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Free Function Theory Through Matrix
Invariants

Igor Klep and Špela Špenko

Abstract. _is paper concerns free function theory. Freemaps are free analogs of analytic functions
in several complex variables and are deûned in terms of freely noncommuting variables. A function
of g noncommuting variables is a function on g-tuples of square matrices of all sizes that respects
direct sums and simultaneous conjugation. Examples of such maps include noncommutative poly-
nomials, noncommutative rational functions, and convergent noncommutative power series.

In sharp contrast to the existing literature in free analysis, this article investigates free maps
with involution, free analogs of real analytic functions. To get a grip on these, techniques and tools
from invariant theory are developed and applied to free analysis. Here is a sample of the results
obtained. A characterization of polynomial free maps via properties of their ûnite-dimensional
slices is presented and then used to establish power series expansions for analytic free maps about
scalar and non-scalar points; the latter are series of generalized polynomials for which an invariant-
theoretic characterization is given. Furthermore, an inverse and implicit function theorem for free
maps with involution is obtained. Finally, with a selection of carefully chosen examples it is shown
that freemaps with involution do not exhibit strong rigidity properties enjoyed by their involution-
free counterparts.

1 Introduction

Free maps are free analogs of classical analytic functions of several complex vari-
ables and are deûned in terms of noncommuting variables amongst which there are
no relations. A function of g noncommuting variables is a function on g-tuples of
square matrices of all sizes that respects intertwinings, i.e., direct sums and simul-
taneous conjugation. _e notion of a free map arises naturally in free probability,
the study of noncommutative rational functions [AD03, BGM06,HMV06], and sys-
tems theory [HBJP87]. Investigation of these maps is in the realm of free analysis
[Tay73,Voc04,Voc10,K-VV14,HKM11,HKM12,AKV13,AM15,BV03,MS11,PT+,Po10]
and is dominated by operator theoreticmethods and complex analysis.

We present an alternative, algebro-geometric approach to free function theory. For
this we introduce and develop powerful invariant-theoreticmethods [Pro76]. While
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Free Function _eory _rough Matrix Invariants 409

most of the current eòorts in free analysis are focused on (involution-free) freemaps
where strong rigidity is observed, our main attention is to freemaps with involution,
e.g., noncommutative polynomials, rational functions, or power series in freely non-
commuting variables x = (x1 , . . . , xg), x t = (x t

1 , . . . , x
t
g). Ourmethods areuniformin

that they work in both caseswith onlyminimal adaptations needed. _us,we recover
some of the existing results on (involution-free) freemaps (cf. [AM16,K-VV14,Pas14]).

We next give a list of the main results that at the same time serves as a roadmap;
we refer to Section 2 for deûnitions and unexplained terminology.
(a) A freemap with involution f is a polynomial in x , x t if and only if there is d ∈ N

such that each of the level functions f [n] is a polynomial of degree ≤ d (Propo-
sition 3.1).

(b) Analytic free maps with involution admit convergent power series expansions
about scalar points (_eorem 3.3).

(c) Analytic free maps with involution admit convergent power series expansions
about non-scalar points (_eorems 4.7 and 4.10), whose homogeneous parts are
generalized polynomials. We present an invariant theoretic characterization of
the latter in Subsection 4.1.

(d) Free inverse and implicit function theorems for diòerentiable freemaps with in-
volution are the theme of Section 5, see_eorem 5.2, Corollary 5.3, and_eorem
5.4.

(e) Section 6 presents several illustrating examples demonstrating non-rigidity prop-
erties of freemapswith involution. For instance,we give an example of a bounded
smooth freemap with involution that is not analytic (Example 6.3).

2 Preliminaries

In this section we present preliminaries from free analysis, polynomial identities
[Dre00,Row80], and invariant theory [Pro76] needed in the sequel.

2.1 Notation

LetF ∈ {R,C} and let M (F)[g] stand for⋃n Mn(F)g . WewriteM (F) for M (F)[1].
We denote themonoid generated by x1 , . . . , xg by ⟨x⟩, and the free associative algebra
in the variables x = (x1 , . . . , xg) by F⟨x⟩. _e free algebra with involution in the
variables x1 , x t

1 , . . . , xg , x t
g is denoted by F⟨x , x t⟩. _e elements of degree d in F⟨x⟩

(resp. F⟨x , x t⟩) are denoted by F⟨x⟩d (resp. F⟨x , x t⟩d ). We write

C = F[x(k)i j ∣ 1 ≤ i , j ≤ n, 1 ≤ k ≤ g]

for the commutative polynomial ring in gn2 variables. We equip Mn(C) with the
transpose involution ûxing C pointwise. _ematrices Xk = (x(k)i j ) ∈ Mn(C), 1 ≤ k ≤
g, are called generic matrices. By GMn we denote the unital subalgebra of Mn(C)
generated by generic matrices, and by GM†

n the subalgebra of Mn(C) generated by
generic matrices and their transposes. We let Rn stand for the subalgebra of Mn(C)
generated by the genericmatrices and traces tr(X i1 ⋅ ⋅ ⋅X ik) of their products, and R†n
for the subalgebra of Mn(C) generated by generic matrices, their transposes, and
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traces tr(Z i1 ⋅ ⋅ ⋅ Z ik), Z j ∈ {X j , X t
j}. _e center of Rn (resp. R†n) is generated by the

traces; we denote it by Z(Rn) (resp. Z(R†n)).

2.2 Free Sets and Free Maps

Let G = (Gn)n be a sequence of groups with Gn ⊆ GLn(F) satisfying

(2.1) Gn ⊕Gm = (
Gn 0
0 Gm

) ⊆ Gn+m .

We will be primarily concerned with the case Gn = GLn(F) for all n, or Gn is the
orthogonal group On(R) for all n. _emodiûcations needed for the case of the uni-
tary groups Gn = Un(C) will be discussed in Appendix A. For simplicity of notation
we write GLn ,On ,Un instead of GLn(F),On(R),Un(C), respectively. Let us denote
GL = (GLn)n∈N, O = (On)n∈N, U = (Un)n∈N. A subset U ⊆ M (F)[g] is a sequence
U = (U [n])n∈N,where each U [n] ⊆ Mn(F)g . _e set U is aG-free set if it is closed
with respect to simultaneous G-similarity and with respect to direct sums; i.e., for
every m, n ∈ N,

σXσ−1
= (σX1σ−1 , . . . , σXgσ−1

) ∈ U [n]

for all X ∈ U [n], σ ∈ Gn , and

X ⊕ Y = (
X 0
0 Y) ∈ U [m + n]

for all X ∈ U [m],Y ∈ U [n].
Let U be a G-free set. We call a sequence of functions

f = ( f [n])n∈N∶ (U [n])n∈N Ð→M (F)

a G-freemap if it respects G-similarity and direct sums; i.e, for every m, n ∈ N,

(2.2) f [n](σXσ−1
) = σ f [n](X) σ−1

for all X ∈ U [n], σ ∈ Gn , and

(2.3) f [m + n](X ⊕ Y) = f [m](X)⊕ f [n](Y)

for all X ∈ U [m],Y ∈ U [n]. In the language of invariant theory [Pro76, KP96],
condition (2.2) says that f [n] is a Gn-concomitant. If f satisûes only (2.2) for all n
(and not necessarily (2.3)), we call it a free G-concomitant. Sometimes a GL-freemap
is called simply a freemap and an O-freemap is a freemap with involution.1

With a slight abuse of notation we sometimes also refer to a map f ∶U → M as a
G-free map if its domain U is only closed under direct sums, f respects direct sums
and f respects G-similarity on U; i.e, for every n ∈ N,

f [n](σXσ−1
) = σ f [n](X) σ−1

1_e terminology in free analysis has not been standardized yet. For instance, Agler andMcCarthy
use both nc-functions and free holomorphic functions in [AM15]; Kaliuzhnyi-Verbovetskyi and Vin-
nikov [K-VV14] use nc functions; Pascoe [Pas14] uses freemaps, while Voiculescu [Voc04,Voc10] uses
fully matricial functions. We largely follow Helton et al. [HKM11,HKM12].
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for all X ∈ U[n], σ ∈ Gn such that σXσ−1 ∈ U[n]. In this case we can canonically
extend f to the similarity invariant envelope of U (cf. [K-VV14, Appendix A]), and
remain in the framework of the given deûnition.

Proposition 2.1 LetU ⊆ M (F)[g] be closed under direct sums, and let f ∶U→M (F)
respect direct sums and G-similarity on U. _en

U = {σAσ−1
∣ A ∈ U[n], σ ∈ Gn , n ∈ N}

is a G-free set, and there exists a unique G-freemap f̃ ∶U →M (F) such that f̃ ∣U = f ,
deûned by f̃ (σXσ−1) = σ f (X)σ−1 for X ∈ U[n], σ ∈ Gn .

Remark 2.2 In [K-VV14, Appendix A] the proof is given in the case G = GL. _e
same proof with obvious modiûcations also works for any sequence of groups G =

(Gn)n satisfying (2.1), in particular, for G ∈ {O,U}.

