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MUKAI-UMEMURA’S EXAMPLE OF
THE FANO THREEFOLD WITH GENUS 12
AS A COMPACTIFICATION OF C?

MIKIO FURUSHIMA

§0. Introduction

Let (X, Y) be a smooth projective compactification with the non-normal irre-
ducible boundary Y, namely, X is a smooth projective algebraic threefold and Y a
non-normal irreducible divisor on X such that X — Y is isomorphic to C°3.
Then Y is ample and the canonical divisor Kx on X can be written as Kx =
—7rY(1 =7=4). Thus X is a Fano threefold. In particular, Pic X = Z 0x(Y).
The non-normality of Y implies that » = 2 (cf. [4]). In the case of » = 2, such
a (X, Y) is uniquely determined up to isomorphism, in fact, (X, Y) = (Vs, Hs"),
where X = V5 is a Fano threefold of degree 5 in P® and Y= Hg is a ruled
surface swept out by lines which intersect the line 22 with the normal bundle Nz x
= 0z(— 1) B 0z(1), in particular, X is the singular locus of Y. In the case of
r = 1, there is an example of such a compactification of C?, in fact, let X = V,, be
a Fano threefold of genus g = 12 constructed by Mukai-Umemura [11] and ¥ =
Hj, be the ruled surface swept out by conics which intersect the line £ in V3, with
the normal bundle Ngx = O,(— 2) D 0,(1), then Hy, is a non-normal hyperplane
section of V3, such that Vi, — Hy, is isomorphic to C?, in particular, the line £ is
the singular locus of Hj; (cf. [6]).

Now, in this paper, we will construct a birational map 7 : Vs * *— Vs such
that the restriction 7o of m on Vs, — Hy; gives an isomorphism Vi — Hz = Vs —
Hg = C3, via the resolution of indeterminancy of the double projection of Va
from the singular locus Sing Hj; of Hp, which is a line on V3 (see Theorem 1).
Furthermore, we will study the detailed structure of the desingularization
and the normalization of the boundary divisor Hj; (see Theorem 2).

Recently, Mukai ([11,]) proved that there is a 4-dimensional family of Fano
threefolds of first kind with index one, genus 12 which are the compactifications
of C® with non-normal boundaries, in particular, our example (Vs, Hy,) belongs
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to this Mukai's family.
I would like to thank Professor N. Nakayama for the stimulating conversa-
tions we had and for his valuable comments.

Notation

Kx Canonical divisor on a variety X

wx Canonical sheaf on X

Neix Normal bundle of Cin X

| H| Complete linear system associated with a divisor H

Bs|H| Base locus of the linear system | H|

Sing X  Singular locus of X

oX) Picard number of X

E.eq Reduction of a scheme E

suppD  Support of a divisor D

(1)-curve Smooth rational curve with self-intersection number — ¢

b (X) :=dim H'(X ; R)
h(F) :=dim H'(* ; %)
x (%) = 13 (— D' (F)

§1. Mukai-Umemura’s example

Let Clx, y] be the polynomial ring of two complex variables x and y. The
special linear group SL(2, C) acts C(z, y) as follows:

[x”=ax+by

a b
e wro=(" ")esie,0.

Let us denote by R, a vector space of homogeneous polynomials of degree n

n N s
in Clz,yl. Let f(x,y) = 2 a; <:z) " 'y' € R, be a non-zero homogeneous
i=0

polynomial of degree n. We take (do:@1: ...:as) as homogeneous coordinates
on the projective space P(R,) = P” on which SL(2, C) acts. Let us denote by
X (f) the closure of SL(2, C)-orbit SL(2, C) * f of f in P(R,). Then SL(2, C)
acts on X (f).
Now, we consider the following two polynomials:
fox, y) = zy(x* — y*), and

hia(z, y) = xy (2 + 11x%y° + y').
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We put
Vs:= X(fs) & P(Rg) = P8, and
V=X (h12) & P(R1) = PY

Then we have

Lemma 1 (Lemma 3.3 in [11]). (1) V5 < P® is a Fano threefold of index 2,
genus 21 and the hyperplane section of Vs is the positive generator of Pic Vs = Z

(2) Vi is a Fano threefold of index 1, genus 12 and the hyperplane section of Vaz
is the positive generator of Pic Vi, = Z.

The defining equations for Vs, Va are given as follows respectively:

aoas — danas + 3a; =0
aoas — 3aras + 2aza; = 0
(Vo) 1 @o@s — 9aza, + 8a5 =0
aas — 3azas + 2aza, = 0

Laza(-; - 40305 + 30% =0

, 8 8
(Vz2) 2 </2 ) <p -2 ) (@r@p+4-2 — 4@318p43-2 T 3ar120442-2) = 0

A=0

0=<p=16)

Now, we put

He:= Vs N {ao =0} &P
Hy := Vi N {a, = 0} & P
Let us denote by Sing Hs* (resp. Sing Hj;) the singular locus of Hs® (resp.
H;,). Then we have

PropositioN 1 ([5]). (1) Vs — H = Vs N {a, # 0} = C?,

2 X:=SingHy ={ay,=a1=" " =a,=0 =PYas:as) &P is a
line on Vs. In particular, Hs® is a non-normal hyperplane section of Vs swept out by
lines which intersect the line 2.. ‘

PrOPOSITION 2 ([6]). Hzz is a non-normal hyperplane section such that Voo — Hys
=V N {ay # 0} = C.
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We will study the detailed structure of Hy, below.

