dispatch on their inputs, as is needed for associated types; work towards such

features exists for Haskell (Chakravarty et al., 2005a) and in the context of C# and

Java (Järvi et al., 2005).

One way to represent associated types is to represent them by adding a parameter

for each associated type to the interface (Java, C#, OCaml, Cecil, and Eiffel) or

type class (Haskell) representing the concept. Then, these associated types can

be accessed in generic functions by similarly declaring new type parameters, and

using them as type arguments to the interfaces. This approach results in a significant

increase in the verbosity of both the type parameterization and constraints of generic

components. For example, the Java version of breadth first search shown in Figure 9

includes seven type parameters, four of which are associated types of the graph. In

contrast, the C++ version of breadth first search has only three type parameters, as

the associated types of the graph type can be accessed directly without extra type

parameters. The verbosity introduced by this approach compounds the problem of

repeated constraints discussed in Section 12.1.

12.3 Implicit instantiation

In languages that cannot encapsulate associated types, and do not support implicit

instantiation (Eiffel) or only support a weak form of implicit instantiation (C#),

explicit instantiation results in verbose generic algorithm invocations. The C# call
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to breadth-first search in Figure 12 demonstrates the problem: the programmer

must specify types that could be deduced from the argument types. Representing

associated types as type parameters increases the verbosity: in addition to the

argument types passed into a generic algorithm, the programmer must also specify

all associated types. In the breadth-first search algorithm, all but the first and last

two type arguments are associated types of the first type argument (the graph type).

The level of support for implicit instantiation, or type argument deduction, proved

significant in our evaluation. C# and Cecil lack the ability to determine the type

arguments based on the constraints of a generic function, whereas Java supports

this capability. For example, the following C# function cannot be called without

explicitly specifying the type argument U:

public static class Algorithm {
public static void go<T, U>(U u) where U: IEnumerable<T> { ... }

}

In contrast, C# implicit instantiation can handle the slightly different definition:

public static class Algorithm {
public static void go<T>(IEnumerable<T> u) { ... }

}

Such “rounding parameter types to their bounds” may lead to problems in generic

algorithms because the exact static types of the arguments are not available. The

exact type may be needed in the return type of the function, types of other

parameters, or in their constraints. For example, the C# version of the Johnson’s

all-pairs shortest paths algorithm includes the following type parameters and their

constraints:

DistanceMatrixElement: ReadWritePropertyMap<Vertex, Distance>
DistanceMatrix: ReadablePropertyMap<Vertex, DistanceMatrixElement>

Assume the type arguments in a call are DME and DE satisfying the constraints:

DME : ReadWritePropertyMap<int, double>
DM : ReadablePropertyMap<int, DME>

If the DistanceMatrixElement type parameter is replaced with its bound, namely

ReadWritePropertyMap<Vertex, Distance>, DM would need to be a subtype of

ReadablePropertyMap<int, ReadWritePropertyMap<int, double>>

for the call to type check. Typically, this would not be the case, but rather,

DM would only be a subtype of ReadablePropertyMap<int, P>, where P is a

subclass of ReadWritePropertyMap<int, double>. Since P is not exactly the type

ReadWritePropertyMap<int, double>, the required subtyping relation does not

hold.

Note that argument deduction in C# succeeds only if all type arguments can be

deduced, otherwise every type argument must be explicitly specified. Also, rounding

the type of a function argument to its bound is not a transparent operation, but

instead can require changes to user code at the call sites of the modified function.

Finally, in languages where different instances of generic functions or methods are
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compiled to separate functions in the generated executable, using the exact type of a

function argument, rather than a base class of that type, may result in a performance

gain.

We used two different approaches to handle the weak support for implicit

instantiation in the implementations of the graph library: the C# version uses

full type parameterization, and thus cannot use implicit instantiation for calls to

most algorithms; the Cecil version rounds some type parameters to their bounds (as

was done with the example above), removing exact type information but enabling

implicit instantiation more often.