A G-freemap f is F-analytic around 0 if there exists a neighborhood

B(0, δ) =⋃
n
{X ∈ Mn(F)g

∣ ∥X∥ < δn}

of 0 in M (F)[g] such that f [n]i j is F-analytic on B(0, δ)[n], δ = (δn)n , and δn > 0
for every n ∈ N. It is a polynomial map of degree m if f [n]i j are polynomials in
x(k)i j of degree ≤ m and at least one of the polynomials f [n]i j is of degree m; it is
homogeneous of degree m if f [n]i j are homogeneous polynomials of degree m or
zero polynomials, and f [n]i j is of degree m for at least one triple (n, i , j).

2.3 Trace Polynomials

_e free algebra with trace T⟨x⟩ is the algebra of free noncommutative polynomi-
als in the variables xk over the polynomial algebra T in the inûnitely many variables
tr(w),wherew runs over all representatives of the cyclic equivalence classes ofwords
in the variables xk ; i.e., w ∈ ⟨x⟩/cyc

∼
. Here two words u, v ∈ ⟨x⟩ are cyclically equiva-

lent, u
cyc
∼ v, if and only if u is a cyclic permutation of v. _e free ∗-algebra with trace

T†⟨x , x t⟩ is the algebra of free noncommutative polynomials in the variables xk , x t
k

over the polynomial algebra T† in the inûnitely many variables tr(w), where w runs
over all representatives of the ∗-cyclic equivalence classes of words in the variables
xk , x t

k ; i.e., words u and v are equivalent if u
cyc
∼ v or ut cyc

∼ v. _e elements of T⟨x⟩
(resp. T†⟨x , x t⟩) are trace polynomials (resp. trace polynomials with involution) and
elements of T (resp. T†) are pure trace polynomials (resp. pure trace polynomials with
involution). _e degree of a trace monomial tr(w1) ⋅ ⋅ ⋅ tr(wm)v, w i , v ∈ ⟨x⟩, equals
∣v∣ +∑i ∣w i ∣, where ∣u∣ denotes the length of a word u. _e degree of a trace polyno-
mial is themaximum of the degrees of its tracemonomials.

Trace identities of thematrix algebra Mn(F) (with involution) are the elements in
the kernel of the evaluation map from the free algebra (with involution) with trace
to Mn(F); i.e., trace identities of Mn(F) are trace polynomials that vanish on n × n-
matrices. Pure trace identities are trace identities that belong to T (resp. T†).
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_e free (∗-)algebra with trace T⟨x⟩ (resp. T†⟨x , x t⟩) and the trace identities has
its interpretation in terms of invariants of matrices. Let G = GLn (resp. G = On) act
by conjugation on Mn(F) and diagonally (i.e., componentwise) on Mn(F)g . _e ûrst
fundamental theorem for matrices (with involution) yields that a GLn- (resp. On-)
concomitant is a trace polynomial (resp. with involution), see [Pro76, _eorem 2.1,
_eorem 7.2] or [Pro07, Chapter 11] for a broader perspective on the subject. (For
another take on the theory of polynomial identities we refer the reader to [BCM07].)
Viewing a polynomial map f ∶Mn(F)g → Mn(F) as an element f̃ ∈ Mn(C) we can
see that the algebra of GLn- (resp. On-) concomitants is isomorphic to Rn (resp. R†n),
and Rn (resp. R†n) is isomorphic to the quotient of T⟨x⟩ (resp. T†⟨x , x t⟩) by the ideal
of trace identities (resp. trace identities with involution).

3 Analytic G-Free Maps and Power Series Expansions about Scalar
Points

In this section we investigate two distinguished classes of free maps, namely poly-
nomials and analytic freemaps. We characterize freemaps which are polynomials in
Subsection 3.1, and use this to show that analytic freemaps admit power series expan-
sions about scalar points in Subsection 3.2. _ese results are classical – but obtained
with totally diòerent proofs – for G = GL (cf. [K-VV14,Tay73,Voc10]) and are new for
G = O. _roughout this section G ∈ {GL,O}.

3.1 Polynomial Free Maps

We start by characterizing free polynomial maps f via their “slices” f [n]. For G = GL
this result is due to Kaliuzhnyi-Verbovetskyi and Vinnikov [K-VV14, _eorem 6.1]
who deduce it from their power series expansion theorem for analytic free maps. In
contrast to this we shall ûrst characterize free polynomial maps and employ this in
Subsection 3.2 to establish power series expansions for analytic G-free maps. Our
proofs are uniform in that they work for both G = GL and G = O, and are purely
algebraic, depending only on the invariant theory ofmatrices.

Proposition 3.1 Let f ∶M (F)g →M (F) be a G-freemap. If f is a polynomial map
and maxn deg f [n] = d, then f is a free polynomial of degree d. _at is, f ∈ F⟨x⟩d if
G = GL and f ∈ F⟨x , x t⟩d if G = O.

Proof Since f [n]∶Mn(F)g → Mn(F) is a concomitant, it follows by [Pro76,_eo-
rem 2.1,_eorem 7.2] that f [n] is a trace polynomial of degree ≤ d in the variables xk
(resp. xk , x t

k). Since there do not exist nontrivial trace identities for Mn(F) of degree
less than n by [Pro76,_eorem 4.5, Proposition 8.3] (see also [BK09,Raz74]), we can
write f [n] in the case n ≥ d + 1 uniquely, as

f [n] =∑
M

tr(hn
M)M ,
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whereM runs over all monomials of degree ≤ d and deg tr(hn
M)+degM ≤ d. Choose

n ≥ d + 1. As f is a freemap, we have

∑
M

tr (h2n
M (X ⊕ Y))M(X)⊕∑

M
tr (h2n

M (X ⊕ Y))M(Y)

= f [2n](X ⊕ Y) = f [n](X)⊕ f [n](Y)

=∑
M

tr (hn
M(X))M(X)⊕∑

M
tr (hn

M(Y))M(Y).

Comparing both sides of the above expression we obtain

tr (h2n
M (X ⊕ Y)) = tr (hn

M(X)) = tr (hn
M(Y)) ,

since Mn(F) does not satisfy a nontrivial trace identity of degree d. _us,

tr (hn
M(X)) = α = tr (hn

M(Y))

for some α ∈ F. Hence, for every n > N , f [n] ∈ GMn (resp. f [n] ∈ GM†
n) is repre-

sented by an element f̃ ∈ F⟨X⟩ (resp. f̃ ∈ F⟨x , x t⟩) of degree d. Since f is a freemap,
we can identify it with a free polynomial in the variables xk (resp. xk , x t

k).

Remark 3.2 We note that Proposition 3.1 also holds if f is only deûned onB(0, δ)
(cf. Prop. 2.1), since polynomial functions that agree on an open subset of Mn(F)g

represent the same function on Mn(F)g .

3.2 Analytic Free Maps

We next turn our attention to analytic G-free maps. We show they admit unique
convergent power series expansions about scalar points a ∈ Fg , extending classical
results for G = GL; cf. [Tay73,Voc04,Voc10,K-VV14,HKM12]. By a translation we
can assume without loss of generality that a = 0.

_eorem 3.3 Let U be a G-free set and f ∶U → M (F) an F-analytic G-free map,
and let B(0, δ) ⊆ U , where δ = (δn)n∈N, δn > 0 for every n ∈ N. _en there exists a
unique formal power series

(3.1) F =
∞

∑
m=0

∑
∣w∣=m

Fww ,

where w ∈ ⟨x⟩ (resp. w ∈ ⟨x , x t⟩), which converges in norm on B(0, δ), with f (X) =

F(X) for X ∈ B(0, δ).

Remark 3.4 If f is uniformly bounded and G = GL, then the convergence of the
power series F in (3.1) is uniform (cf. [HKM12, Proposition 2.24]), while this conclu-
sion does not hold when G = O. We present examples in Section 6.

We ûrst prove the existence; the uniquenesswill follow fromProposition 3.7 below.

Proof of the existence Since f is analytic, there exists for every X ∈ Mn(F)g aneigh-
borhood of 0 such that the function t ↦ f [n](tX) is deûned and analytic in that
neighborhood. Hence, f [n](tX) can be expressed in that neighborhood as a conver-
gent power series of the form∑∞

m=0 tm f [n]m(X),where f [n]m(X) is a function of X.
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Note that for X ∈ B(0, δ), this power series converges for t = 1. _e function f [n]m
is a homogeneous polynomial function of degree m. Indeed, let s ∈ F, X ∈ Mn(F)g

and choose δ′ such that tsX ∈ B(0, δ) for ∣t∣ ≤ δ′. _en
∞

∑
m=0

tm f [n]m(sX) = f (tsX) =
∞

∑
m=0

(ts)m f [n]m(X),

and thus, f [n]m(sX) = sm f [n]m(X).
Let us show that fm deûned by fm[n] ∶= f [n]m is an analytic freemap. Choose δ′

such that tX , tY , σ tXσ−1 ∈ B(0, δ) for ∣t∣ < δ′. As f is a freemap, we have
∞

∑
m=0

tm f [n + n′]m(X ⊕ Y) = f [n + n′](tX ⊕ tY) = f [n](tX)⊕ f [n′](tY)

=
∞

∑
m=0

tm( f [n]m(X)⊕ f [n′]m(Y)) ,

and
∞

∑
m=0

tmσ f [n]m(X) σ−1
= σ f [n](tX) σ−1

= f [n](tσXσ−1
) =

∞

∑
m=0

tm f [n]m(σXσ−1
)

for all ∣t∣ < δ′, which implies that fm is a G-freemap. By construction, fm is a homo-
geneous polynomial function of degree m (or 0) for every m. By Proposition 3.1, fm
can be represented by a free polynomial in the variables xk (resp. xk , x t

k) of degreem.
_us, f can be expressed as a power series in noncommuting variables, F = ∑ fm . By
construction, this power series converges on B(0, δ).