LemMa 2. (1) £:=Sing Hp, = {ay =+ - - = a0 = 0} = P'(ay;: a;5) < P

is a line on V.

(2) The normal bundle Nav, = Op(— 2) @D 04(1), and there is no other line in

Vay which intersects the line .

(3) Haz is a unique member of the linear system |Ov, (1) @ I}, where I is the
ideal sheaf of € in Ov,. In particular, Hy is a ruled surface swept out by cowics in Ve

which intersect the line £.

Proof. We shall rewrite the defining equation (V3) as follows:

[ (e.0)
(e.1)
(e.2)
(e.3)
(e.4)
(e.5)
(e.6)

(.7

(Vi) (e.8)

(e.9)

(e.10)

(e.11)
(e.12)
(e.13)
(e.14)
(e.15)
L (e.16)

avas — 4araz + 3a3 =0

aoas — 3a1a4 + 2aa; = 0

Ta0as — 12a1as — 15a.a, + 2045 = 0

o7 — 6azas + 5azas = 0

S5aeas + 12a1a; — 42a,as — 20azas + 45a; = 0
aoas + 6a1as — 6a.a; — 28azas + 27a.a; = 0
aoio + 12a1as + 12a,as — 76asa; — 21asas

+ 72a¢ =0

agay + 24a.a,0 + 90a.a; — 130asas — 405a,a,
+ 420asas = 0

aoayz + 60a1ay + 534aza10 — 380asa; — 3195a4as
— 720asa; + 2940a% = 0

aiarz + 24azay + 90aza.0 — 130a4as — 405asas
+ 420asa; = 0

axa1; + 12aa,, + 12a4a,0 — 76asa, — 21asas
+ 7243 =0

asaiz + 6asa1, — 6asaw — 28asas + 27aras = 0
Sasai; + 12asa,, — 42asa10 — 20a:a + 45a5 = 0
asayz — 6a-a10 + 5asa, = 0

Tasaz — 12aza1 — 15asay + 204f =

ara12 — 3asau + 2a.a10 = 0

Aglys — 4ﬂgau + 3(1%0 =0
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For simplicity, let us denote by {a; =1} the affine part {a; # 0} of

CiamMm 1. Hy N {a, = 1} = C%(a,, as)

In fact, setting @o = 0, @ = 1 in the equations (e.0) — (e.9) in (Va)*, one
can easily see that the coordinate functions as, a4, a7, as,. .., @12 are given by the
polynomials of @z and a@s This proves the claim.

Now, we have Hz,zn {01=0}= Vzlzn {do=a1=0}= {ao=d1=. L=
aw = 0} = P'(au: an) (a line in V). Since Hy — Hyp N {a; = 0} = C? by the
Claim 1, we have that Hy, is non-normal (cf. [5]) and hence Sing Hz, = Hz; N
{a, = 0}. This proves (1).

Next, let us consider the affine part Hy N {az =1} & C¥ay, . . . ,an)
of Hy,. Setting @o = 0, @;; = 1 in the defining equation (Va)*, one can get the
defining equation of Hy, N {a1, = 1} in C'. More precisely, from (e.9) — (e.16)
with a;; = 1, putting x := @y, ¥ 1= a1, 210 := @11, one can get the following:

(e.16) as = 2%z — 3y*

(e.15) a; = 22-3xz% — 3%%z — 2xy

(e.14) 7Tae = 2% 32xz® — 2%-33%y%z22 + 22-3xyz
— 32.5y3 p— 22.5x2

(e.13)’ as = 23-3%xyz? — 2-3%3z + 3xy? — 2%-5x%

(e.12) ay= — 2*-3x%2% — 25%z% + 23-3%xy?z — 3% 5y*

(e.11) a3 = — 2*-5x% — 24-3%2%2% 4+ 2¢-3x?yz
+ 23-3fxy?z? — 2% -3y’ — 3%yt

(e.10)’ a, = — 25-5%x%z — 27-3%2%z* + 2*-3%-11x%y2?
+ 28-3try?z® — 23-3%-29xy3z — 28-3%y*2?
+ 2832 7x%% + 3*-5%;

L (€.9) a;= —2%3%5-7Tx%% — 28-3%2%2% + 26-33-19x%yz23

+ 27-35xy?z* — 25-3*- 17xy%2% — 2¢-3%*2°
— 23-33x2y?z + 22-3%5y%2 + 27-52%
+ 3%-5-19xy*

Ciam 2. HpNlap#0=V():={x,y,2€C; f(x,y,2) =0},
where
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(%) flx,y, 2) = bpx* + (byz + b2°)x® +
(bsy® + bay?2® + bsyz")x® + (bey'z + biy’2d)x
+ bgy® + boy ® 27,
(b = — 28-5%, b, = 2°-3%5, b, = — 2°-3*-5,
by=—2%3%7, b= — 2*-3*-127, bs = 2°-3°,
bg = 2%-3%-89, by = — 2835, by = — 36-5% by = 25-37).

