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A Second Order Smooth Variational
Principle on Riemannian Manifolds

Daniel Azagra and Robb Fry

Abstract. We establish a second order smooth variational principle valid for functions defined on

(possibly infinite-dimensional) Riemannian manifolds which are uniformly locally convex and have

a strictly positive injectivity radius and bounded sectional curvature.

1 Introduction and Main Result

It is well known that a continuous function defined on an infinite-dimensional man-

ifold (or on a Banach space) does not generally attain a minimum in situations in

which there would typically exist minimizers if the function were defined on a finite-

dimensional manifold (for instance when the infimum of the function in the interior

of a ball is strictly smaller than the infimum of the function on the boundary of

the ball). In fact, as shown in [1], the smooth functions with no critical points are

dense in the space of continuous functions on every Hilbert manifold (this result

may be viewed as a strong approximate version for infinite dimensional manifolds of

the Morse–Sard theorem). So, when we are given a smooth function on an infinite-

dimensional Riemannian manifold we should not expect to be able to find any critical

point, whatever the overall shape of this function is, as there might be none.

This is quite inconvenient because many important problems of PDEs and of

optimization admit equivalent formulations as minimization (or variational) prob-

lems, that is, one is given a continuous (or differentiable, or convex, or lower semi-

continuous, etc.) functional defined on a function space, or on a (usually infinite-

dimensional) manifold, and one is asked to find a minimizer of the functional, which

will provide a solution of the initial problem. Under several classes of rather restric-

tive assumptions (for instance convexity of the functional and reflexivity of the space)

one may be able to show existence of minimizers, but in many natural cases exact

minimizers do not generally exist, and one is thus forced to look for approximate

minimizers, which will provide approximate solutions of the problem. For example,

on finite-dimensional, complete and connected Riemannian manifolds the Hopf–

Rinow Theorem guarantees that there exists a minimizing geodesic connecting any

two points. For infinite-dimensional manifolds this fails in general, and so one must

consider approximate minimizing geodesics.

This is why perturbed minimization principles, or variational principles, are im-

portant. A variational principle typically asserts that, for a given lower semicontin-
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uous function f : X → R, defined on a given space X, and such that f is bounded

below, there exists a function ϕ : X → R belonging to a given class C such that f −ϕ
attains a global minimum and ϕ can be prescribed to be small in some sense. His-

torically, Ekeland’s variational principle [11] was the first perturbed minimization

principle discovered, and one of the most powerful and widely applicable, because

it holds for any complete metric space X; in this case the perturbing class C is the

set of small scalar multiples of distance functions to points, that is, the perturbing

function ϕ has the shape of a flat cone. One of the many striking applications of

Ekeland’s principle was to show the existence of almost minimizing geodesics on

complete infinite-dimensional Riemannian manifolds. This gives the approximate

version of the Hopf–Rinow theorem mentioned above.

Despite the generality and power of Ekeland’s result, there are some limitations

to the applicability of this minimization principle due to the fact that the perturbing

functions ϕ are not differentiable. Indeed, there are many situations (for instance

when one wants to build a theory of subdifferentiability, in nonsmooth analysis, and

in the study of viscosity solutions to Hamilton–Jacobi equations; see [6, 9] and the

comments preceding Corollary 1.2 below) in which one needs the perturbing func-

tion ϕ to be differentiable. In order to remedy this deficiency Borwein and Preiss [5]

established a smooth variational principle in which the space X is a Banach space with

a C1 smooth norm, and the perturbing functions ϕ are smooth functions which can

be taken to be arbitrarily small and with an arbitrarily small Lipschitz constant. Later

on, Deville, Godefroy and Zizler [7, 8], by using a new method of proof based on the

use of Baire’s category theorem, were able to extend this smooth variational principle

to the class of all Banach spaces with smooth bump functions, as well as for higher

orders of smoothness.

Smooth variational principles on Riemannian manifolds were not studied until

very recently. In [2] a Riemannian version of the Deville–Godefroy–Zizler smooth

variational principle was established within the class of complete Riemannian mani-

folds which are uniformly bumpable. This was applied to developing a theory of non-

smooth analysis and to the study of viscosity solutions to Hamilton–Jacobi equations

on Riemannian manifolds. Later, in [3], the authors showed that the assumption on

uniform bumpability can be dispensed with at least in separable manifolds, by estab-

lishing that every Lipschitz function f defined on a separable Riemannian manifold

can be uniformly approximated by a sequence of C∞ smooth Lipschitz functions ( fn)

in such a way that the Lipschitz constants of fn converge to the Lipschitz constant of

f (this result easily implies that all separable Riemannian manifolds are uniformly

bumpable; however, the question remains unsettled in the nonseparable case).