While the theories of GL- and O-free maps enjoy certain similarities, there are
also major diòerences. For instance, for GL-freemaps continuity implies analyticity,
and there is a very useful formula [HKM11, Proposition 2.5], [K-VV14,_eorem 7.2]
connecting function values with the derivative:

(3.2) f (X H
0 X) = (

f (X) δ f (X)(H)

0 f (X)
) ,

where δ f (X)(H) denotes the Gâteaux (directional) derivative of f at X in the direc-
tion H; i.e.,

δ f (X)(H) = lim
t→0

f (X + tH) − f (X)

t
.

For O-free maps, continuity does not imply diòerentiability; see Section 6 for ex-
amples. However, for diòerentiable O-free maps we do have an analog of formula
(3.2), which can be deduced from [PT+, Lemma 2.3, Proposition 2.5], but we prove
it here for the sake of completeness. We write D f for a derivative of f , it can
be either the Gâteaux or the Fréchet derivative. _e Lie bracket [a, B] stands for
([a,B1], . . . , [a, Bg]), where a ∈ Mn(F), B = (B1 , . . . , Bg) ∈ Mn(F)g .

Lemma 3.5 Let f ∶U →M (F) be a real diòerentiableG-freemap. _en the identity

D f (X)([a, X]) = [ a, f (X)]
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holds for all X ∈ U [n], at = −a ∈ Mn(R). In particular,

(3.3) D f (Y 0
0 Z)(

0 Y − Z
Y − Z 0 ) = (

0 f (Y) − f (Z)
f (Y) − f (Z) 0 ) .

Proof Note that esa is orthogonal for at = −a ∈ Mn(R) and s ∈ R. _us, we have

f (esaXe−sa
) = esa f (X)e−sa

for every X ∈ U [n]. Diòerentiating with respect to s at 0 yields

D f (X)([a, X]) = [ a, f (X)] .

Take

a = (
0 In
−In 0 ) ∈ M2n(R),

where In denotes the identity in Mn(R). Setting X = ( Y 0
0 Z ) , we get the identity

(3.3).

We now show that the power series expansion is unique for a G-free function and
give a way to recover its coeõcients.

Lemma 3.6 If f (X) = ∑∣w∣≤m Fww, where the sum is over words in the variables xk

(resp. xk , x t
k), then we can obtain the coeõcients Fw by evaluations of f on Mm+1(F).

Proof We proceed inductively and give a constructive proof. Assume that we can
obtain coeõcients of f (X) = ∑∣w∣≤k Fww for k < m by evaluations of f on Mk+1(F).
_e case k = 1 is trivial. Suppose that k = m. Let us determine the coeõcient at
w = u j1

i1 ⋅ ⋅ ⋅u
js
is , where ∑s

k=1 jk = m and u ik ∈ {x ik , x
t
ik}. We denote sk = ∑

k
i=1 j i .

Setting a i = 0 at the beginning, we deûne a g-tuple (a i) ∈ Mm+1(F)g as follows. We
let k run from 1 to s, and at step k we replace a ik by

⎧⎪⎪
⎨
⎪⎪⎩

a ik +∑
sk
u=sk−1+1 eu ,u+1 if u ik = x ik ,

a ik +∑
sk
u=sk−1+1 eu+1,u if u ik = x t

ik ,

where e i j ∈ Mn(F) denote the standardmatrix units.
We shall show that tr( f (a1 , . . . , ag)em+1,1) = Fw . We need to ûnd the coeõcient

of f (a1 , . . . , ag) (expressed in the basis e i j , 1 ≤ i , j ≤ m + 1, of Mm+1(F)) at e1,m+1.
According to the deûnition of the a i ’s, it suõces to show that e1,m+1 can be obtained
in only one way as a product of ≤ m matrix units from the set

S = {e i , i+1 , e i+1, i ∣ 1 ≤ i ≤ m}.

Note that the multiplication on the right of any matrix unit e i j by any element of
S either increases or decreases j by 1. In order to obtain e1,m+1 as a product of ≤
m elements from S, we can thus only choose matrix units that increase the second
subscript of the preceding matrix unit in the product. Hence, e1,m+1 = e12 ⋅ ⋅ ⋅ em ,m+1,
and any other product of ≤ m elements from S will be diòerent from e1,m+1. As each
e i , i+1 appears only in one of the a i , at

i , 1 ≤ i ≤ g, the order e12 , . . . , em ,m+1 corresponds
to exactly one order of the a′i s. By the deûnition of a i , this order corresponds to w.

https://doi.org/10.4153/CJM-2015-055-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-055-7


416 I. Klep and Š. Špenko

Now we can ûnd the coeõcients of f −∑∣w∣=m Fww = ∑∣w∣<m Fww by the induction
hypothesis on Mm(F) ⊆ Mm+1(F).

Proposition 3.7 Suppose that aG-freemap f has a power series expansion in a neigh-
borhood B(0, δ) of 0, δ = (δn)n∈N; i.e.,

f (X) =
∞

∑
m=0

∑
∣w∣=m

Fww(X),

for X ∈ B(0, δ). _en Fw for ∣w∣ = m is determined by the m-th derivative of the
function t ↦ f [m + 1](tX) at 0 and hence by its evaluation on Mm+1(F).

Proof Let ∣t∣ < 1; then tX ∈ B(0, δ)[n] for every X ∈ B(0, δ)[n], and

f [n](tX) =
∞

∑
m=0

tm fm[n](X)

is a convergent power series in t, where fm are homogeneous free polynomials of
degree m. We can thus determine fm[n](X) as

1
m!

d
dtm

f [n](tX)∣
t=0

.

Since Mn(F) does not admit a nontrivial polynomial identity (with involution) of
degree< n (see e.g., [Row80, Lemma 1.4.3,Remark 2.5.14]), fm is uniquely determined
on Mm+1(F). Hence, we can recover fm by the m-th derivative of the function t ↦
f [m+1](tX). _e coeõcients of the polynomial fm can be constructively determined
by evaluations on Mm+1(F) by Lemma 3.6.

4 Generalized Polynomials and Power Series Expansions about
Non-scalar Points

_eorem 3.3 gives a convergent power series expansion of a free analytic map about
a scalar point a ∈ Fg . In this section we present power series expansions about non-
scalar points A ∈ Mn(F)g , whose homogeneous components are generalized poly-
nomials. _ese are the topic of Subsection 4.1 and their obtained properties will be
used in Subsection 4.2 to deduce the desired power series expansion. Our methods
are algebraic and work for G = GL and G = O. We refer the reader to [K-VV14] for
an earlier alternative approach to power series expansions about non-scalar points in
the case G = GL.

_roughout this section, G ∈ {GL,O}.

4.1 Generalized Polynomials

We call the elements of the (unital) freeproductMn(F)∗F⟨x⟩ generalized polynomials
(cf. [Ami65], [BMM96, Section 4.4]). _ey can be written in the form

∑ a i0xk1a i1xk2 ⋅ ⋅ ⋅ a iℓ−1xkℓ a iℓ ,
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where a i j ∈ Mn(F). Let e i j denote the standardmatrix units of Mn(F). _en a basis
of Mn(F) ∗ F⟨x⟩ consists ofmonomials

e i0 , j0xk1 e i1 , j1xk2 ⋅ ⋅ ⋅ e iℓ−1 , jℓ−1xkℓ e iℓ , jℓ
for ℓ ∈ N0, I, J ∈ {1, . . . , n}ℓ+1, K ∈ {1, . . . , g}ℓ ,where I = (i0 , . . . , iℓ), J = ( j0 , . . . , jℓ),
K = (k1 , . . . , kℓ). _e algebra Mn(F) ∗ F⟨x⟩ can be evaluated (as an algebra with
unity) in Mns(F) for s ∈ N, and we have an isomorphism

(4.1) HomMn(Mn(F) ∗ F⟨x⟩,Mns(F)) ≅ Hom(Wn(F⟨x⟩),Ms(F)) ,
where Wn denotes the matrix reduction functor (i.e., the le� adjoint to the matrix
functor A ↦ Mn(F) ⊗ A) (see [Coh95, Section 1.7]). _e isomorphism is a conse-
quence of the identity

(4.2) Mn(F) ∗ F⟨x⟩ ≅ Mn(Wn(F⟨x⟩)) .
For the free algebra F⟨x⟩ = F⟨x1 , . . . , xg⟩ we have

Wn(F⟨x⟩) = F⟨ y(k)i j ∣ 1 ≤ i , j ≤ n, 1 ≤ k ≤ g⟩ ,

where y(k)i j , as the brackets suggest, denote free noncommutative variables. For ex-
ample, the evaluation of the element

e11x1e12x2e22 ∈ M2(F) ∗ F⟨x⟩
in M4(F), deûned by mapping x1 , x2 to A, B ∈ M4(F), is

(
I2

)(
A11 A12
A21 A22

)(
I2
)(
B11 B12
B21 B22

)( I2
) = (

A11B22
)

where I2 denotes the identity of M2(F), and A i j (resp. B i j) denotes the (i , j)-block
entry of A (resp. B), or

(e11 ⊗ I2)A(e12 ⊗ I2)B(e22 ⊗ I2) = e12 ⊗ A11B22 ,

viewed as en element in M2(F)⊗M2(F) ≅ M4(F).
Note that (4.1) and (4.2) imply that no generalized polynomial vanishes on Mns(F)

for all s. In fact, two generalized polynomials of degree 2d that agree on Mns(F) for
some s > d are equal. We denote by gTns the ideal of the elements in Mn(F) ∗ F⟨x⟩
that vanish when evaluated on Mns(F) and let

Cns = F[x(k)i j ∣ 1 ≤ i , j ≤ ns, 1 ≤ k ≤ g] .