In fact, putting ay,...,ds in (e.k)" (9 = k < 16) into (e.8) with a;; = 1, one
can get the equation f(x,y, z) =0. It is easy to see that the polynomial
f(x,y,2z) is irreducible. Hence, V(f) is the defining equation of Hy N
{012 * O} in Cs.

By the defining equation of V (f), one can see the singular locus Sing
V(f) = {x=y =0} and the multiplicity of V(f) at a general point of Sing
V (f) is equal to three.

Thus Hy, € | Ov, 1) ® I3 |. Since h°(Ov, (1) ® I7) = 1 by Iskovskih [7], Hz is a
unique member of | Oy, (1) ® I#|. This implies that any conics in Vi, intersecting
the line £ is always contained in Hj,. By Iskovskih [7], for every point p € Vg,
there is a finite number of conics passing through p. Thus we have the assertion
(3). The assertion (2) is proved in Mukai-Umemura {11}].

Q.E.D.

§2. Double projection

We will study the double projection of Vz; from the line £, which is the singu-
lar locus of Hzz. For simplicity, we put X := Vi, Y 1= Hj,.

First, let us consider the linear system | #|:=|0x 1) ® I3| on X. Let 0y :
X1 — X be the blowing up of X along the line £ in X. By Lemma 2-(2), we have L,
:= o71(¢) = F; (Hirzebruch surface). We put | #,| := |of* H — 2L, |, where H €
| 0x(1) |. Let Y; be the proper transform of Y in X;. By Lemma 2-(3), we have a
linear equiva[ence Y, ~ off H —3L,. By Lemma 5.4 in Iskovskih [7], we have

Lemva 3. (1) dim|# | = dim|#,| = 6,

(2) dim| o H— 3L,| = 0, namely, Y1 is the unique member of the linear
system | o H — 3L, |,

(3) (6 H— 2L))* = 2,
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(4) Y1 L, ~ 36, + 7f, in Ly, where &, fi is the negative section, a fiber of L,

respectively.

Let Kx, be a canonical divisor on Xi. Then we have Ky, ~ — of H -+ L,.
Since (Ly-4) =1, we have (Kx, - 4) = 0. By the following exact sequence of
normal bundles:

0 — Né’,lL, - Ne,lx, nd NL:!X\]& — 0
il il il
0(—=3) 0@ Do) 00

where ¢ + b = 2, we have

LEMMA 4.

@ 0101,
Nux, =1(b) 6(—2)B0 , Or
() 0(—3)D0oQ).

LemMa 5. Bs| Hi| = &, wheve Bs | H. | is the base locus of | Hy|.

Proof. Since (o7 H— 2L)) -4, = — 1, 4, S Bs |#,|. By Lemma 2-(2), there
is no other line in X which intersects £ Thus, by the same argument as in the

proof of Lemma 5.4-(ii) in [7], we have the claim.
QED.

Let us denote by mz¢ a rational map defined by the linear system l@x(l) X
I} l which is called the “double projection from £”. Then we have a diagram:

X,
N
011 \\?1
\\
Xeooo P8

Tl

where @, := @, is a rational map defined by the linear system | #, |.
Next, we will resolve the indeterminancy of the rational map @, : X, -— P®

LemMA 6. (1) Sing Y, = 24, namely, 4 is the singular locus of Y1 with the
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multiplicity 2,
(2) i N L, = A, + A; + As, where A/s are non-singular rational curves and
A1 ~ 2é1, A2 -~ [1 + 4f1, A3 ~ 3f1 i Ll.

Proof. Looking at the blowing up d;: X; — X locally, one may identify the
Zariski open set o7 (X; N {a;; # 0}) with the blowing up ¢: M— C3(x, y, 2)
with the center Sing V(f) = {x =y = 0}. M is covered by two coodinate patch-
es Up=C3(r, s, t), Uy = C3(u, v, w), with 7> v =1 on Uy N U, and u is given

by
¥s = U
u:yy = s = w
2 =t = w.

Let V) be the proper transform of V (f) in M. Then we have
Vi N Uy = {f%(r, s, t) = 0},where
fi* 1= borts + (byst + byt3)r® + (bys? + byst? + bst*)r?
+ (bes?t + b.st¥)r + bgs® + bes?t?, and
Vi N {s = 0} = {r2*(bor + bst) =0}.

This shows that {r = s = 0} is the singular locus of V; with the multiplicity
2 and V; N {s = 0} consists of three irreducible non-singular rational curves.
Since YLy ~ 26, + 7f;, we have the assertions (1) and (2).
QE.D.

Let 0, : X; — X;-; be the blowing up of X;_; along the section £—1 of L
with (A1) =0, and put L; := 0671(4i-1) (@ = 2). Let f; be a fiber of L;, Y, the
proper transform of Yi-; in Xj, and put #; := o #;-, — L..