In this paper we will prove a second order smooth variational principle valid for

functions defined on every complete Riemannian manifold of bounded sectional cur-

vature, uniformly locally convex, and with a positive injectivity radius. In fact, the re-

sult is valid (see Theorem 3.7 below) for every complete Riemannian manifold which

is second order uniformly bumpable according to Definition 2.1 given below.

Section 2 of the paper is devoted to providing a sufficient condition for a manifold

to be second order uniformly bumpable (namely, that the manifold be uniformly

locally convex and have positive injectivity radius and bounded sectional curvature).

The question of whether or not every complete Riemannian manifold is second
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order uniformly bumpable is open, and seems to be of a different nature from its

first order analogue. Indeed, the first order case can be settled by uniformly ap-

proximating a function of the form ax0,δ(x) := max{1 − (1/δ)d(x, x0), 0} (which is

1/δ-Lipschitz) with C1,1 functions of Lipschitz constants less than R/δ for some fixed

R > 1; according to [3] this can be achieved in any separable Riemannian manifold

for any R > 1. However, the second order case would require one to construct C2

bump functions with the shape of ax0,δ and whose first and second derivatives are

bounded by R/δ and R/δ2 respectively (for some fixed R > 1). But it looks doubtful,

even in the (noncompact) finite-dimensional case, that this could be done. Rather, to

the contrary it seems plausible that curvature effects may prevent the uniformity that

we need in the bounds for the second derivatives of the approximations to ax0,δ (in

a manner that regions U of M with bigger sectional curvature would require bigger

R’s in order that the second derivatives of a C2 approximation to ax0,δ be bounded by

R/δ2 when x0 ∈ U).

Let us state our main result.

Theorem 1.1 Let M be a (possibly infinite-dimensional) complete Riemannian man-

ifold. Assume that the sectional curvature of M is bounded, and that M is uniformly

locally convex and has a positive injectivity radius. Then for every lower semicontinuous

function f : M → (−∞,∞] which is bounded below, with f 6≡ +∞, and for every

ε > 0, there exists a C2 smooth function ϕ : M → R such that

(i) f − ϕ attains its strong minimum on M;

(ii) ‖ϕ‖∞ < ε;

(iii) ‖dϕ‖∞ < ε;

(iv) ‖d2ϕ‖∞ < ε.

Recall that a function h is said to attain a strong minimum at a point x0 provided

h(x0) = infx∈M h(x) and limn→∞ d(xn, x0) = 0 whenever (xn) is a minimizing se-

quence (that is, if limn→∞ h(xn) = h(x0)).

In the statement of Theorem 1.1 we used the following notation:

‖ϕ‖∞ = sup
x∈M

|ϕ(x)|

‖dϕ‖∞ = sup
x∈M

‖dϕ(x)‖x

‖d2ϕ‖∞ = sup
x∈M

‖d2ϕ(x)‖x,

where

‖dϕ(x)‖ = sup
v∈TMx,‖v‖x=1

dϕ(x)(v) = sup
v∈TMx,‖v‖x=1

〈∇ϕ(x), v〉x,

and

‖d2ϕ(x)‖x = sup
v∈TMx,‖v‖x=1

|d2ϕ(x)(v, v)|.

Recall also that the Hessian D2ϕ of a C2 smooth function ϕ on M is defined by

D2ϕ(X,Y ) = 〈∇X∇ϕ,Y 〉,
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where ∇ϕ is the gradient of ϕ; X, Y are vector fields on M, and ∇XZ is the covari-

ant derivative of a vector field Z with respect to a vector field X. The Hessian is a

symmetric tensor field of type (0, 2), and for a point p ∈ M the value D2ϕ(X,Y )(p)

only depends on ϕ and the vectors X(p),Y (p) ∈ TMp. So we can define the second

derivative of ϕ at p as the symmetric bilinear form d2ϕ(p) : TMp × TMp → R

(v, w) 7→ d2ϕ(p)(v, w) := D2ϕ(X,Y )(p),

where X, Y are any vector fields such that X(p) = v, Y (p) = w. A very useful way to

compute d2ϕ(p)(v, v) is to take a geodesic γ with γ ′(0) = v and calculate

d2

dt2
ϕ
(
γ(t)

) ∣∣
t=0

,

which equals d2ϕ(p)(v, v). We will often write d2ϕ(p)(v)2 instead of d2ϕ(p)(v, v).