Explicitly specifying type arguments that represent associated types also leads to

the introduction of unnecessary implementation dependencies. As explained above,

four of the type arguments in the call to the breadth-first search algorithm in

Figure 12 are associated types of the first type argument, the graph type. These

types may represent internal implementation details of the graph type. At each call

to the algorithm, however, these types must be explicitly specified. Consequently,

changes that should be just implementation details in a data structure require

changes to user code at the call sites of generic algorithms that pass that data

structure as an argument. Consider the call to the breadth-first search algorithm in

Eiffel that was shown in Section 8.2:

g: ADJACENCY LIST; src: INTEGER;
color: HASH MAP[INTEGER, INTEGER]; vis: MY BFS VISITOR

bfs: BREADTH FIRST SEARCH

[INTEGER, BASIC EDGE[INTEGER], ADJACENCY LIST]
...

create bfs

bfs.go(g, src, color, vis)

The ADJACENCY LIST class in Figure 6 uses INTEGER as the vertex type and

BASIC EDGE[INTEGER] as the edge type. Even though the breadth-first search

algorithm has no edge object as a parameter, the associated edge type must still

be specified. Thus, changing the implementation of ADJACENCY LIST to use a

different edge type, such as MY EDGE[INTEGER], requires the type of bfs to be

changed accordingly:

bfs: BREADTH FIRST SEARCH

[INTEGER, MY EDGE[INTEGER], ADJACENCY LIST]

Similarly, all calls which pass an ADJACENCY LIST to a graph algorithm which

uses a concept with an associated edge type must be updated.

12.4 Establishing the modeling relation

The type arguments to a generic algorithm must model the concepts that constrain

the algorithm’s type parameters. We use several different techniques to establish

modeling relationships in the languages under study. Java, C#, Eiffel, and Cecil use

subtyping at the point of class definition; Cecil also allows subtype relationships

to be added outside of class definitions. C# supports similar functionality in

a limited form: classes have to be declared partial for this purpose, and their
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retroactive extension must occur in the same compilation unit as their definition.

Haskell requires an explicit instance declaration independent of data type definition.

Modeling relationships in SML (and OCaml) are implicitly checked for structural

conformance at generic function call sites. Any structure that meets the signature (or

class type) requirements satisfies the modeling relationship. C++ provides no language

feature for establishing modeling relationships. Type arguments are required only to

provide the functionality that is used within a function template’s body.

The modeling mechanisms used for Java, C#, Eiffel, Cecil, and Haskell rely on

named conformance, where an explicit declaration links a concrete type to the con-

cepts it models. Haskell differs from the others in that conformance declarations are

usually separate from data structure definitions. Cecil supports named conformance

both as part of a type definition and separately. Modeling in SML and OCaml relies

on structural conformance. The names of concepts are irrelevant; only the established

requirements matter. The modeling mechanisms in SML, OCaml, Haskell, and Cecil

worked well for implementing the graph library. Structural conformance has a small

advantage in the area of convenience: the user of a generic function does not have

to declare that his types model the required concepts. Named conformance, on the

other hand, avoids problems with accidental conformance. The canonical example of

accidental conformance (Magnusson, 1991) is a rectangle class with move and draw

methods, and a cowboy class with move, draw, and shoot methods. With structural

conformance, a cowboy could be used where a rectangle is expected, possibly resulting

in troublesome runtime errors. In our experience, accidental conformance is not a

significant source of programming errors.

In languages where modeling is established by named conformance only at type

definition time, types cannot retroactively model concepts. Once a type is defined,

the set of concepts that it models is fixed. Without modification to the definition,

modeling relationships cannot be altered. This causes problems when libraries with

interesting interdependencies are composed.