LEMMA 7.

(1) Yo N L, =B, + By, where By ~ 24,, B, ~ 2f, in Ly,
(2) Sing Y; = 24,,

(3) Bs | #2| = 4.

Proof. By Lemma'4, we have the following three cases:
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@ P'xP
L=y (b) Fy
(o0 F.

Since Y, ~ 0 Y; — 2L,, we have

(@ 26 ifL, =P X P,
sz'Lz ~ (b) 2[2 + 2f2 lf Lz = Fz,
(C) 2[2 + 4f2 if Lz = F4.

On the other hand, by blowing up U, = C3(r, s, ) along {r = s = 0}, one
can get the local equation for Y,. From this, one can show that Sing Y, = 24,, and
YN L, = B, + B, where B, ~ 2&,, B, ~ 2f, in L,. Thus we have L, = F,.
Since (Hy, &) = — 1, 4, < Bs|#,|. On the other hand, since |#.| N L, S
| #2,] = | & + £ |, we have the claim.

Q.E.D.

COROLLARY 8. L, = Fy, namely, Noyx, = 0(— 2) D 0.
Similarly, one can show the following

LEMMA 9.

(1) YsN L;= C,+ C,, where Cy ~ 243, C; ~ 2f; in Ls.
(2) Sing Y3 = 24; + 2f;,

(3) Bs|#:| =4,

(4) L3 = Fy, namely, Nyx, = 0(— 2) D 0,

(6) YaN Ly= D, wheve D ~ 24, in L,,

(6) Ly = P' X P!, namely, Nux, = 0(— 1) @ O0(— 1).

Let L¥ (1'=7=3) be the proper transform of L; in X, and A{*
(1 £1=3), ' be the proper transforms of A;, a fiber f; in X, respectively.
Then we have easily

(2.1) He=0FHs— L~ Ya+ LY + 2L + 3LY + 4L,
(2.2) Ky, ~ — (Y, + 2L¥ + 3L + 4L + 5L,)
(2.3) L t)=Us fi)=—1, &) =0

(2.4) (HD = (Hs K- H) =5
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(2.5) | #4l N L= 14|

(2.6) (He- He Y) =0

(2.7) (Hy- Hy- LP) =5

(2.8) (Ko Ko L) = (Ks- Hs- LP) =0 (G=2,3)
(2.9) (#a- AP) =5, (#a [P) = 1.

By (2.5), we have
Lemma 10. Bs|#.] = ¢.
Let @ : X, — P® be a morphism defined by the linear system | #,|. We put V

:=0(X,). By (2.4), deg V="5. By (2.6), (2.7), (2.8), X — Y= X, — (Y, U L, U
LOULPY ULY) = V— 0P = C°.

+3
""""" |
AD AP
1 i
LN |
AN
+2
Lgl)
~2 A(34)
+2
L \fs

By (2.3), L4 can be blown down along 4, and then blowing downs can be done
step by step (cf. Reid [12]). Finally we have a smooth projective threefold V* with
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by(V*) =2, and morphisms @,:X,— V*, @, :V*—V, a birational map
p: X --— V* (which is called a flop) such that

i 0=, °p@z
(ll) X1 - 21 =yt — Zl; where 21 = ¢2(L4 n L(14))
(i) V*—p) =V— 90

A

1..00..--»

oll l¢1

Xco-oooo—bV
2

Let Yi*, LT be the proper transforms of Yi, L; in V' respectively. We put
I':= oY) = & (Yi") and Z := ¢(LS) = &,(L}). Then, by (2.6), (2.7), (2.9), I
is a smooth rational curve of degree 5 in P® and Z is a ruled surface swept out by
lines which intersect the line 2 : = @;(X;) on V. In particular, I’ & Z and
I' N 2 = {one point}. Let 7 be a conic in X which intersect the line £. Then 7 <
Y. Let 71 be the proper transform of 7 in X and 71 : = p(71) < Yi*. Since
Kv+ = ‘O*(le) = - Y1+ - 2L+, we have (KV+ ) Tl+) = - 1 ThUS, @1 V+
— V be the contraction of an extremal ray by KM.M. [9)]. Since Yi* is contracted
to the smooth curve I' by @y, V is smooth by Mori [10]. By (2.4), we have deg
V = 5. Moreover, we have Ky ~ — 2Z. Since V— Z = C? by construction, Z is
ample, thus, Vis a Fano threefold of first kind with index 2, genus 21. Since Z is
swept out by lines in V, Z is non-normal. In fact, the singular locus of Z is just
the line 2 := @,(X,). Therefore we have (V, Z) = (Vi, Hs) (see §1), namely

TueoreM 1. Let (Va, Hy), £: = Sing Hys, (Vs, H®) be as before. Then the
double projection map: Vaz— Vs of Vaz from the line £ gives an isomorphism Ve — #as
S Vs — He (=2 C).