Let us fix some notation and terminology that we will be using throughout the

paper. M = (M, g) will always be a (possibly infinite-dimensional) complete Rie-

mannian manifold, and g(x) = 〈 · , · 〉x its Riemannian metric. We refer to [13]

for a basic introduction to infinite-dimensional Riemannian manifolds. However,

instead of Lang’s notation we will employ a more classical notation, such as that

of Do Carmo’s book [10]. The letters X,Y, Z,V,W will stand for smooth vector

fields on M, and ∇Y X will always denote the covariant derivative of X with respect

to Y . The Riemannian curvature of M will be denoted by R. Recall that the value of

R(X,Y )Z := ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z at a point p ∈ M only depends on the

values of X,Y, Z at p, and that the sectional curvature of M at a point p with respect

to a plane spanned by two vectors v, w ∈ TMp is defined by

K(p; v, w) =

〈R(v, w)v, v〉
|v ∧ w|2 ,

where |v ∧ w| is the area of the parallelogram defined by u, v in TMp.

Geodesics in M will be denoted by γ, σ, and their velocity fields by γ ′, σ ′. If X is

a vector field along γ we will often denote X ′(t) =
D
dt

X(t) = ∇γ ′(t)X(t). Recall that

X is said to be parallel along γ if X ′(t) = 0 for all t . The Riemannian distance in M

will always be denoted by d(x, y) (defined as the infimum of the lengths of all curves

joining x to y in M).

We will often identify the tangent space of M at a point x, denoted by TMx, with

the cotangent space at x, denoted by TM∗
x . The space of bilinear forms on TMx

(respectively symmetric bilinear forms) will be denoted by L2(TMx) or L2(TMx, R)

(resp. L2
s (TMx) or L2

s (TMx, R)). Also, we will denote by T2,s(M) the tensor bundle

of symmetric bilinear forms, that is

T2,s(M) =

⋃
x∈M

L
2
s (TMx, R),

and T2,s(M)x = L2
s (TMx, R).
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We will make extensive use of the exponential mapping expx throughout the pa-

per. Recall that for every x ∈ M there exists a mapping expx, defined on a neigh-

borhood of 0 in the tangent space TMx, and taking values in M, which is a local

diffeomorphism and maps straight line segments passing through 0 onto geodesic

segments in M passing through x.

By iM(x) we will denote the injectivity radius of M at x, that is, the supremum

of the radius r of all balls B(0x, r) in TMx for which expx is a diffeomorphism from

B(0x, r) onto B(x, r). The number iM(x) is strictly positive for every x. Similarly, i(M)

will denote the global injectivity radius of M, specifically i(M) = inf{iM(x) : x ∈ M}.

We will also need to recall some results about convexity in Riemannian mani-

folds. We say that a subset U of a Riemannian manifold is convex if given x, y ∈ U

there exists a unique geodesic in U joining x to y, and such that the length of the

geodesic is d(x, y). Every Riemannian manifold is locally convex, in the sense that for

every x ∈ M, there exists c > 0 such that for all r with 0 < r < c, the open ball

B(x, r) = expx B(0x, r) is convex (this is Whitehead’s Theorem). The convexity radius

of a point x ∈ M in a Riemannian manifold M is defined as the supremum in R+ of

the numbers r > 0 such that the ball B(x, r) is convex. We denote this supremum by

cM(x) (by the result we have just mentioned, cM(x) is strictly positive for every x).

Whitehead’s theorem gives rise to the notion of uniformly locally convex manifold:

we say that a Riemannian manifold M is uniformly locally convex provided that there

exists c > 0 such that for every x ∈ M and every r with 0 < r < c the ball B(x, r) =

expx B(0x, r) is convex. This amounts to saying that the global convexity radius of M

(defined as c(M) := inf{cM(x) : x ∈ M}) is strictly positive.

It is also worth noting that the functions x 7→ iM(x) and x 7→ cM(x) are continu-

ous, see [12].

As noted above, the Hopf–Rinow theorem fails in infinite dimensions, and hence

generally geodesics minimizing the distance between two given points do not exist

in infinite-dimensional Riemannian manifolds. But, if M is locally uniformly convex

and i(M) > 0, they do always exist locally. In fact they exist in a uniformly local way:

for any r > 0 with r < min{i(M), c(M)} and for all points x, y with d(x, y) ≤ r,

there is a unique (up to reparameterizations) minimizing geodesic γ connecting x

and y (γ is defined by γ(t) = expx(twy), where wy = exp−1
x (y)). Moreover, d(x, y)

is given by d(x, y) = ‖ exp−1
x (y)‖x, see [2, Proposition 3.9]. This will be extensively

used in Section 2.

