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Abstract. The motion of the Earth's axis of inertia has been derived, 
taking elastic deformation into account, from the polar coordinates 
determined by the BIH for the period from 1962.0 to 1975.0. Charac
teristics of the motion of both the pole of inertia and the pole of 
rotation have been examined. The secular displacement of these poles 
relative to the pole defined by the low order harmonics C^^, S 
determined from observations of satellites seems to confirm that the 
inertial reference axis has an apparent wandering motion within the 
deformable Earth. 

1. INTRODUCTION 

The fact that the Earth is a deformable body has been well known 
for a long time. As a result of several forces of varied nature acting 
on the Earth's mass (oceans and atmosphere, centrifugal forces, earth
quakes, e t c ) , one must expect that the inertia tensor J is time 
dependent. Consequently also the Earth's axes of inertia, whose 
direction cosines are given by the characteristic system 

(J - XI) (£, -n, O'1 = 0 (1) 

where I is the indentity matrix, cannot be considered as constant with 
respect to the "fixed" reference frame. 

As outlined by Gaposchkin (1968) and Melchior (1972) the position 
of the Earth's axes of inertia could be determined by very exact 
artificial satellite observations, since the components of the inertia 
tensor are related to coefficients of the harmonics of the geopotential. 

Unfortunately, as shown in table 1, the observed values of the 
tesseral low harmonics C 2 1 , S21, given by satellite observations are at 
present incapable of providing definitive information about the motion 
of the inertial pole since their values are comparable with observa
tional errors. Moreover, we would like to have pole positions every 
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five days in order to compare them with, for instance, the position 
of the pole of rotation. So we are obliged to try to calculate the ? 
and n coordinates of the inertial pole directly from the x and y 
coordinates of the instantaneous pole of rotation. Attempts to deduce 
the motion of the inertial pole from the Eulerian equation of motion 
by taking into account the role of the Earth 1s deformations have been 
made by C. Dramba (196*+, 1976). The difficulty of obtaining reliable 
results arises from the need to use accurate astronomical observations 
and appropriate approximations in the equations of motion. 

Table 1. Unnormalized geopotential coefficients and components of 
inertia tensor (Ma^ = 1 ) 

GEM 6 SE III GRIM 2 

1 0 b S ± U ' b 2 2 

-1082.6283 
0.0012 
0.0041 
1.5654 
0.8961 

-1082.6370 

1.5362 
0.8815 

-1082.6350 

1.6059 
0.8807 

A 
B 
C 

0.329697 
0.329703 
0.330783 

0.329699 
0.329706 
0.330785 

0.329699 
0.329706 
0.330785 

10* D 
10* E 
10 6.F 

0.0012 
0.0041 
1.7922 1.7630 1.7614 

2. EQUATIONS OF MOTION 

The motion of the free nutation of the deformable Earth about 
its centre of mass may be described by the Liouville equation (Munk 
and MacDonald, 1960) 

- {(J.w) + h} + u> x {(J.w) + h} = 0 (2) 
dt 

where w is the angular velocity of the reference frame x., h the 
relative angular momentum and J the inertia tensor. 

Since the axis of instantaneous rotation is close to the axis 
of figure a perturbation scheme can be used to find approximate 
solutions of equation (2) (Volterra, 1895, 1898). For this purpose 
let us consider the right hand reference frame with x^ axis along the 
Greenwich meridian, x^ axis along 90 East and x q axis pointing to the 
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CIO. In this system we put 
o)^ = Qx - -fty 0 ) ^ - (1 + m) $7 

Conventionally x and y are the coordinates of the instantaneous 
rotation pole, Q is the mean angular velocity of the Earth, 2TT 
radians per sidereal day, and m is the relative change in the length 
of the day. After neglecting the term of order 10~9 and substituting 
the coordinates of the pole of inertia given by (1), namely, 

A = C 
£ = (-D(C-B) + EF)/((C-A)(C-B)) 
n = ( E(C-A) - DF)/((C-A)(C-B)) 

according to the assumed approximation, equation (2) is reduced to the 
linearized system 

where o\ - A/(C-B), a 2 = B/(C-A) and e - F/(C-A) = F/(C-B) is a 
corrective term. 

3. COORDINATES OF THE INERTIAL POLE FROM BIH DATA 

Equations (3) are the differential equations of the polar 
motion. If one assumes the functions £ and n to be known, solutions 
of (3) can easily be found. Vice-versa we may consider (3) as an 
algebraic system for the unknowns £ and n and we can solve it by 
using the observed values of x and y. Dramba and Stanila (1969), 
using nearly similar equations, followed this procedure and resolved 
the systems by the least-squares method assuming o^, and e to be 
also unknown. In our opinion, however, the instability of such a 
system can cause large errors. On the other hand, parameters a^, 

and e vary more slowly and can be regarded as constants. From 
table 1 we have derived 

o = 305.437 ± 0.010 o 2 = 303.680 ± 0.032 e = -0.00164 ± 0.00007 
and we have solved each single equation by means of the iterative 
method 

5 = C Q - e(y-n o) ; n = u Q - e(x-e Q) (4) 
where £ and n are the solution of (3) for e = 0. o o 

By using equations (4) the £, n coordinates have been derived 
from the smoothed x,y coordinates of the rotation pole. The latter 
were supplied by the BIH every five days for the period 1962.0 -
1975.0. The derivatives dx/dt and dy/dt were computed using the 
usual five-point Langrangian differentiation formula. The wobbles 
P(x - £, y - n) of the instantaneous rotation pole with respect to 
the instantaneous inertial pole are plotted in Fig. 1. Irregular 
variations sometimes occur when x - 5 and y - n are small. This 
could result from errors inherent in the method, but could alterna-
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tively be a physical consequence of the fact that x = £ and y = n. 