Remark 1. Let 2 := Sing Hs” be the singular locus of Hs". Then, X is a line
on Vs with the normal bundle Nsjvs = 0(— 1) @ 0(1). The set {x € 2 there is
a unique line passing through the point &} consists of the only point p (cf. [5]). One
can easily see that there is a smooth rational curve I" of degree 5 in Vs such that
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I'n Z{p} and I' <& H. Then the linear system | Oy, (3) @ I#| defines the in-
verse birational map 73/ : Vs - +— Vi, with Vs — H* 5 Vi, — Ha (cf. [7)).

§3. Normalization and resolution of the boundary divisor

First, we will prepare some general results on a non-normal hyperplane
section of a Fano threefold of special series.

Let X be a Fano threefold of special series, namely, X is a smooth threefold
Vag-2 < P?*! of degree 2g — 2. Then the anticanonical line bundle — Kx is an
ample generator of Pic X = Z. Let Y be a non-normal member of the linear
system | — Kx|. Since Pic X = Z[ Y], Y is irreducible. Let ¢:S— Y be the
normalization, and let I C, Oy be the conductor of a. We put E : = loc I (the
locus of I) and D := ¢~}(E). Since Y is Cohen-Macaulay, E and D are
Cohen-Macaulay. Since Y~ — Ky, H{(X,0x) =0 for >0 and H'(X,
Ox(— Y)) = 0 for : < 3, we have

(31) wy = @y
(3.2) HYY, 0y) =0, H(Y, 0y) =C
(3.3) ws = I1Q o*wy = I (i.e. Ks ~ —D as a Weil divisor).

By (3.34.2), (3.34.3) in Mori [10], we have exact sequences:
(3.4) 0—=0y— 0x0s— wg— 0
(3.5) 0= oxws— Oy— 00
Taking 0* in (3.5), we have
(3.6) 0— ws— O0s— 0%0s = 0p— 0.
By (3.2), (3.3), (3.3), we have
LeMMa 11 ((14]). h°(0z) = 1 and h'(Og) = 0, namely Ereq is connected and
each irreducible component E; of Ereq is a smooth rational curve.
Take a general hyperplane section H of X. From (3.4), we get
(3.7) 0—0y(H) — 040, Q Oy(H) — ws(H) — 0.
Since H(Y, Oy(H)) = 0, we have
(3.8) h(0+0s Q@ Oy(H)) = h°(Ov(H)) + h*(we(H)).
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Weput 6 := (H-E)x.
Ciamm (3.9). A°(S, o*H) = g + 0.
In fact, since E is Cohen-Macaulay, h°(wy(H)) = h*(Oz(— H)). By the fol-
lowing exact sequence:
0—=0g(— H)—>0g— 0oz — 0,

we have h'(Oz(H)) = h°@eon) — h°(@r) =0 — 1. Since h'°(c*H) =
h°(040s(c*H)) = h°(0+0s @ Oy(H)) and h°(Oy(H)) = g+ 1, we have h°(S,
o*H) = g+ 9.

Let 4(S, o*H) :=dim S + deg 6*H — h°(S, 0*H) be the A-genus of the
polarized variety (S, 0*H) (cf. [3]). Since dim S= 2 and deg o*H = (Hy
= 2g — 2, we have

LEmMa 12. A(S, o*H) = g — 0.
Lemma 13. (D - o*H) = 2(E-H) = 26.
Proof. By (3.36.2) in Mori [10], we have

O—*@E—*a*ﬁp—>w5—>0.

Thus we have ¥ (0x0> @ H) = x @s(H)) + x (ws(H)) = 26 + x @s) + x (ws)
= 2. On the other hand, x(0x0p @ H) = x(Op @ 6*H) = (D o*H) + x(Op).
Since x (Gp) = x(Os) — x (ws) = 0, we have (D-c*H) = 20.

Q.E.D.

Let C € | 0*H| be a smooth member. By Bertini’s theorem, such a member C
exists. Let us denote by g (C) the genus of C.

Lemma 14. g(C)=g—d.
Proof. By the adjunction theorem, 2g(C) —2 = C(ws + C). Since (C?

=2g — 2 and (C'ws) = 20 by Lemma 13, we have g(C) = g — 0.
QED
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Let ¢ : M— S be the minimal resolution, and put ¢ :=pg - c: M— Y. Since
Ks ~ — D (as a Weil divisor), we have Ky ~ —-D - SimiA; m; >0, m, € Z),
where D is the proper transform of D in M and U, 4; is the exceptional set of p.

LemMA 15. M is vational or ruled.

Proof. Since H°(M, Ou(mKy)) =0 for m >0, by the classification of
surfaces, we have the lemma.
QE.D.

LEMMA 16. If h*(Oy) = 0, then Sing S consists of at worst rational singular-

ities, in particular, S is rational.

Proof. Let us consider the following exact sequence:
0— H'(S, 0s) = H' (M, On) = H(S, R'usOu) — H*(S, Os) —.

By assumption, we have H*(M, Oy) = 0. Since H%(S, Os) = H°(S, ws) = 0, we
have the claim.
Q.ED.