Figure 17 shows in C# an example of the retroactive modeling problem manifest

in three distinct libraries. Library A defines a graph concept Vertex List Graph, as well

as a graph data structure adjacency list that models that concept. Library B creates

an algorithm which requires only a subset of the Vertex List Graph concept from

library A, and library B defines a concept Vertex Number Graph corresponding to

this subset. The problem is that adjacency list should be a model of the new concept

from library B, but this is not possible in languages, such as Java, C#, and Eiffel, in

which modeling relationships are fixed when a type is defined. Languages such as

Haskell and Cecil solve this by allowing modeling and refinement relationships to

be established after the related types and concepts are defined. Languages such as

SML and C++ do not encounter this problem, as they use structural conformance to

constrain type parameters.

Retroactive subtyping can be addressed by providing a language mechanism

external to the class definition that establishes a subtyping relation, either automat-

ically (Baumgartner et al., 2002; Läufer et al., 2000) or by hand using the Adapter

pattern (Gamma et al., 1995); Cecil already contains such a mechanism, and it was

used to implement the graph library. For example, to indicate that the adj list edge
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namespace A {
public interface VertexListGraph<...> where ... {

VertexIterator vertices();
int num vertices();

}
public interface EdgeListGraph<...> where ... {

EdgeIterator edges();

}
public class adjacency list
: VertexListGraph<...>, EdgeListGraph<...>
{ ... }

}

namespace B {
public interface VertexNumberGraph<...> where ... {

int num vertices();

}
public static class bellman ford {

public static void go<G, ...>(g, ...)

where G : VertexNumberGraph<...>, A.EdgeListGraph<...> { ... }
}

}

namespace C {
A.adjacency list g;

// Problem: A.adjacency list does not inherit from VertexNumberGraph

B.bellman ford.go<A.adjacency list, ...>(g, ...);
}

Fig. 17. An example showing the need for retroactive modeling.

class (used for edges in the adjacency list graph implementation) is a subtype of

comparable (Equality Comparable), the following declaration suffices:

extend adj list edge[‘Vertex <= comparable[Vertex]] isa

comparable[adj list edge[Vertex]];

After this, the = method must also be defined to implement the comparable

functionality. This process of retroactive subtyping is analogous to how the Haskell

instance declaration establishes a modeling relation. Other solutions to retroactive

modeling include aspect oriented programming systems (Kiczales et al., 1997), such as

AspectJ, that allow modification of types independently of their original definitions.

For example, an existing class can be modified to implement a newly-created interface

using static crosscutting (Kiczales et al., 2001). The External Polymorphism design

pattern is an attempt to address this integration problem without changes to existing

object-oriented languages (Cleeland et al., 1997).
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dijkstra visitor<G,
mutable queue<Vertex,

indirect cmp<Vertex, Distance, DistanceMap, DistanceCompare>>,
WeightMap, PredecessorMap, DistanceMap,

DistanceCombine, DistanceCompare, Vertex, Edge,

Distance> bfs vis = new dijkstra visitor<G,
mutable queue<Vertex,

indirect cmp<Vertex, Distance, DistanceMap, DistanceCompare>>,

WeightMap, PredecessorMap, DistanceMap,
DistanceCombine, DistanceCompare, Vertex, Edge, Distance>();

graph search.go<
G, Vertex, Edge, VertexIterator, OutEdgeIterator,

hash map<Vertex, ColorValue>,

mutable queue<Vertex,
indirect cmp<Vertex, Distance, DistanceMap, DistanceCompare>>,

dijkstra visitor<G,

mutable queue<Vertex,
indirect cmp<Vertex, Distance, DistanceMap, DistanceCompare>>,

WeightMap, PredecessorMap, DistanceMap,

DistanceCombine, DistanceCompare, Vertex, Edge, Distance>>
(g, s, color, Q, bfs vis);

Fig. 18. Lack of type aliases leads to unnecessarily lengthy code.

12.5 Type aliases

Type aliases are a mechanism to provide an alternative name for a type (cf. the

typedef keyword in C++). The parameterization of components introduces long type

names, especially when parameterized components are composed. For example, in

C# the type of the visitor object used in Dijkstra’s algorithm is:

dijkstra visitor<G,

mutable queue<Vertex,
indirect cmp<Vertex, Distance, DistanceMap, DistanceCompare>>,

WeightMap, PredecessorMap, DistanceMap,

DistanceCombine, DistanceCompare, Vertex, Edge, Distance>

In this example, some type arguments are instantiations of other parameterized

components; this is not uncommon in generic code. The resulting type name is

unwieldy, and code that must use it is likely to be cluttered and hard to read.