_e quotient algebra gGMns = (Mn(F) ∗ F⟨x⟩)/gTns is isomorphic to the image of

ϕ∶Mn(F) ∗ F⟨x⟩→ Mns(Cns),

deûned by mapping xk to the corresponding generic matrix (x(k)i j ). We write gRns

for the subalgebra of Mns(Cns) generated by gGMns and traces of the elements in
gGMns . Note that every polynomial map p∶Mns(F)g → Mns(F) can be considered
as an element p̃ ∈ Mns(Cns). Let GLns act on Mns(F) by conjugation. We will be
interested in the action of its subgroup In ⊗GLs . In the next proposition we describe
the invariants and concomitants of this action.

Proposition 4.1 If p∶Mns(F)g → Mns(F) is an In⊗GLs-concomitant, then p̃ ∈ gRns .

https://doi.org/10.4153/CJM-2015-055-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-055-7


418 I. Klep and Š. Špenko

Proof We can assume that p ismultilinear of degree d. _en p corresponds to an el-
ement in (Mns(F)⊗d)∗⊗Mns(F), which is canonically isomorphic to Mn(F)⊗d+1⊗

(Ms(F)⊗d)∗⊗Ms(F) as In ⊗GLs-module. _e action of the group In ⊗GLs reduces
to the action of GLs on (Ms(F)⊗d)∗ ⊗ Ms(F). _e invariants of this action corre-
spond to multilinear trace polynomials of degree d in Ms(Cs) by [Pro76, _eorem
2.1]. Moreover, the elements of the form

∑
I , J
e i1 j1 ⊗ ⋅ ⋅ ⋅ ⊗ e id jd ⊗ τI J ,

where τI J ∈ (Ms(F)⊗d)∗ ⊗Ms(F) is a GLs-concomitant map, can be identiûed with
multilinear elements of degree d in gRns .

4.1.1 Generalized Polynomials with Involution

To consider the case of algebraswith involution,weneed to introduce some additional
notation. We call the elements of the algebraMn(F)∗F⟨x , x t⟩ generalized polynomials
with involution. We denote the ideal of elements in Mn(F) ∗ F⟨x , x t⟩ that vanish on
Mns(F) by gT†ns . _e quotient algebra is isomorphic to the subalgebra gGM†

ns of
Mns(Cns) generated by gGMns and transposes of elements in gGMns . We write gR†ns
for the subalgebra ofMns(Cns) generated by gGM†

ns and traces of elements in gGM†
ns .

We have the (usual) action of Ons on Mns(Cns). _e following proposition is the
analog of Proposition 4.1 for the action of In ⊗Os on Mns(Cns).

Proposition 4.2 If p ∈ Mns(F)g → Mns(F) is an In⊗Os-concomitant, then p̃ ∈ gR†ns .

Proof _e proof goes along the same lines as that of Proposition 4.1; we only need
to invoke [Pro76,_eorem 7.2] instead of [Pro76,_eorem 2.1].

4.1.2 Block and Centralizing G-concomitants

Let us denote Mn(F)[k] = ⋃s Mns(F)[k], k ∈ N. We say that a map f ∶Mn(F)[g] →
Mn(F) is In ⊗G-concomitant if

f [ns]∶ (Mn(F)⊗Ms(F))
[g]
→ Mn(F)⊗Ms(F)

is a In ⊗Gs-concomitant for every s ∈ N.

Proposition 4.3 If f ∶Mn(F)[g] → Mn(F) is a homogeneous polynomial map of
degree d and In ⊗ GL-concomitant (resp. In ⊗ O-concomitant) that preserves direct
sums, then f ∈ Mn(F) ∗ F⟨x⟩ (resp. f ∈ Mn(F) ∗ F⟨x , x t⟩).

Proof We prove the lemma only in the case G = GL, as themodiûcations needed to
treat the case G = O are straightforward. We can assume that f is multilinear. Since
f [ns] is a In⊗GLs-concomitant, f [ns] ∈ gRns by Proposition 4.1. We can view f [ns]
as an element in Mn(F)⊗d+1 ⊗ (Ms(F)⊗d)∗ ⊗Ms(F) and write it in the form

f [ns] =∑
I , J
e i1 j1 ⊗ ⋅ ⋅ ⋅ ⊗ e id jd ⊗ e id+1 jd+1 ⊗ τ(s)I J ,
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where τ(s)I J is a GLs-concomitant. Let s > d. Since f preserves direct sums, we have

f [ns](X)⊕ f [ns](Y) = f [2ns](X ⊕ Y).

We obtain for all I, J an identity

(4.3) τ(s)I J (X)⊕ τ(s)I J (Y) = τ(2s)I J (X ⊕ Y).

Let us ûx I, J. To simplify the notation we write τ(s) instead of τ(s)I J . We have

τ(s) =∑
M

h(s)
M M ,

where hM is apure tracepolynomial,M is amonomial in the variables xk , anddegM+

deg hM = d. _en the identity (4.3) together with the fact that there are no trace
identities of Ms(F) of degree < s yields

h(s)
M (X) = h(2s)

M (X ⊕ Y) = h(s)
M (Y)

for all monomials M, which implies that

τ(s) =∑
M
αMM

for some αM ∈ F. _us, f [ns] ∈ gGMns for every s > d is represented by the same
generalized polynomial f̃ . Since f respects direct sums, we can identify it with f̃ .

For a subset B of Mn(F) we denote by C(B) its centralizer in Mn(F); i.e.,
C(B) = {c ∈ Mn(F) ∣ cb = bc for all b ∈ B},

while CGn(B) stands for C(B) ∩ Gn . We say that a map f ∶Mn(F)[g] → Mn(F) is
a (CGn(B),G)-concomitant if f [ns] is a (CGn(B) ⊗ Ms(F)) ∩ Gns-concomitant for
every s ∈ N.

Lemma 4.4 Let B be a subalgebra of Mn(F). If f ∶Mn(F)[g] → Mn(F) is a ho-
mogeneous polynomial map of degree d that is a (CGLn(B),GL)-concomitant, then
f ∈ C(C(B)) ∗ F⟨x⟩.

Proof By Proposition 4.3, f ∈ Mn(F) ∗ F⟨x⟩. Since GLn is dense in Mn(F), the
vector space spanned by CGLn(B) coincides with C(B). _us we can choose a ba-
sis {c1 , . . . , ct} of C(B) with cℓ ∈ GLn . Let {b1 , . . . , bu} be a basis of C(C(B)) and
complete it to a basis {bℓ ∣ 1 ≤ ℓ ≤ n2} of Mn(F). We can write f uniquely as

f =∑
I ,K
αIKb i1xk1b i2 ⋅ ⋅ ⋅ xkd b id+1 ,

where I runs over all d + 1-tuples of elements in {1, . . . , n2}, and K over all d-tuples
of elements in {1, . . . , g}. Take s > d and evaluate f on

M2nts(F) ≅ Mn(F)⊗M2t(F)⊗Ms(F).
Note that f on M2nts(F) can be identiûedwith the evaluation of the generalized poly-
nomial

∑
I ,K
αIK(

2t

∑
i=1
b i1 ⊗ e i i)xk1(

2t

∑
i=1
b i2 ⊗ e i i) ⋅ ⋅ ⋅ xkd(

2t

∑
i=1
b id+1 ⊗ e i i)
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in M2nt(F)∗F⟨x⟩ = (Mn(F)⊗M2t(F))∗F⟨x⟩, and every element in M2nt(F)∗F⟨x⟩
has a unique expression with thematrix coeõcients bℓ ⊗ e i j , 1 ≤ i , j ≤ 2t, 1 ≤ ℓ ≤ n2,
on M2nts(F) as s > d. Let

σ = (α1⊗1+β
t

∑
ℓ=1

(cℓ⊗eℓ ,t+ℓ−c−1
ℓ ⊗et+ℓ ,ℓ))⊗1 ∈ (CGLn(B)⊗M2t(F)⊗Ms(F))∩GL2nts

for α2 + β2 = 1, α, β ∈ R. Note that

σ−1
= (α1⊗ 1 − β

t

∑
ℓ=1

(cℓ ⊗ eℓ ,t+ℓ − c−1
ℓ ⊗ et+ℓ ,ℓ)) ⊗ 1.