Now, Mukai-Umemura’s example Vs is a special class of Fano threefolds of
special series with the genus g =12, and Hy is a non-normal hyperplane section
of Vi, such that Vi — Hyy = C3. We can apply the above lemmas to these X : =
Vaz and Y := Hy,.

Lemma 17.  Assume that (X, ¥Y) = (Va, Hyp). Then we have

(1) Erea =P

(2) Y= Eea=C,

3 HWY ;Z)=0 HX Y ;Z)=Z HXY ;Z) =0,

(4) S is a rational surface and Sing S consists of at worst rational singularities.
(5) g(C) =12 — 0 for a general smooth member C € | 6*H |.

Proof. By Lemma 2 and its proof, we have (1) and (2). Since X — Y = C3, we
have H'(X ;Z) = H(Y ;Z) for 1= 0. It is known that H'(Vy;Z) = H!
(P%; Z) for 1 = 0, that is, Vaz has the same cohomology as P?. This proves (3). Let
us consider the following exact sequence (cf. [1]):

(%) 0= HY;Z)—HXS;Z)@HYE;Z)— H*D;Z)—
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— H3Y ;Z)— H*S;Z)—0
Since H3(Y ; Z) = 0, we have H3(S ; Z) = 0. Since bs(M) = b3(S) = 0 (cf. [2)),
by(M) = 0, hence, h'(Oy) = h*(0s) = 0. By Lemma 16, we have (4). Since
g =12, by Lemma 14, we have (5).
Q.E.D.

LemMa 18. Ky + ¢*H is nef.

Proof. Assume that Ky + ¢*H is not nef. Then, by Cone theorem and Con-
traction theorem in [8] (cf. [9]), there is a contraction 7 : M — Z of the extremal
ray, where Z is normal and 77!(z) is connected for any z € Z.

Case (a). dim Z = 2. Then there is a curve R such that 7 (R) is a point and
R?*<0, (Ky+ ¢*H)-R < 0. Since (¢*H-R) = 0 and R? <0, we have R = P!
and R?= — 1, hence, (¢*H-R) = 0. Thus R is an exceptional curve of g Since
t: M— S is the minimal resolution, this is a contradiction.

Case (b). dim Z = 1. Since M is rational, we have Z = P! Since p(M) =
o(Z) +1 =2, M is isomorphic to F, (Hirzebruch surface), namely, 7 : M — Z =
P! is a P'-bundle over P For a fiber f, we have (Ky + ¢*H) - f < 0. Hence,
W*H-f) = (H-¢(f)) =1 since (Ky*f) = — 2. Thus, Y is a ruled surface
swept out by lines on X. By Lemma 2-(2), Ereq is a line on X and Erea N ¢(f)
= @ for a general fiber f. This shows that ¢(f) € Y — Ereq = C% This is
a contradiction.

Case (¢). dim Z = 0. In this case, M = P% For a smooth member C €
| p*H |, we put deg C = d. Then, C? = d? = 22, this is a contradiction.

Q.ED.

By Lemma 2-(3), Y : = Hj, is a ruled surface swept out by conics which
intersect the line £:= Sing Yin X := V3, where £ = E 4. Take a general conic 7
in Y. Then, ¥ N E,eq ¥ @. Let 7 be the proper transform of 7 in M. Then we have
(9*H-7) = (H*7) =2. Since Ky + ¢*H is nef by Lemma 18, we have (Ky +
¢*H) -7 20, hence, (Ky*7) = — 2. On the other hand, since Ky ~ — D— %,
m; Ai (m, = 0, m;E Z), we have (KMf) =0.

Ciamm (1). (Ky7) # 0.
In fact, if (Ky*7) = 0, then D- 7) =0, (4;-7) = 0 for each 7. We take a

general 7. Thus P'= 7 C M — D — U A; Y — E,es = C2 This is a contradic-
tion.
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Cram (2). There is an irreducible conic 7o in Y such that (Ky - 7o) = — 2
(that is, 7o = P* with the self-intersection number 7% = 0).

In fact, by Claim (1), we have (Ky-7) = — 1 or — 2 for any conic 7 in Y. If
(Ky*7) = — 1, then 7is a (— 1)-curve. Thus, M contains a continuous family
of (— 1) -curves. This is a contradiction.

Let 7: M— P! be a morphism defined by the linear system | F,|. For a
general p in P, 771 (p) ~ .

Lemma 19. Ky + ¢*H ~ (11 ~ §) 7.

Proof. By Basepoint-free Theorem of Kawamata [7], we have Bs|m(Ky +
Q*H) | = @ for m > 0. We put f:= 72(p) (a general fiber of 7). By Claim (2),
(Ky + ¢*H)f= 0. Let T : M— Z, be a morphism defined by the linear system
| m(Ky + ¢*H) |. Since M is rational and since Tm(f) is a point, we have Z, =
P!, in particular, we have m(Ky + ¢*H) ~ k 7,. Since (¢*H - Ky) = — 26,
(¢*H - ¢*H) = 22 and (¢*H - 7o) = 2, we have (22 — 28)m = 2k, hence,
k = (11 — d)m. Since Pic M has no torsion, we have (Ky + ¢*H) ~ (11 — 9) .