Let us also recall that for a minimizing geodesic γ : [0, ℓ] → M connecting x to

y in M, and for a vector v ∈ TMx there is a unique parallel vector field P along γ
such that P(0) = v. The mapping TMx ∋ v 7→ P(ℓ) ∈ TMy is called the parallel

translation of v along γ and is a linear isometry from TMx onto TMy which we will

denote by Lxy .

For a basic theory of Jacobi fields on infinite-dimensional Riemannian manifolds

(and for any other unexplained terms of Riemannian geometry used in Section 2),

we refer the reader to [13].

Let us finish this introduction by providing a typical application of the smooth

variational principle, namely to show the existence and density of the set of points of

subdifferentiability (of second order, in our case), a result which is essential in order

to be able to use viscosity solutions to partial differential equations of second order.
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For a lower semicontinuous function f : M → (−∞, +∞] we define the second order

subjet of f at a point x ∈ M as the set

J2,− f (x) =

{
(dϕ(x), d2ϕ(x)) : ϕ ∈ C2(M, R), f −ϕ attains a local minimum at x

}
.

For an upper semicontinuous function f on M a similar definition is given for

J2,+ f (x), where “minimum” is replaced with “maximum”.

Given a continuous function F : X → R, where X := {(x, r, ζ, A) : x ∈ M,
r ∈ R, ζ ∈ TMx, A ∈ L2

s (TMx)}, one says that an upper semicontinuous function

u : M → R is a viscosity subsolution of the equation F = 0 provided that

F(x, u(x), ζ, A) ≤ 0

for all x ∈ M and (ζ, A) ∈ J2,+u(x). Similarly, a viscosity supersolution of F = 0 on

M is a lower semicontinuous function u : M → R such that

F(x, u(x), ζ, A) ≥ 0

for every x ∈ M and (ζ, A) ∈ J2,−u(x). If u is both a viscosity subsolution and a

viscosity supersolution of F = 0, we say that u is a viscosity solution of F = 0 on M.

In order that this definition is meaningful and can be used to get interesting re-

sults about weak solutions to second order PDE in a Riemannian manifold M, one

should be able to show that continuous functions have points x, y at which the semi-

jets J2,+u(x) and J2,−u(y) are nonempty (otherwise we would have the nonsensical

situation that there exists a continuous function u which is a viscosity solution to

every equation of the form F
(

x, u(x), du(x), d2u(x)
)

= 0). In finite dimensions this

easily follows by local compactness, but in the infinite-dimensional case one has to

use a variational principle. The following corollary ensures existence and density of

points x where J2,−u(x) is nonempty (obviously a similar result holds for J2,+u with

u upper semicontinuous).

Corollary 1.2 Let M be as in Theorem 1.1, and let f : M → (−∞, +∞] be a lower

semicontinuous function. Then the set {z ∈ M : J2,− f (z) 6= ∅} is dense in the set

{x ∈ M : f (x) < ∞}.

Proof Pick any point x0 with f (x0) < ∞, and any open neighborhood U of x0. Since

M has smooth partitions of unity, there is a C∞ smooth function b : M → [0,∞)

such that b(y) > 0 if and only if y ∈ U . Consider the function h : M → (−∞,∞]

defined by

h(y) =

1

b(y)
if y ∈ U , and h(y) = ∞ if y /∈ U .

The function h is lower semicontinuous on M, and C∞ smooth on U . Then the sum

f + h is lower semicontinuous, and ( f + h)(x0) < +∞. According to Theorem 1.1,

there exists a C2 smooth function ϕ : M → R such that ( f + h) − ϕ attains a strong

minimum at some point x ∈ M. In fact we have x ∈ U , because this function is val-

ued +∞ outside U . As the function ϕ−h is C2 smooth on U , and f−(ϕ−h) attains its

minimum at x, we conclude that (d(ϕ − h)(x), d2(ϕ − h)(x)) ∈ J2,− f (x) 6= ∅.
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2 Second Order Uniformly Bumpable Manifolds

In this section we will show that all complete Riemannian manifolds that are uni-

formly locally convex and have bounded sectional curvature and a strictly positive

injectivity radius are second order uniformly bumpable, meaning the following.

Definition 2.1 We will say that a Riemannian manifold M is second order uni-

formly bumpable provided there exist R > 1, r > 0 such that for every z ∈ M and

for every δ ∈ (0, r) there exists a C2 smooth function b : M → [0, 1] such that

(i) b(z) = 1,

(ii) b(x) = 0 whenever d(x, z) ≥ δ,

(iii) ‖db‖∞ ≤ R/δ,

(iv) ‖d2b‖∞ ≤ R/δ2.