Since f is a (CGLn(B),GL)-concomitant, we have

∑
I ,K
αIKbσ

i1xk1b
σ
i2 ⋅ ⋅ ⋅ xkd b

σ
id+1

=∑
I ,K
αIKb i1xk1b i2 ⋅ ⋅ ⋅ xkd b id+1 ,

where by a slight abuse of notation b i denotes b i ⊗ 1⊗ 1, and

(4.4)

bσ
i = σ−1b iσ = α2b i ⊗ 1⊗ 1 +

t

∑
ℓ=1
β2cℓb i c−1

ℓ ⊗ eℓℓ ⊗ 1 + β2c−1
ℓ b i cℓ ⊗ et+ℓ ,t+ℓ ⊗ 1

+ αβ(b i cℓ − cℓb i)⊗ eℓ ,t+ℓ ⊗ 1 − αβ(b i c−1
ℓ − c−1

ℓ b i)⊗ et+ℓ ,ℓ ⊗ 1.

Since s > d, both sides of equation (4.4) have a unique expression as generalized
polynomials in M2tn ∗ F⟨x⟩ with the generalized coeõcients bℓ ⊗ e i j , 1 ≤ i , j ≤ 2t,
1 ≤ ℓ ≤ n2. We thus derive

(4.5) ∑
k
αI j

kK
(bkcℓ − cℓbk) = 0

for every 1 ≤ j ≤ d + 1, 1 ≤ ℓ ≤ t, where I j
k denotes a tuple of d + 1-elements in

{1, . . . , n2} with k at the j-th position. Equation (4.5) implies that

∑
k
αI j

kK
bk ∈ C(C(B)),

which is, by the choice of bℓ , 1 ≤ ℓ ≤ n2, only possible if αI j
kK

= 0 for bk /∈ C(C(B)).
_erefore, we have f ∈ C(C(B)) ∗ F⟨x⟩.

Lemma 4.5 If B is a ∗-subalgebra of Mn(R), then the subalgebra generated by
COn(B) is equal to C(B), and C(COn(B)) = C(C(B)) = B.

Proof Since B is a ∗-subalgebra of Mn(R), C(B) is also a ∗-subalgebra of Mn(R),
and thus semisimple. Notice that in order to show thatR⟨COn(B)⟩, the subalgebra of
C(B) generated by COn(B), coincideswith C(B),we can assume that C(B) is simple.
We have c t − c ∈ spanCOn(B), the vector subspace ofMn(R) spanned by COn(B), for
every c ∈ C(B). Indeed, eλ(c

t
−c) ∈ COn(B) for every λ ∈ R, c ∈ C(B) yields c t − c ∈

spanCOn(B). IfC(B) is isomorphic toR,M2(R),C, or M2(C),where the involution
onC is the complex conjugation, then one can easily verify that spanCOn(B) = C(B).
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Recall that a ûnite dimensional simple R-algebra with involution that is not isomor-
phic toR,M2(R),C, or M2(C) coincides with its subalgebra generated by the skew-
symmetric elements (see e.g., [KMRT98, Lemma 2.26]). _erefore, R⟨COn(B)⟩ =

C(B), which further implies C(COn(B)) = C(C(B)), and the identity C(C(B)) = B
follows from the double centralizer theorem (see e.g., [KMRT98,_eorem 1.5]).

Lemma 4.6 Let B be a ∗-subalgebra of Mn(R). If f ∶Mn(R)[g] → Mn(R) is a
homogeneous polynomial map of degree d that is a (COn(B),O)-concomitant, then
f ∈ B ∗R⟨x , x t⟩.

Proof Since the proof is similar to that of Lemma 4.4, we omit some of the de-
tails. By Proposition 4.2, we have f ∈ Mn(R) ∗ R⟨x , x t⟩. Let c1 , . . . , ct be a basis
of spanCOn(B), the vector space spanned by COn(B), with cℓ ∈ On . Let us write

f =∑
I ,K
αIKb i1uk1b i2 ⋅ ⋅ ⋅ukd b id+1 ,

where uk ∈ {xk , x t
k}. Take s > d and evaluate f on M2nts(F). Let

σ = (α1⊗1+β
t

∑
ℓ=1

(cℓ⊗eℓ ,t+ℓ−c tℓ⊗et+ℓ ,ℓ))⊗1 ∈ (COn(B)⊗M2t(F)⊗Ms(F))∩O2nts

for α2 + β2 = 1, α, β ∈ R. Note that σ ∈ O2nts and

σ t
= (α1⊗ 1 − β

t

∑
ℓ=1

(cℓ ⊗ eℓ ,t+ℓ − c tℓ ⊗ et+ℓ ,ℓ)) ⊗ 1.

Since f is a (COn(B),O)-concomitant, we have

∑
I ,K
αIKbσ

i1uk1b
σ
i2 ⋅ ⋅ ⋅ukd b

σ
id+1

=∑
I ,K
αIKb i1uk1b i2 ⋅ ⋅ ⋅ukd b id+1 ,

where b i denotes b i ⊗ 1⊗ 1, and

bσ
i = σ tb iσ = α2b i ⊗ 1⊗ 1 +

t

∑
ℓ=1
β2cℓb i c tℓ ⊗ eℓℓ ⊗ 1 + β2c tℓb i cℓ ⊗ et+ℓ ,t+ℓ ⊗ 1

+ αβ(b i cℓ − cℓb i)⊗ eℓ ,t+ℓ ⊗ 1 − αβ(b i c tℓ − c
t
ℓb i)⊗ et+ℓ ,ℓ ⊗ 1.

As s > d, both sides of the last identity have a unique expression as generalized poly-
nomials in M2tn ∗ R⟨x , x t⟩ with the generalized coeõcients bℓ ⊗ e i j , 1 ≤ i , j ≤ 2t,
1 ≤ ℓ ≤ n2. _us, αI j

kK
= 0 for bk /∈ C(COn(B)), where I j

k denotes a tuple of
d + 1-elements in {1, . . . , n2} with k at the j-th position. Since C(COn(B)) = B by
Lemma 4.5, f belongs to B ∗R⟨x , x t⟩.

4.2 Power Series Expansions about Non-Scalar Points

We next turn to analytic free maps and exhibit their power series expansions about
non-scalar points A. Homogeneous components of such an expansion will be gener-
alized polynomials. For G = GL their matrix coeõcients belong to the double cen-
tralizer C(C(A)), while for G = O they lie in the ∗-subalgebra F⟨A,At⟩ generated by
A.
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Let us ûrst introduce neighborhoods of non-scalar points. Given A ∈ Mn(F)g , set

B(A, δ) =
∞

⋃
s=1

{X ∈ Mns(F)g
∣ ∥X −

s
⊕
i=1
A∥ < δs} ,

where δ = (δs)s∈N, δs > 0 for every s ∈ N.

4.2.1 GL-free maps

_e next theorem gives a power series expansion of a GL-free map f about A =

(A1 , . . . ,Ag) ∈ Mn(F)g ,whosematrix coeõcients are elements of the double central-
izer algebra C(C(F⟨A⟩)) ⊆ Mn(F) of the subalgebra F⟨A⟩ generated by A1 , . . . ,Ag .

_eorem 4.7 Let U be a GL-free set, let f ∶U → M (F) be an F-analytic GL-free
map, and letB(A, δ) ⊆ U ,where A ∈ Mn(F)g , and δ = (δs)s∈N, δs > 0 for every s ∈ N.
_en there exist unique generalized polynomials fm ∈ C(C(F⟨A))⟩ ∗F⟨x⟩ of degree m
so that the formal power series

(4.6) F(X) =
∞

∑
m=0

fm(X − A)

converges in norm on the neighborhood B(A, δ) of A to f .

Proof As A ∈ U [n] andU is a GL-free set, we have

A⊕s
=

s
⊕
i=1
A ∈ U [ns]

for every s ∈ N. Since f [ns] is analytic in a neighborhood of A⊕s , the function

t z→ f [ns](A⊕s
+ t(X − A⊕s))

is deûned and analytic for all ∣t∣ < δX , where δX depends on X ∈ Mns(F). _us, we
can expand it in a power series

(4.7) f [ns](A⊕s
+ t(X − A⊕s)) =

∞

∑
m=0

tm f [ns]m(X − A⊕s)

that converges for ∣t∣ < δX . If X ∈ B(A, δ), thenwe have δX ≥ 1. We claim that f [ns]m
is a homogeneous polynomial function of degree m. Indeed, as

∞

∑
m=0

tm1 f [ns]m( t2(X − A⊕s)) = f [ns](A⊕s
+ t1 t2(X − A⊕s))

=
∞

∑
m=0

tm1 tm2 f [ns]m(X − A⊕s)

for all t1 that satisfy ∣t1∣, ∣t1 t2∣ < δX , we obtain

f [ns]m(tY) = tm f [ns]m(Y)

for all t ∈ F, Y ∈ Mns(F)g . Let us show that

fm ∶Mn(F)g
Ð→Mn(F)
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deûned by fm[ns] ∶= f [ns]m is a (CGLn(B),GL)-concomitant that preserves direct
sums. Take s ∈ N, σ ∈ (CGLn(F⟨A⟩)⊗Ms(F)) ∩GLns and note that

σA⊕sσ−1
= A⊕s .