QED.

CoroLLARY 20. Bs| Ky + ¢*H| = 0.
Let f be a regular fiber of 7. Then ¢(f) = 7 < Y < Xis a conic in X.
LEMMA 20. Each 4; is contained in a singular fiber of T.

Proof. Assume that 4; not contained in any singular fiber of 7. Then 74, : 4,
— P! is a surjective morphism, hence, (Al'f) # 0 for a regular fiber f Since
¢(4)) is a point and since ¢(f) =: 7 is a conic in ¥ <, X, we have an infinite
number of conics in X passing through the point ¢(4;) € X. On the other hand,
for each point x € X, the number of conics passing through the point x is finite
by Iskovskih [7]. Thus we have an contradiction.
QE.D.

LemMa 21. Let B be an irveducible component of a singular fiber of T : M — P2,
Then B2 = — 1 or — 2. Furthermore,

() B*=—-1® ¢B)=Eea=P!

https://doi.org/10.1017/50027763000004141 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004141

MUKAI-UMEMURA'S EXAMPLE OF THE FANO THREEFOLD WITH GENUS 12 161
(i) B?= —2 & B = A, for some 1.

Proof. Since (Ky+ ¢*H)B= (11—20) - (7 B) =0, we get (Ky B) =
— (¢*H-B) £ 0. Since B=P*! and B2< 0, we have B2= —1 or B*= — 2.
():B?’=—1© Ky'B)=—1© (¢*H'-B) =1 (H ¢(B)) =1 ¢(B) is
a line in Y& ¢p(B) = Ereq (because Ereq = Sing Y is a unique line in ¥ by Lem-
ma 2-(2)). (ii): B*= — 2 ¢(B) is a point of Y B is a component of the ex-
ceptional set of g < B = A, for some .
Q.E.D.

CorOLLARY 22. Sing S consists of (at worst) rational double points.
Proof. For each 4, one has (4;-4;) = — 2. This proves the corollary.
LeEMMA 23. 0 = 4.

Proof. Let C € |o*H| be a smooth member. By Bertini theorem, such a
member C exists. We put Co:= ¢(C). Then ¢ : C— C, is the normalization. We
may assume that Cp is contained in a K3 surface H, which is a hyperplane
section of X := V4. Since Sing Y =: Eeq is a line in X, Sing C, consists of only
one point po. On the other hand, from the defining equation (%) in Lemma 2, the
local equation of Co around po in Ho can be written as uox® + w,x%y + uszy® +
usy® = 0, where po = (0, 0). Thus Co has two singular points po and po (infinitely
near singular point lying over po) with the multiplicity three and two respectively.
Since H, is a K3 surface, the arithmetic genus p,(Co) = —2—(C0 C) +1=12,
hence, the genus g(C) = p,(Cy) — 4 = 8. Since g(C) = 12 — § by Lemma 12,
we have § = 4.

Q.ED.

LEmMA 24. Kg = — 6 and b:(M) = 16.
Proof. Since (Ky + ¢*H)* = Kfy — 40 + 22 = 0 and 0 = 4, we have Kj =
— 6. By Noether formula, we have b,(M) = 16.
Q.E.D.

LEMMA 24. The number of the singular fiber of T : M — P is equal to one.
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Proof. Let F; (1< 1= t) be a singular fiber of 7, 1 + a; the number of the
irreducible components of F;, and e, the number of the irreducible components of
F; — A, where A:= U A4;. By Lemma 21, ¢; = the number of irreducible compo-
nents of D N F, = the number of (— 1)-curves in F;. Since M is rational, we
have b,(M) = 2 + 22; a;. Since b, (M) = b,(S) + b(4) and b,(4) = 22, A1 + a;
— ¢;), we have 5,(S) =2 — 2 (1 — ;). On the other hand by the following
exact sequence (cf. [1]):

0—HXY ;Z)— H*S;Z) DH¥E;Z)— H*D;Z)—0,
il i
Z Z

we have 0y(S) = by(D). Since Ky~ — D — X m;d; and (Ky-f) = — 2 for a
regular fiber f’of T, we have (D‘f) =2. This shows that bz(ﬁ) > > e;. Thus we
have 2 — 2(1 — e) = by(S) = by(D) =by(D) > T ¢, that is, 2 > ¢ = 1. There-
fore we have { = 1.

QE.D.

Lemma 25. D = 2D, + 3D, + 3Ds, where D is a section of T: M— P* and
D;’s are the (— 1) -curves in the singular fiber of T for 1 = 2,3.

Proof. Let o1: X1 —X, N, L, Ai 1 =1=3),4,f, be as in Lemma 6.
Since Yy ~ 6*H — 3L,, by the adjunction formula, we have Ky, ~ — 2Ly | y, ~
— 2(A; + A; + A;) as a Weil divisor. Let v : S; — Y; be the normalization and A}
(resp. A7) be the closed subscheme in Y; (resp. Si) defined by the conductor of
v. Since Sing Y, = A, supp A; = supp A,

Ciam (1).  There is a morphism 17 : Sy — S such that 6> p = 01 ° v (see D-2).