One should compare Definition 2.1 with the definition of (first order) uniformly

bumpable manifold given in [2]: we note that, in the latter one, condition (iv) is

omitted and C2 is replaced with C1, these are the only differences.

The key to the proof of the main result of this section is the following estimation

for the norm of the second derivative of the square of the distance function, for which

we have found no reference (of course there are well known estimations in the finite-

dimensional case, see for instance [14, Lemma 2.9 and Exercise 4, p. 153], but they all

depend on results established exclusively in finite dimensions, and of which we have

found no infinite-dimensional versions in the literature).

Proposition 2.2 If M is a Riemannian manifold whose sectional curvature K is

bounded, say |K| ≤ K0, and c(M) > 0, i(M) > 0, then for every r with 0 < r <
min{i(M), c(M), π/2

√
K0} and every z ∈ M, the function ϕ(x) := d(x, z)2 is C∞

smooth on B(z, r) and its second derivative satisfies

‖d2ϕ(x)‖x ≤
(

2 +
2

3
K0d(x, z)2

)

for all x ∈ B(z, r).

In the proof of this proposition we will have to use some well known results about

the second variation of the arc length and the energy functionals. Let us briefly review

the facts that we will be using.

Fix a number r such that 0 < r < min{i(M), c(M), π/2
√

K0}, and take two points

x, x0 ∈ M with d(x, x0) < r. Let γ be the unique minimizing geodesic, parameterized

by arc-length, connecting x0 to x. Denote ℓ = d(x, x0), the length of γ. Consider

α(t, s), a smooth variation of γ, that is a smooth mapping α : [0, ℓ] × [−ε, ε] →
M such that α(t, 0) = γ(t) for all t ∈ [0, ℓ]. Consider the length and the energy

functionals, defined by

L(s) = L(αs) =

∫ ℓ

0

‖α ′
s (t)‖ dt

and

E(s) = E(αs) =

∫ ℓ

0

‖α ′
s‖2 dt,
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where αs is the variation curve defined by αs(t) = α(t, s) for every t ∈ [0, ℓ].

According to the Cauchy–Schwarz inequality (applied to the functions f ≡ 1 and

g(t) = ‖α ′
s (t)‖ on the interval [0, ℓ]) we have that

(2.1) L(s)2 ≤ ℓE(s),

with equality if and only if ‖α ′
s (t)‖ is constant. In particular we have

L(0)2
= ℓE(0)

because α0 = γ is a geodesic.

Therefore, if we furthermore assume that αs is a geodesic for each s (that is, α is a

variation of γ through geodesics) we have that

(2.2) L(s)2
= ℓE(s)

for every s ∈ [−ε, ε].

Now define ϕ(x) = d(x, x0)2. The function ϕ is C∞ smooth on B(x0, r) because

r < min{i(M), c(M)}, so on this ball exp−1
x0

is a C∞ diffeomorphism, and

d(x, x0)2
= ‖ exp−1

x0
(x)‖2

x0
.

Let us take a vector v ∈ TMx. We want to calculate

d2ϕ(x)(v)2,

which is given by
d2

ds2
ϕ
(
σx(s)

) ∣∣
s=0

,

where σx(s) = expx(sv). To this end let us denote by αs : [0, ℓ] → M the unique

minimizing geodesic joining the point x0 to the point σx(s) (notice that now, for

s 6= 0, αs is not necessarily parameterized by arc-length), and let us define α : [0, ℓ]×
[−ε, ε] → M by α(t, s) = αs(t). Then α is a smooth variation through geodesics of

γ(t) = α(t, 0) and we have

ϕ
(
σx(s)

)
= L(s)2

= ℓE(s),

and therefore

(2.3) d2ϕ(x)(v)2
= ℓE ′ ′(0).

If we denote the variational field of α by X(t) = ∂α(t, 0)/∂s, then the formula for

the second variation of energy (see [13, Chapter XI]) tells us that

(2.4)
1

2
E ′ ′(0) =

∫ ℓ

0

(
〈X ′, X ′〉 − 〈R(γ ′, X)γ ′, X〉

)
dt +

〈 D

ds

∂α

∂s
(t, 0), γ ′(t)

〉∣∣∣
t=ℓ

t=0
,
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or equivalently

(2.5)
1

2
E ′ ′(0) = −

∫ ℓ

0

〈X, X ′ ′ + R(γ ′, X)γ ′〉 dt + 〈X(t), X ′(t)〉|t=ℓ
t=0

+
〈 D

ds

∂α

∂s
(t, 0), γ ′(t)

〉∣∣∣
t=ℓ

t=0
,

where we denote X ′
= ∇γ ′(t)X, and X ′ ′

= ∇γ ′(t)X
′.