Furthermore, a long type name may appear many times in a piece of code. This

five-line-long type appears three times in the implementation of Dijkstra’s algorithm.

With type aliasing, a short name could be given to this type and thus reduce clutter

in the code. Also, repeating the same type increases the probability of errors: changes

to one copy of a type must be consistently applied to other copies. In addition to

avoiding repetition of long type names, type aliases are useful for abstracting the

actual types without losing static type accuracy.

Figure 18 shows the allocation of a visitor object and the call to the graph search

algorithm that appears inside the Dijkstra implementation. Without type aliases,

what should be a few lines of code is instead 21 lines. There is no mechanism for
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type aliases in Java, C#, or Eiffel (the using directive in C# and the type synonym

directive in Cecil provide a limited form of type aliasing, but they cannot be used

inside a method, and thus cannot reference the method’s type parameters). Type

aliasing is a simple but crucial feature for managing the long type expressions that

are commonly encountered in generic programming.

12.6 Concise syntax

Our evaluation criteria systematically break down key properties for generic pro-

gramming across languages. Some language-specific syntactic properties, which seem

to impact the process of developing and using generic libraries, are not necessarily

sufficiently covered within such a categorization. This section discusses some smaller

syntactic issues that can discourage the development of generic libraries.

Standard ML’s module system is a powerful mechanisms for combining program

components, but it requires substantial syntactic overhead. When combining large-

scale components like parameterized modules that contain many functions, values,

and types, the syntax for signatures, structures, and functors is minimal compared

to the contents of a module. When implementing a single generic algorithm as

a functor, however, the amount of text required to define the algorithm, state its

requirements, and later apply the functor to a set of valid structures is substantial

even compared to other languages that require explicit instantiation. Any increase

in syntactic overhead to make functions generic decreases their utility and appeal.

Proposed future extensions to C++ (Stroustrup & Dos Reis, 2005; Siek et al.,

2005) with explicit constraints on template parameters will make generic definitions

more verbose. Moreover, C++ compilers often display each error message with the

entire template instantiation stack, which can be extremely verbose. Due to the

lack of constraints, the entire stack is necessary for debugging erroneous template

instantiations.

Java has opted for relatively long keywords (extends, implements) to express

subclassing and interface extension; C# is more concise in this respect but uses

where as the separator between constraints on different type parameters. Cecil’s

backquote syntax provides an interesting and concise alternative for declaring type

variables, and constraints on them, at the points of the first uses of type parameters.

Java and C# require wrapping generic algorithms into classes as static methods.

In Eiffel, such wrapping is an even more notable source of syntactic clumsiness: with

no support for static methods, generic algorithms must be implemented as normal

class methods, meaning that a dummy object must be created in order to invoke the

algorithm. Cecil and C++ allow free-standing functions, avoiding these annoyances.

13 Conclusion: Beyond fold and List<T>

In this study we investigated the support for generic programming across eight

programming languages. In particular, we explored how easy or difficult it is to

implement a generic graph library in each of the languages, thus going beyond the

simple uses of generics for classes such as List<T>. For the purposes of this study,
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the languages fell into three groups: the functional programming languages, the

object-oriented languages, and C++.

The support for generic programming in the functional languages was based

on parametric polymorphism and proved expressive enough to easily implement

a complex generic library, though with some minor issues. The object-oriented

languages augmented the parametric polymorphism with subtype bounds. In general,

we found it somewhat more difficult to use object-oriented interfaces and subtyping

to express the requirements of a generic algorithm. C++ templates represent an

altogether different approach to generics that provides a flexible, expressive, and

efficient tool for generic programming but is plagued by modularity problems.