3, -y,
(D-2) " 1 j

M——ﬁ—-—S oy

~_
¢

In fact, let A; be the proper transform of A; in Si. Since S; — U supp 4; =
Yi — U suppA; = Y — supp E, we have the claim. In particular, 7 (supp As) is a
point on S, S, —suppA; =S — n(suppAs) and 7n(suppA; U supp A,)
= supp D.
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We put Dy := nx(A,). Since A, ~ &, + 4 f, in Ly, A, is reduced, hence, D; is
reduced. Let ﬁl is the proper transform of D; in M.

CLAM (2). D: is a section of T M— P!, and (¢*H- D) =1.

In fact, let 7 be a general conic ¥ <, X, and 7 the proper transform of 7 in
Y1 <& Xi. Then we have (L:7) = 1. Since Y1 L, ~ (24) + (41 +4f) + 3/)
and ¥ & Y, we have (A2 7) = 1, hence, (D" 7) = 1, where 7 is the ‘proper
transform of 7 in M. Thus D1 is a section of 7: M— P! Since (ofH - Ay)) =
(o*H-4, + 4 f)) = 1, we have (¢*H-D)) = 1.

CrLam (3). D~ 251 + Sﬁz + 3Ds, where ﬁz, Dy are the (— 1) -curves in the
singular fiber of T.

In fact, since — Ky ~ D + X m; A;, we have 2 = (D-F) + X mi(4;-f) for a
regular fiber f of 7. Since A4/'s are contained in the singular fiber of 7, we have
(D-f) = 2. Since n(supp A; U A,) = supp D and (A, 7) =1, we have D =
2D, + S uD; G = 2, n; € Z, n; > 0). We note that the proper transform of 7 in
M is linearly equivalent to a regular fiber f of 7 : M — P". Since D/'s (i Z 2) are
contained in the singular fiber of 7, by Lemma 21, ﬁ;’s are the (— 1)-curves in
the singular fiber of 7. Hence (</)*H'1A),~) =10=2).

Let us recall the normalization ¢ : C— Cq (see the proof of Lemma 6). From
the local defining equation of C, in H, there, one can see that 67'(p,) consists of
three distinct points, where po: = Sing Co. This shows that D = Zﬁl + aﬁz
+ ng, where a + b = 6, since ((/)*H'D) = 8. On the other hand, since Kg, ~
—2v*(A;, + A, + A;) — A} as a Weil divisor, we have D ~ — Kg ~ 2n4v*4, +
(2n«v*A; + 1n4A). Since supp D, = supp n«v*4, and supp n+A; = supp
n+A; < supp D, we have @ = b = 3. This completes the proof.

Q.ED.

TueoreM 2. Let (X, Y) := (Va, Hy;) be as in §1. Let 6:S— Y : = Hy, be
the normalization, and E the non-normal locus defined by the conductor of 0, and D
the analytic inverse image of E. Let w: M— S be the minimal vesolution and
©71(Sing S) = U A;, where A;'s ave ivreducible. Then,

(1) E is non-reduced and E.eq = P!,

(2) Sing S = py, po is a rational double point of Ais-type,
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(3) D~ 2D, + 3D; + 3D; as a Weil divisor on S, where D;’s are irreducible
reduced Weil divisors on S such that Dy = P! and D, N D, N Dy = {po},

(4) there is a fibering T : M — P! with exactly one singular fiber T-2(0) such
that T™2(0) = U 4, U D, U Dy, (DD = =1, U 4) = =2 fri 22,521,
wm particular, Dl is a section of T (see Figure 2 below), where ﬁ; 1is the proper transform
of Di in M, and

(5) Ku~ — 2D, — 3D, — 3D; — 21, (3 + i) 4i — T8y (3 + 1) Aumy,
where (Dy+ A7) = (Dp* &) = (D5~ A19) = 1, D+ D)) = 0 G # j), (4 A = 1,
Aird) =0 (i—j|>1).

A5 A3 Al
a, | T
+
4,
Ag A3
Dy
AIO
412
A9
A11 R
1
S eew o - r- R WS G G GE D WS WD G I R G D WS D G G ANy S
lr
Pl
0

Proof. By Lemma 2-(1), Erea = P. By Lemma 23, (E-H) = 4 for a hyper-
plane section H of X : = V. This proves (1). By Lemma 24, v : M— P! has
exactly one singular fiber and the self-intersection number of each irreducible
component the singular fiber is equal to — 1 or — 2. By Lemma 21 and Lemma
25, D, and Dj are the' (— 1)-curves in the singular fiber of 7, and other compo-
nents of the singular fiber are the exceptional divisor of #. This enables us to de-
termine the type of the singular fiber of 7 (see Figure 2). This proves (2), (3), (4).
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Since Ky ~ — D — X m; 4;, by the adjunction formula, we have (5)

Q.ED.

Remark 2. Our example (Va, Hz) of a compactification of C? gives a coun-

ter example to Theorem (3.16) in the paper of Peternell [14].
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