_en the identity

∑ tmσ f [ns]m(X − A⊕s)σ−1
= σ f [ns](A⊕s

+ t(X − A⊕s
))σ−1

= f [ns](A⊕s
+ t(σXσ−1

− A⊕s
))

=∑ tm f [ns]m(σ(X − A⊕s
)σ−1) ,

for all small enough t, yields the desired conclusion.
To conclude the proof of the existence, we proceed as at the end of the proof of

existence in _eorem 3.3. _us, fm ∈ C(C(F⟨A))⟩ ∗ F⟨x⟩ by Lemma 4.4. Note that
setting t = 1 in (4.7) establishes the existence of the desired power series.
For the uniqueness, we can also follow the proof of uniqueness in _eorem 3.3

carried out in Lemma 3.6 and Proposition 3.7, a�er recalling the identity (4.1). Hence,
we can recover fm by them-th derivative of the function t ↦ f [n(m+ 1)](t(X −A))
at 0, and thematrix coeõcients of the generalized polynomial fm can be determined
by evaluations on Mn(m+1)(F).

Remark 4.8 If f is a uniformly bounded GL-free map, then the convergence of
F in (4.6) is uniform, which can be proved in the same way as the analogous state-
ment for F = C and power series expansion about scalar points in the last part of
the proof of [HKM12, Proposition 2.24]. _e only modiûcation needed is to replace
exp(it)Ins , exp(−imt)Ins ∈ Mns(C) in the equation

C ≥ ∥
1
2π ∫

f (exp(it)X) exp(−imt)dt∥ = ∥ f (m)
(X)∥

with the corresponding matrices in M2ns(R).

In general, one cannot expect thematrix coeõcients of the power series expansion
of a GL-free map f about a non-scalar point A to lie in F⟨A⟩ ∗ F⟨x⟩. In this case,
one would have f (A) ∈ F⟨A⟩, which is not always the case by [AM16, _eorem 7.7].
However, this does hold true in the case where A is a generic point. _at is, if g = 1,
then A is similar to a diagonal matrix with n distinct eigenvalues, and if g > 1, then
F⟨A⟩ = Mn(F).

Corollary 4.9 Let U be a GL-free set, let f ∶U →M (F) be an F-analytic GL-free
map, and let B(A, δ) ⊆ U , where A ∈ Mn(F)g is a generic point, and δ = (δs)s∈N,
δs > 0 for every s ∈ N. _en there exist generalized polynomials fm ∈ Mn(F) ∗ F⟨x⟩ of
degree m so that the formal power series

F(X) =
∞

∑
m=0

fm(X − A),

converges in norm on the neighborhood B(A, δ) of A to f .

https://doi.org/10.4153/CJM-2015-055-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-055-7


424 I. Klep and Š. Špenko

4.2.2 O-free maps

In the case of free maps with involution the matrix coeõcients in the power series
expansion of an analytic O-free map about A = (A1 , . . . ,Ag) ∈ Mn(F)g lie in the
∗-subalgebra F⟨A,At⟩ of Mn(F) generated by A1 , . . . ,Ag . _is contrasts the analo-
gous result for GL-free maps (_eorem 4.7) where the double centralizer of F⟨A⟩ is
required.

_eorem 4.10 Let U be an O-free set, let f ∶U → M (F) be an F-analytic O-free
map, and letB(A, δ) ⊆ U , where A ∈ Mn(F)g and δ = (δs)s∈N, δs > 0 for every s ∈ N.
_en there exist unique generalized polynomials fm ∈ F⟨A,At⟩ ∗ F⟨x , x t⟩ of degree m
so that the formal power series

F(X) =
∞

∑
m=0

fm(X − A)

converges in norm on the neighborhood B(A, δ) of A to f .

Proof _e proof resembles that of _eorem 4.7 with obvious modiûcations. One
only needs to apply Lemma 4.6 instead of Lemma 4.4.

5 Inverse Function Theorem for Free Maps

As an application of the tools and techniques developed, we present an inverse and
implicit function theorem for free maps. For G = GL these results have been ob-
tained (using quite diòerent proofs) by Pascoe [Pas14], Agler andMcCarthy [AM16],
Kaliuzhnyi-Verbovetskyi, and Vinnikov (private communication).
Following [K-VV14], we recall two topologies on M (F)[g]. _e ûrst is the ûnitely

open topology. Its basis are setsU ⊆ M (F)[g] forwhich the intersectionwith Mn(F)g

is open for every n ∈ N. _e second topology is the uniformly open topology and its
basis consists of sets of the form

B(A, r) =
∞

⋃
s=1

{X ∈ Mns(F)g
∣ ∥X −

s
⊕
i=1
A∥ < r} ,

for A ∈ Mn(F)g , n ∈ N, r ≥ 0. Further topologies in this free context are considered
in [AM15,AM16].

Let us recall a version of the classical inverse function theorem, giving information
on the injectivity domain (see e.g., [Lan93,_eorem XIV.1.2], [KP02,_eorem 2.5.1],
[KK83,_eorem 0.8.3]). We state it only in the case where f ∶U → V for U ⊆ V , 0 is
in the domain of f , f (0) = 0, D f (0) = idV , to which the general case can be reduced
by replacing the function f ∶U→ V with the function

f (x) = D f (x0)−1( f (x + x0) − f (x0)) ,

if x0 is the point in the domain of f . Here, D denotes the Fréchet derivative. We say
that f ∈ Cr if all Dk f , 1 ≤ k ≤ r, exist and are continuous.

_eorem 5.1 Let V be a Banach space, letU ⊆ V be an open set containing 0, f ∶U→
V , and let f ∈ Cr for some r ∈ N (resp. f is analytic). LetD f (0)∶V → V be a continuous
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bijective linear map. If Ball(0, 2δ) ⊆ U and ∥D(x − f (x))∥ < 1
2 for ∥x∥ < 2δ, then f is

injective on Ball(0, δ), and there exists h∶Ball(0, δ2 )→ V, where V is an open subset of
Ball(0, δ), such that h ○ f = idV, f ○ h = idBall(0, δ2 ), and h ∈ Cr (resp. h is analytic).

With a slight abuse of notation, we call a g′-tuple of G-freemaps f = ( f1 , . . . , fg′),
f i ∶U →M (F), also a G-freemap. _roughout this section, we let G ∈ {GL,O}.

5.1 Uniformly Open Topology

In this subsection we work with the uniformly open topology. _e Fréchet derivative
D f is continuous in the uniformly open topology at A ∈ Mn(F)g if for every ε > 0
there exists δ > 0 such that ∥D f (X) −D f (A⊕s)∥ < ε if s ∈ N and X ∈ B(A, δ)[ns].

_eorem 5.2 (Inverse free function theorem) Let U ⊆ M (F)[g] be an open G-
free set containing 0, let f ∶U → M (F)[g] be a G-free map, and let f ∈ Cr for r ∈ N
(resp. f analytic), with D f (0) invertible as a continuous linear map. _en there exist
open G-free sets W ⊆ M (F)[g], W ′ ⊆ M (F)[g] containing 0, f (0) respectively, and
a G-free map h∶W ′ → W so that f ○ h = idW ′ , h ○ f = idW , and h ∈ Cr (resp. h
analytic). Moreover, h is analytic for every r ∈ N in the case G = GL.

Proof SinceM (F)[g] is not a Banach space, we cannot directly apply _eorem 5.1.
However, we can use it levelwise. Without loss of generality, we can assume that
f (0) = 0 and D f (0) = idM(F)[g] by replacing f with the function

f ∶M (F)[g] →M (F)[g] , f = D f (0)−1
( f − f (0)).

As D f is continuous on U and invertible at 0 with a continuous inverse in the uni-
formly open topology, there exists (by the deûnition of the topology) δ > 0 such that
B(0, 2δ) ⊆ U and ∥D(x − f (x))∥ < 1

2 for ∥x∥ < 2δ. _eorem 5.1 therefore implies
that f is injective on B(0, δ) and provides a Cr-map h∶B(0, δ2 ) → V, where V is an
open subset ofB(0, δ), that satisûes the desired identities.

Let us ûrst show that V is an O-free set and h is an O-free map. Let u ∈ On ,
Y ∈ B(0, δ2 )[n]. As uYut ∈ B(0, δ2 )[n] and f is a G-freemap, we have

(5.1) f (h(uYut
)) = uYut

= u f (h(Y))ut
= f (uh(Y)ut) .

Since uh(Y)ut ⊆ uVut ⊆ B(0, δ) and f is injective on B(0, δ), h respects O-simila-
rity. In the sameway one can show that h respects direct sums, so it is indeed anO-free
map. In consequence, V = h(B(0, δ2 )) is an O-free set. _us, in the case G = O, the
proposition follows.