Unlike the functional and object-oriented languages, C++ template are not based on

parametric polymorphism; they are instead more closely related to macros.

We found that the functional languages in our study – Standard ML, Haskell, and

OCaml – provide an informative perspective on the design space for generics. These

three languages provide both polymorphic functions and data types, which together

are sufficient to implement polymorphic algorithms such as fold that operate on

polymorphic data structures. However, these languages go beyond basic parametric

polymorphism to provide more powerful mechanisms for organizing abstractions:

type classes in Haskell, signatures and functors in SML, and object types in OCaml.

As a result, these languages are well suited for generic programming.

In particular, the SML module system supports access to associated types,

separate type checking, and static type safety. Haskell and OCaml improve on

SML generic programming support with implicit type argument deduction for calls

to generic functions. Haskell’s type classes are a close match to concepts in generic

programming, which made it straightforward to map from the design of the generic

graph library to the Haskell implementation. These three languages, however, have

their disadvantages. SML lacks functions with constrained genericity aside from

functions nested within functors. Haskell and OCaml are quite expressive, but

associated types must be represented as extra type parameters to type classes and

class types respectively. This formulation forces associated types to be named at every

use of a concept. In OCaml, one cannot use type annotations in a function signature

to explicitly constrain a polymorphic function’s implementation. Nonetheless, these

languages demonstrate that type systems based on parametric polymorphism provide

a reasonable substrate upon which to build generic libraries.

The C++ template system provides a powerful tool for generic programming. Access

to associated types can be implemented through traits classes, and implicit type

argument deduction eases the burden for clients of generic functions. Though C++

templates permit the construction of useful generic libraries, its support for generic

programming has some limitations, especially in the area of modularity. It lacks

separate compilation and separate type checking. Furthermore, argument-dependent

lookup makes it difficult to follow which operations a generic function may call

and makes it possible for name clashes to occur between separate namespaces. The

most notable limitation of C++ is that it does not support explicit expression and

enforcement of concepts. However, direct support for concepts are currently under

consideration for the next revision of the C++ standard (Siek et al., 2005; Stroustrup
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& Dos Reis, 2005). In spite of these flaws, large-scale industrial strength generic

libraries are successfully written in C++.

Mainstream object-oriented programming languages have begun to include sup-

port for generics. Java 5 now includes generics, and C# generics have been accepted

and are expected in a future release of that language. Eiffel has supported generics

from its inception. Generics have primarily been added to these languages to support

type-safe polymorphic containers. Object-oriented programming techniques remain

the primary mechanism for building abstractions in these languages; generics fill a

small and specific need. However, in this study we investigated whether generics as

they appear in these object-oriented languages can be applied to the broader scope of

generic programming, that is, in the construction of libraries of generic algorithms.

In the object-oriented languages studied, constraints on generics are expressed in

terms of subtyping. This caused difficulties in dealing with associated types, both in

accessing and placing constraints on them. Most of the object-oriented languages

failed to provide a mechanism for practical retroactive modeling (with Cecil as

the notable exception). All of the object-oriented languages, with the exception

of Eiffel, support implicit instantiation. This feature, however, could not be fully

exploited in C# and Cecil, due to the weak form of type argument deduction in

these languages. Across the board, the object-oriented languages failed to provide a

practical mechanism for type aliasing, which caused a serious explosion in the size

of type annotations in the code. On the positive side, most of the object-oriented

languages provide separate compilation. Overall, implementing a library of generic

algorithms in the object-oriented languages was considerably more difficult than in

either the functional languages or C++.

By exercising many languages with respect to their support for the generic

programming style, we have shown that genericity does not stand alone: closely

related language features can have a dramatic impact on the expressiveness of

languages. Some authors of this paper have used it as a springboard for the design

of new languages that better support generic programming (Siek & Lumsdaine,

2005a; Siek, 2005; Siek & Lumsdaine, 2005b). By highlighting the positive aspects

of languages and noting areas worthy of further study, we hope to have opened the

doors to continued exploration of this interesting and useful set of language tools.
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