Note that, since the variation field of a variation through geodesics is always a

Jacobi field, and since the points x and x0 are not conjugate (recall that r < i(M)), X

is the unique Jacobi field along γ satisfying that X(0) = 0, X(ℓ) = v, that is, X is the

unique vector field along γ satisfying

X ′ ′(t) + R
(
γ ′(t), X(t)

)
γ ′(t) = 0, and X(0) = 0, X(ℓ) = v.

On the other hand, since the curves s → α(ℓ, s) = σx(s) and s → α(0, s) ≡ x0 are

geodesics, we have that

〈 D

ds

∂α

∂s
(t, 0), γ ′(t)

〉∣∣∣
t=ℓ

t=0
= 0.

These observations allow us to simplify the formulas (2.4) and (2.5) by dropping the

terms that vanish, thus obtaining

(2.6)
1

2
E ′ ′(0) =

∫ ℓ

0

(
〈X ′, X ′〉 − 〈R(γ ′, X)γ ′, X〉

)
dt,

and also

(2.7)
1

2
E ′ ′(0) = 〈X(ℓ), X ′(ℓ)〉.

Here we must recall that the right-hand side of (2.6) is called the index form and

is denoted by I(X, X). In fact, one can define for all smooth vector fields X,Y along

the geodesic γ : [0, ℓ] → M,

I(X,Y ) :=

∫ ℓ

0

(〈X ′,Y ′〉 − 〈R(γ ′, X)γ ′,Y 〉) dt

= −
∫ ℓ

0

〈X ′ ′ + R(γ ′, X)γ ′,Y 〉 dt + 〈X ′(t),Y (t)〉|t=ℓ
t=0

(where the last equality is justified by integrating by parts, see also [13, Proposi-

tion XI.1.1]). In particular, when X is a Jacobi field, then

(♯) I(X,Y ) = 〈X ′,Y 〉|ℓ0
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for all smooth vector fields Y along γ. It will also be useful to remark that the map-

ping (X,Y ) 7→ I(X,Y ) is bilinear on the smooth vector fields along γ.

By combining (2.3) and (2.6) we get

(2.8) d2ϕ(x0)(v)2
= 2ℓ

∫ ℓ

0

(〈X ′, X ′〉 − 〈R(γ ′, X)γ ′, X〉) dt,

or equivalently

(2.9) d2ϕ(x0)(v)2
= 2ℓ〈X ′(ℓ), X(ℓ)〉.

We are going to use these formulas to deduce the estimation in the statement of

Proposition 2.2, but we will need to combine them with a couple of facts about Jacobi

fields, and with the Rauch Comparison Theorem. First, we must use the following.

Lemma 2.3 Let γ : [0, ℓ] → M be a geodesic whose length, ℓ, is the distance be-

tween its end points, and let Y be a field along γ with Y (0) = 0 and Y (ℓ) = 0. Then

I(Y,Y ) ≥ 0.

Proof This result is stated and proved in [13, Theorem 1.7 of Chapter XI] under the

additional assumption that Y is orthogonal to γ, but it is true for any Y (and in fact

almost the same proof holds, with an additional remark). We will write the whole

proof for the reader’s convenience. Define

β(t, s) = expγ(t)(sY (t))

for 0 ≤ t ≤ ℓ, 0 ≤ s ≤ ε, and for a sufficiently small ε > 0. For each s, βs(t) := β(t, s)

is a curve, not necessarily a geodesic, joining the end points of γ; that is,

βs(0) = γ(0), and βs(ℓ) = γ(ℓ)

(because of the assumption that Y (0) = 0, Y (ℓ) = 0). Moreover, β(t, 0) = γ(t), so

β is a variation of γ which leaves the end points fixed, and the variation field of β is

∂β(t, 0)

∂s
= Y (t).

Using the formula for the second variation of energy [13, Chapter XI] (and taking

into account that the curves s 7→ β(0, s) and s 7→ β(ℓ, s) are geodesics, in fact points),

we have that

(2.10)
1

2
E ′ ′(0) =

∫ ℓ

0

(
〈Y ′,Y ′〉 − 〈R(γ ′,Y )γ ′,Y 〉

)
dt := I(Y,Y ).