It remains to consider the case where G = GL. We claim that h is analytic in this
case. In the casewhereF = C, f is analytic (see [HKM11, Proposition 2.5] or [K-VV14,
_eorem 7.2]). Our assumptions imply that f is (uniformly) bounded in B(0, δ);
therefore, we can apply [K-VV14,_eorem 7.23, Remark 7.35] to deduce that f is also
analytic in the case where F = R. _us, h is analytic by _eorem 5.1. Since h is an
O-freemap according to the previous paragraph, it can be expanded in a power series
(3.1) in x , x t about 0 by_eorem 3.3, which converges inB(0, δ2 ). Note that (5.1) also
holds ifwe replace u, ut by σ , σ−1 respectively, for σ ∈ GLn such that σYσ−1 ∈ B(0, δ2 ),
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σh(Y)σ−1 ∈ B(0, δ). Note that for every Y ∈ B(0, δ2 ) there exists δσ > 0 such that
tσYσ−1 ∈ B(0, δ2 ), σh(tY)σ−1 ∈ B(0, δ) for every ∣t∣ < δσ . _us,

h(σ tYσ−1
) = σh(tY)σ−1

for every ∣t∣ < δσ . Writing this identity as a power series in t, we can deduce that
each homogeneous part hm of the power series H of h is a GL-concomitant. _us,
H is a power series in x, and h is a GL-free map on B(0, δ2 ). Now notice that the
GL-similarity invariant envelopes

W = Ṽ, W ′
=

̃
B(0,

δ
2
)

are open sets, since the function X ↦ σXσ−1 is an (analytic) isomorphism. As U
is a G-free set, W is contained in U . Furthermore, h̃ (cf. Proposition 2.1) maps W ′

to W . _us, we only need to check that f and h̃ satisfy the desired identities. Let
X̃ = σXσ−1 ∈ W , where X ∈ V[n], σ ∈ GLn . _en

h̃( f (σXσ−1
)) = h̃(σ f (X)σ−1) = σh( f (X))σ−1

= σXσ−1

implies that h̃ ○ f = idW . _e identity f ○ h̃ = idW ′ can be checked similarly.

_e proof used in the classical setting to derive the implicit function theorem from
the inverse function theorem can be also utilized in the free setting. _us, we obtain
an implicit free function theorem. We denote by D2 f (a, b), where f ∶U × V → W,
and (a, b) ∈ U ×V, the Fréchet derivative of the function y ↦ f (a, y) evaluated at b.

Corollary 5.3 (Implicit free function theorem) LetU1×U2 ⊆ M (F)[g]×M (F)[g
′
]

be an open G-free set, let f ∶U1 ×U2 →M (F)[g
′
] be a G-free map, and let f ∈ Cr for

some r ∈ N,withD2 f (0, 0) invertible. _ere exist an open G-free set V1×V2 containing
(0, 0), and a G-freemap h∶V1 → V2, h ∈ Cr , such that f (x , y) = 0 for (x , y) ∈ V1 ×V2
if and only if y = h(x).

We now turn our attention to the inverse function theorem about neighborhoods
of non-scalar points. Let us denote

CG(A) = {σ ∈ Gn ∣ σA i = A iσ , 1 ≤ i ≤ g}

for A = (A1 , . . . ,Ag) ∈ Mn(F)g . We say that U ⊆ Mn(F) is a CG(A)⊗ G-free set if
it is closed under direct sums and simultaneous CG(A)⊗G-similarity. By

D̃ f (A)∶Mn(F)[g] Ð→Mn(F)[g
′
]

for f ∶U →Mn(F)[g
′
], A ∈ U ⊆ Mn(F)[g], we denote the linear map deûned level-

wise for every s ∈ N as

D̃ f (A)[ns](H) ∶= D f (A⊕s
)(H).

_e next theorem generalizes _eorem 5.2 to the case of non-scalar center points.

_eorem 5.4 Let U ⊆ M (F)[g] be an open G-free set, let A ∈ U [n], f ∶U →

M (F)[g] be aG-freemap, and let f ∈ Cr for r ∈ N,with D̃ f (A) invertible as a continu-
ous linearmap. _ere exist openCG(A)⊗G-free setsW ⊆ Mn(F)[g],W ′ ⊆ Mn(F)[g]
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containing A, f (A) respectively, and a CG(A) ⊗ G-free map h∶W ′ → W so that
f ○ h = idW ′ , h ○ f = idW , and h ∈ Cr .

Proof Note that

D f (σXσ−1
)(σHσ−1

) = σD f (X)(H)σ−1

for every X ,H ∈ Mn(F)g , σ ∈ Gn , n ∈ N. Since A ∈ U , which is an open G-free set,
there exists δ > 0 such thatB(A, δ) ⊆ U . _en the function f ∶B(0, δ)∩Mn(F)[g] →
Mn(F)[g] deûned by

f [ns]∶B(0, δ) ∩Mns(F)g
Ð→ Mns(F)g ,

f [ns](X) ∶= D f (A⊕s
)
−1( f (X + A⊕s

) − f (A⊕s
))

is CG(A) ⊗ G-free with f (0) = 0, D f (0) = idMn(F). A similar reasoning to that in
the proof of _eorem 5.2 with obvious modiûcations and using _eorem 4.7 in the
place of_eorem 3.3 now yields the desired conclusions.

5.2 Finitely Open Topology

Nowwe state aweak formof the inverse function theorem for the ûnitely open topol-
ogy. _e Fréchet derivative D f is continuous in the ûnitely open topology if D f [n] is
continuous for every n ∈ N.

Proposition 5.5 Let U ⊆ M (F)[g] be an open G-free set, let f ∶U → M (F)[g]
be a G-free map, and let f ∈ Cr for some r > 0 with invertible D f (0). _ere exist
ûnitely open sets W,V, containing 0, f (0) respectively, and a free O-concomitant map
h∶V →W such that f ○ h = idV, h ○ f = idW, and h ∈ Cr . In the case where F = C, h
is a a free G-concomitant map.

Proof By the classical inverse function theorem we can ûnd for every n ∈ N neigh-
borhoods Vn , B(0, δn) of 0, f [n](0) respectively, such that f [n]∶Vn → B(0, δn)
is a diòeomorphism with the inverse h[n] ∈ Cr . Since B(0, δn) is On-invariant,
so is Vn for every n ∈ N. As in the proof of _eorem 5.2, it is easy to show that
h(uYut) = uh(Y)ut for every u ∈ On , Y ∈ Vn . By the deûnition of the ûnitely open
topology, the sets V = ⋃n Vn , W = ⋃n B(0, δn) are ûnitely open. _is establishes
the proposition in the case where G = O. In the case where G = GLn and F = C we
proceed as in the proof of _eorem 5.2, and replace V, W by Ṽ, W̃ respectively. To
show that f , h̃ satisfy the required identities one also only needs to follow the steps in
the proof of_eorem 5.2.

We do not know whether W and V in Proposition 5.5 can be taken to be G-free
sets; if this were the case, then h would be a G-freemap; cf. [AM16, Section 8].

5.3 Global Free Inverse Function Theorem

In [Pas14,_eorem 1.1] it was proved that a GL-freemap f with nonsingular D f (X)

for every X ∈ M (C) is injective; cf. [AM16]. _is also holds for O-freemaps.
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Proposition 5.6 If f ∶M (F)[g] →M (F)[g] is a diòerentiable G-freemap such that
D f (X) is nonsingular for every X ∈ M (F), then f is injective. If f ∈ Cr for some
r ∈ N, then there exists a G-free map h∶ f (M (F)[g]) → M (F)[g], h ∈ Cr , such that
h ○ f = id ∣M(F)[g] , f ○ h = id ∣ f (M(F)[g]).

Proof Suppose that f (Y) = f (Z) for some Y , Z ∈ Mn(F)g . _en (3.3) yields

D f (Y 0
0 Z)(

0 Y − Z
Y − Z 0 ) = (

0 0
0 0) .

Since D f ( Y 0
0 Z ) is nonsingular,we have Y = Z,which implies the injectivity of f . _e

proof of the existence of the freemap h satisfying the required properties is the same
as that of_eorem 5.2.

Remark 5.7 We remark that a free real Jacobian conjecture can be deduced from
Proposition 5.6 (see e.g., [Pas14,_eorem 1.3]).

6 Examples of O-Free Maps

_e theory ofGL-freemaps is very rigid to the point thatmany properties are stronger
than for complex analytic functions [K-VV14,HKM11,HKM12,Voc10]. In contrast to
this is the theory ofO-freemaps, as we will now demonstrate. We start by presenting
the following examples:
● a continuous O-freemap that is not diòerentiable (Example 6.1); more generally,
● Ck-maps that are not Ck+1 (Example 6.2);
● a smooth O-freemap that is not analytic (Example 6.3).

Example 6.1 Consider the O-freemap fm ∶M (R)→M (R) deûned by

fm(x) = (xx t
)

1
m for some m ≥ 2.

It is continuous by [ZZ97,_eorem 1.1]. Note that fm is not diòerentiable at 0.

Example 6.2 Let k ∈ N and

f ∶M (R)→M (R) f (x) = (xx t
)
k+ 1

2 .

_en f is an O-free Ck-map [ZZ97,_eorem 1.1], but is not Ck+1.

Example 6.3 For an example of a smooth nonanalytic O-free map consider the
map

f ∶M (R)Ð→M (R), f (x) =
∞

∑
j=0
e−

√
2 j
cos (2 j

(x + x t
)) .