Spectral analyses have been carried out on the series F(t) of 
(x,y), (£, n) and (x - £, y - n) coordinates by means of the condi
tional equations 

F(t) = A sin (2 irt/P + F ) + A sin ( 2TT t/B + F ). 
a a a c c c 

Two principal periods were emphasized, namely the annual (368 days) 
and the Chandler period (432 days). 

Table 2 Periodical components of the rotation and inertial poles 

P 
a 

P 
c 

A 
a 

F 
a 

A 
c 

F 
c 

X 368 d 4 3 2 d 07103 209° 07126 346° 
y 368 432 0.091 302 0.133 76 

368 432 0.027 199 0.032 346 
n 368 432 0.008 300 0.044 77 
x- e 368 432 0.074 212 0.094 346 
y- n 368 432 0.084 301 0.089 76 

The results, given in Table 2, are in good agreement with those found 
by other authors. 

Finally a 6-year running filter was used to derive mean values of 
the coordinates, free from both annual and Chandler components, at 
intervals of 1 year; the results are shown in Table 3. It can be 
seen that both inertia and rotation poles have a similar secular 
motion. This result seems to confirm the existence of a secular 
wandering motion of the Earth 1s rotation axis; but, on the other hand, 
it could be only an immediate consequence of the equation of motion. 

If the observed secular motion of the pole of rotation were 
really due to the secular drift of the pole of inertia, the results 
obtained by astronomical observations would be comparable with those 
derived by satellite observations. However, such a comparison today 
gives us poor results because, as has been said, few and inaccurate 
data are generally available. The comparison of the mean BIH pole 
of inertia for the epoch 1968 with the mean pole derived from C 2i 
and S 2i by GEM 6 (Smith et al,, 1976) and GEM 8 (Wagner et al. , 1976), 
given in table 4, shows that the derived secular variations are in 
very poor agreement. 
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Table 3. Annual means of the coordinat es of the rotation and inertial 
poles after 6 year running means. 

Year X y n y-n 

1965 -070031 072379 -070029 072378 -070001 070001 
1966 - 0014 2364 - 0011 2363 - 0003 0001 
1967 0024 2380 0020 2376 0004 0004 
1968 0035 2372 0039 2365 - 0004 0007 
1969 0064 2399 0071 2393 - 0007 0007 
1970 0101 2418 0110 2416 - 0009 0002 
1971 0142 2457 0145 2456 - 0003 0001 
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Table 4 

GEM 6 + 07213 - 07725 
GEM 8 + OV023 + 07069 
BIH + 07006 + 07240 

The values of GEM 6 are one order of magnitude higher than those of 
GEM 8 while the latter are in but moderate agreement with the data 
derived from astronomical observations. So only a drastic improvement 
in the accuracy of satellite observations will confirm the existence 
or not of a secular trend in the position of the inertial reference 
axis. 

REFERENCES 

Balmino, G. , Reigber, C , and Moynot, B. : 1976, "Deutsche Geoadatische 
Kommission" Reihe A, Heft No. 86 

Dramba, C : 1964, "Studii si Cercetari de Astronomie", tome 9, No. 1. 

Dramba, C.: 1976, "Rendiconti del Seminario della Facolta di Scienze 
dell'Universita di Cagliari 1 1, Vol XLVI, pp. 273-280. 

Dramba, C , and Stanila, G.: 1969, "Studii si Certari de Astronomie" 
tome 14, No. 1. 

Gaposchkin, E.M.: 1968, "Pr\oc. of the Symposium on Modern Questions of 
Celestial Mechanics", Centro Internazionale Matematico Estivo, 

https://doi.org/10.1017/S0074180900036093 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900036093


122 A. POMA AND E. PROVERBIO 

Gaposchkin, E.M.: 1973, "Smithsonian Standard Earth III", SAO Special 
report No. 353. 

Melchior, P.: 1972, in P. Melchior and S. Yumi (eds.), "Rotation of the 
Earth", IAU Symp. 48, pp. XI-XXII. 

Munk, W.H., and MacDonald, G.J.F.: 1960, "The rotation of the Earth", 
Cambridge Univ. Press, England. 

Smith, D.E., Lerch, F.J., Marsh J.G., Wagner, C.A., Kolenkiewicz, R., 
and Khan, M.A.: 1976, "J. Geophys. Res.", 81, No. 5. 

Volterra, V.: 1895, "Atti Accad. Torino", 30, pp. 547-561. 

Volterra, V.: 1898, "Acta Math.", 22, pp. 201-357. 

Wagner, C , Lerch, F.J., Brownd, J.E., and Richardson, J.A. : 1976, 
GSFC Report X-921-70-20. 

DISCUSSION 

J.D. Mulholland: How can you separate the "secular" motion of the 
pole from secular errors in the orbit of the 
satellite? 

E. Proverbio: We cannot. 
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