On the other hand, according to equation (2.1), and bearing in mind that γ is a

minimizing geodesic, we have that

ℓE(0) = L(0)2 ≤ L(s)2 ≤ ℓE(s),
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hence

E(0) ≤ E(s).

That is, a geodesic which minimizes length also minimizes energy. Therefore we have

E ′ ′(0) ≥ 0,

which, combined with equation (2.10) yields I(Y,Y ) ≥ 0.

The above lemma allows us to improve Corollary 1.8 of [13, Chapter XI] as fol-

lows.

Proposition 2.4 Let γ : [0, ℓ] → M be a geodesic whose length, ℓ, is the distance

between its end points. Let X be a Jacobi field along γ, and Z any smooth vector field

along γ such that X(0) = Z(0) and X(ℓ) = Z(ℓ). Then

I(X, X) ≤ I(Z, Z).

In other words, among all vector fields along γ with the same boundary conditions, the

unique Jacobi field along γ determined by those conditions minimizes the index form.

Proof Consider Y := Z − X a smooth vector field along γ such that Y (0) = Y (ℓ) =

0. According to the preceding lemma we have I(Y,Y ) ≥ 0, hence, bearing in mind

the facts that the index form is bilinear and symmetric, that X = Z at 0 and ℓ, and

that I(X, Z) = 〈X ′, Z〉|ℓ0 (because X is a Jacobi field, see (♯) above), we get

0 ≤ I(Z − X, Z − X)

= I(Z, Z) + I(X, X) − 2I(X, Z)

= I(Z, Z) + 〈X ′, X〉|ℓ0 − 2〈X ′, Z〉|ℓ0
= I(Z, Z) − 〈X ′, X〉|ℓ0
= I(Z, Z) − I(X, X).

Therefore I(X, X) ≤ I(Z, Z).

As noted above, we will also need to use an infinite-dimensional version of the

Rauch Comparison Theorem, which we next state for the reader’s convenience.

Theorem 2.5 (Rauch Comparison Theorem) Let M and M̃ be Riemannian mani-

folds of the same dimension, which may be infinite. Let γ and γ̃ be geodesics in M and

M̃, respectively, parameterized by arc-length, and defined on the same interval [0, ℓ].

Let J and J̃ be Jacobi fields along these geodesics, orthogonal to γ and γ̃, respectively.

Assume that

(i) J(0) = J̃(0) = 0, and J(t), J̃(t) 6= 0 for 0 < t ≤ ℓ;

(ii) ‖ J ′(0)‖ = ‖ J̃ ′(0)‖;

(iii) the length of γ is the distance between its end points;

(iv) the sectional curvature of M is less than or equal to the sectional curvature of M̃.
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Then for all t ∈ (0, ℓ], we have

‖ J̃(t)‖ ≤ ‖ J(t)‖,

and

〈 J̃ ′(t), J̃(t)〉
〈 J̃(t), J̃(t)〉

≤ 〈 J ′(t), J(t)〉
〈 J(t), J(t)〉 .

A proof of this result can be found in [13, p. 319]. The last inequality (which is

usual in many versions of the R.C.T.) does not appear in Lang’s statement of [13,

Chapter XI, Theorem 5.1], but is established and used in his proof.

Now we are ready to provide the following.

Proof of Proposition 2.2 According to equations (2.8) and (2.9)

d2ϕ(x0)(v)2
= 2ℓ

∫ ℓ

0

(
〈X ′, X ′〉 − 〈R(γ ′, X)γ ′, X〉

)
dt = 2ℓ〈X ′(ℓ), X(ℓ)〉,

where X is the unique Jacobi field along γ such that X(0) = 0 and X(ℓ) = v (and

γ : [0, ℓ] → M is the unique minimizing geodesic, parameterized by arc length,

such that γ(0) = x0, γ(ℓ) = x). Recall that we are assuming d(x, x0) ≤ r <
min{i(M), c(M), π/2

√
K0}.

With the help of Proposition 2.4 and the Rauch Comparison Theorem, we are

going to estimate d2ϕ(x0)(v)2. Consider the vector field along γ defined by

Z(t) =

t

ℓ
P(t),

where P(t) is parallel along γ and P(ℓ) = v. Since P is parallel (that is P ′(t) =

∇γ ′(t)P(t) = 0), we have

Z ′(t) =

1

ℓ
P(t),

and also

〈Z ′(t), Z ′(t)〉 =

1

ℓ2
‖v‖2

x,

because parallel translation is a linear isometry.