Since ∥ cos(2 j(A+At))∥ ≤ 1 for every A ∈ M (R), the power series is convergent. We
show that there exist derivatives of all orders in all directions at all points of M (R),
but f is not analytic. Let us show ûrst that f is not analytic at 0. _is already holds for

https://doi.org/10.4153/CJM-2015-055-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-055-7


Free Function _eory _rough Matrix Invariants 429

the function f [1]∶R→ R. Indeed, since

lim sup
n→∞

(
∣ f [1](n)(0)∣

n!
)

1
n

≤ lim sup
n→∞

e−
√

1
n n

n!
1
n

=∞,

the radius of convergence of the Taylor series of f [1] at 0 is 0. Consider now the ℓ-th
order derivative of the function x ↦ cos(kx) at a point A ∈ Mn(R) in the direction
H ∈ Mn(R). We deûnematrices

Aℓ
H =

⎛
⎜
⎜
⎜
⎝

A H
⋱ ⋱

A H
A

⎞
⎟
⎟
⎟
⎠

∈ M(ℓ+1)n(R).

Let F be an analytic function around 0 with the radius of convergence∞. _e ℓ!-mul-
tiple of the (1, ℓ + 1)-entry of thematrix F(Aℓ

H) equals the ℓ-th order derivative of F
at the point A in the direction H. By [Hig08,_eorem 4.25] we have

∥ cos(kAℓ
H)∥ ≤ (ℓ + 1)nαkℓn ,

where α depends only on A, for A = At ,H = H t ∈ Mn(R). _is implies that
∞

∑
j=0
e−

√
2 j
∥ δℓ cos (2 j

(A+ At
))(H +H t

)∥ ≤ (ℓ + 1)!nα
∞

∑
j=0
e−

√
2 j
2 jℓn

<∞.

Hence, the ℓ-th order derivative of f at A in the direction H exists and equals
∞

∑
j=0
e−

√
2 j
δℓ cos (2 j

(A+ At
))(H +H t

).

Let f ∶U →M (C) be an analytic GL-freemap. If f is uniformly bounded on U
then them-th homogeneous part of the corresponding power series is also uniformly
bounded (see e.g., the last part of the proof of [HKM12, Proposition 2.24]). In the case
of O-freemaps this is no longer the case.

Example 6.4 _e analytic O-free map x ↦ sin(xx t) is uniformly bounded on
M (F); however, its (4m + 2)-th homogeneous part

(−1)m 1
(2m + 1)!

(xx t
)
2m+1

is not uniformly bounded.

If an analytic GL-free map f ∶U → M (C) is uniformly bounded, then it con-
verges uniformly on U by [HKM12, Proposition 2.24]. _e proof of the uniform
convergence is easily established a�er noticing that the homogeneous parts of f are
also uniformly bounded by the same constant. As the previous example shows, this
does not necessarily hold for O-freemaps. Here is an explicit example of a uniformly
bounded analyticO-freemap,which does not converge uniformly in a neighborhood
of 0.
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Example 6.5 We provide an example of a bounded analytic O-free map such that
the corresponding power series converges uniformly on Mn(R) for all n but does not
converge uniformly on M (R). Deûne the homogeneous polynomials

z i j = x2
3x

i−1
2 x j−1

1 − x i
2x

j
1

and let

hk(x1 , x2 , x3) = S2k(z11 , z22 , z12 , z33 , . . . , zkk , zk−1,k , zk+1,k+1),

where S2k denotes the standard polynomial of degree 2k; i.e.,

S2k(x1 , . . . , x2n) = ∑
σ∈Sym(2n)

(−1)σxσ(1) ⋅ ⋅ ⋅ xσ(2n) .

We take

(6.1) f (x1 , x2 , x3) = sin (
∞

∑
k=1

k!(hk(x1 , x2 , x3) + hk(x1 , x2 , x3)
t)) .

Since S2k is a polynomial identity ofMn(R) for k ≥ n by the Amitsur–Levitzki theo-
rem (see e.g., [Row80,_eorem 1.4.1]), f [n] can be deûned by taking only a ûnite sum
in the argument of sin in (6.1). Since x ↦ sin(x) is analytic on Mn(R), f [n] is real
analytic on Mn(R). Moreover, f is uniformly bounded by 1, since the argument of
sin in f is symmetric. Note that the corresponding power series F = ∑ fm , where fm
is homogeneous of degree m, converges uniformly on Mn(R)3 for every n, since the
sum in the argument of sin in the deûnition of f is ûnite on Mn(R)3, and the power
series corresponding to sin restricted to symmetricmatrices converges uniformly.

We will now show that F does not converge uniformly on M (R). Assume for the
sake of contradiction that for every ε > 0 there exist N and r > 0 such that

∥ f (X) −
n

∑
m=0

fm(X)∥ < ε for every ∥X∥ < r, n ≥ N .

Fix ε < 1 and the corresponding N and r. Take n > N such that

(6.2) n!(
r
2
)

2n2
+3n+1

>
π
2
.

Let

x1 =
n

∑
i=1
e i , i+1 , x2 =

n

∑
i=1
e i+1, i , x3 =

n+1

∑
i=1
e i i + en ,n+1

be elements in Mn+1(R). Note that z i j = e i j for 1 ≤ i , j ≤ n + 1, i < j, and z i i =

e i i + en ,n+1. _us, for n > 2 we have

hk(x1 , x2 , x3) = 0 for k /= n, hn(x1 , x2 , x3) = (−1)n−1
(n + 1)e1,n+1 ,

where the last identity follows by the identities

S2n(e11 , e22 , e12 , e33 , . . . , ek−2,k−1 , en ,n+1 , ek−1,k , . . . , en−1,n , en+1,n+1)

= S2n(en ,n+1 , e22 , e12 , . . . , en−1,n , en−1,n , en+1,n+1) = (−1)n−1e1,n+1

for 2 ≤ k ≤ n + 1, and setting e01 = e11. By (6.2) there is r′ < r such that

(n + 1)!(
r′

2
)

2n2
+3n+1

=
π
2
.
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Letting y i =
r′
2 x i , 1 ≤ i ≤ 3, we have ∥y∥ < r and

hn(y1 , y2 , y3) = (−1)n−1
(
r′

2
)

2n2
+3n+1

(n + 1)e1,n+1 ,

whence
f (y1 , y2 , y3) = (−1)n−1

(e1,n+1 + en+1,1).
Note that fm(A1 ,A2 ,A3) = 0 for m < ℓ if hk(A1 ,A2 ,A3) = 0 for k < ℓ. _us,

N

∑
m=0

fm(y1 , y2 , y3) = 0,

∥ f (y1 , y2 , y3) −
n

∑
m=0

fm(y1 , y2 , y3)∥ = 1 > ε,

a contradiction.

A U-Free Maps

In this section we give a sample of the minor modiûcations needed to handle the
case G = U = (Un)n∈N, F = C. _e free algebra with trace with involution over
C consists of noncommutative polynomials in the variables xk , x∗k over the polyno-
mial algebra T∗ in the variables tr(w), where w ∈ ⟨X , X∗⟩/cyc

∼
, with the involution

tr(w)∗ ∶= tr(w∗), α∗ = α for α ∈ C. _e evaluation map from the free algebra with
involution with trace to Mn(C) respects involution, in particular, tr(Aw∗) = tr(Aw).
It follows from [Pro76,_eorem 11.2] that a polynomial map in the commuting vari-
ables x(k)i j , (x

(k)
i j )∗ is a Un-concomitant if and only if it is a trace polynomial in the

variables xk , x∗k , and nontrivial trace identities in the variables xk , x∗k of Mn(C) ûrst
appear in the degree n. Note that functions in commutative complex variables x(k)i j
that are real analytic can be expressed as power series in the variables x(k)i j , (x

(k)
i j )∗.

With this observation and the previous statements, the proofs of the following propo-
sition and theorem go along the same lines as the proofs of analogous results (Propo-
sition 3.1,_eorem 4.7) in the cases where G = GL, G = O.

Proposition A.1 Let f ∶M (C)[g] →M (C) be aU-freemap such that f [n] is a poly-
nomial map in the variables x(k)i j , (x i j

(k))∗ for every n ∈ N, and maxn deg f [n] = d.
_en f is a free polynomial of degree d in the variables xk , x∗k .

_eorem A.2 Let f ∶U → M (C) be an R-analytic U-free map, and let B(A, δ) ∈
U , A ∈ Mn(C)g , δ = (δs)s∈N, δs > 0 for every s ∈ N. _ere exist fm ∈ C⟨A,A∗⟩∗C⟨x⟩
and a formal power series

F(X) =
∞

∑
m=0

fm(X − A),

which converges in norm in a neighborhood B(A, δ) of A such that F(X) = f (X) for
X ∈ B(A, δ).

Remark A.3 If f is aU-free polynomial map (i.e., for every n ∈ N, f [n] is a polyno-
mial map in x(k)i j , 1 ≤ i , j, ≤ n, 1 ≤ k ≤ g) of bounded degree, then f is a polynomial in
the variables xk , x∗k by PropositionA.1. However, as f is a polynomial map, it does not

https://doi.org/10.4153/CJM-2015-055-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-055-7


432 I. Klep and Š. Špenko

involve conjugate variables, so f is a polynomial in the variables xk . _is also follows
from the fact that Un is Zariski dense in GLn . _erefore, U-free C-analyticmaps are
fairly close to GL-free C-analyticmaps.
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