On the other hand, by our assumption on the sectional curvature, we have

−
〈

R
(
γ ′(t), P(t)

)
γ ′(t), P(t)

〉
≤ K0|γ ′(t) ∧ P(t)|2 ≤ K0‖γ ′(t)‖2‖P(t)‖2

= K0‖v‖2.
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Therefore

I(Z, Z) =

∫ ℓ

0

〈Z ′(t), Z ′(t)〉 −
〈

R
(
γ ′(t), Z(t)

)
γ ′(t), Z(t)〉 dt

=

∫ ℓ

0

1

ℓ2
‖v‖2

x −
〈

R
(

γ ′(t),
t

ℓ
P(t)

)
γ ′(t),

t

ℓ
P(t)

〉
dt

=

1

ℓ2

∫ ℓ

0

‖v‖2
x − t2

〈
R
(
γ ′(t), P(t)

)
γ ′(t), P(t)

〉
dt

≤ 1

ℓ2

∫ ℓ

0

‖v‖2
x + t2K0‖v‖2

x dt

=

( 1

ℓ
+

ℓ

3
K0

)
‖v‖2

x.

Using Proposition 2.4 we deduce that

I(X, X) ≤ I(Z, Z) ≤
( 1

ℓ
+

ℓ

3
K0

)
‖v‖2

x,

hence that

(2.11) d2ϕ(x)(v)2
= 2ℓI(X, X) ≤

(
2 +

2ℓ2

3
K0

)
‖v‖2

x.

In order to conclude the proof we only need to make sure that the left-hand side of

this inequality is nonnegative. To obtain a lower bound for d2ϕ(x)(v)2 we will make

use of the Rauch Comparison Theorem stated above. We will compare our manifold

M with a manifold M̃ of constant curvature equal to K0 ≥ 0, modelled in the same

Hilbert space as M is.

Assume first that X is orthogonal to γ. Take a geodesic γ̃ : [0, ℓ] → M̃ of length ℓ,

and a vector ṽ ∈ TMeγ(0) orthogonal to γ̃ ′(0) with ‖ṽ‖ = ‖X ′(0)‖. A Jacobi field X̃

along γ̃ with X̃(0) = 0 and ‖X̃ ′(0)‖ = ‖X ′(0)‖ is given by

X̃(t) =

sin(
√

K0t)√
K0

P̃(t),

where P̃(t) is the parallel translation of the vector ṽ along γ̃, with P̃(0) = ṽ, see

[13, Chapter IX, Proposition 2.12]. Since the sectional curvature of M is less than or

equal to K0, X(0) = 0 = X̃(0) but X(t) 6= 0 6= X̃(t) for 0 < t ≤ ℓ (recall that γ, γ̃,

having lengths less than i(M), do not have conjugate points, see [13, Theorem 3.1 of

Chapter IX]), ‖X ′(0)‖ = ‖X̃ ′(0)‖, X is orthogonal to γ and X̃ is orthogonal to γ̃, we

get from the Rauch Comparison Theorem that

〈X̃ ′(t), X̃(t)〉
〈X̃(t), X̃(t)〉

≤ 〈X ′(t), X(t)〉
〈X(t), X(t)〉
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for all t ∈ (0, ℓ]. Since ‖P̃(t)‖ = ‖v‖x = ‖X(ℓ)‖ and X̃ ′(t) = cos(
√

K0t)P̃(t), we

deduce, by taking t = ℓ, that

√
K0

cos(
√

K0ℓ)

sin(
√

K0ℓ)
≤ 〈X ′(ℓ), X(ℓ)〉

〈X(ℓ), X(ℓ)〉 =

〈X ′(ℓ), X(ℓ)〉
‖v‖2

x

,

hence

(2.12) 〈X ′(ℓ), X(ℓ)〉 ≥
√

K0
cos(

√
K0ℓ)

sin(
√

K0ℓ)
‖v‖2

x.

In particular, since ℓ ≤ r < π/2
√

K0, we obtain that

〈X ′(ℓ), X(ℓ)〉 ≥ 0.

On the other hand, if X is tangent to γ then

X(t) = ± t

ℓ
‖v‖xγ

′(t),

and

X ′(t) = ±1

ℓ
‖v‖xγ

′(t),

hence

〈X ′(ℓ), X(ℓ)〉 =

1

ℓ
‖v‖2

x

and we also have

〈X ′(ℓ), X(ℓ)〉 ≥ 0.

Now, from Propositions 2.3 and 2.4 of Chapter IX of [13], we know that every

Jacobi field X along γ with X(0) = 0 can be written in the form

X = X⊤ + X⊥,

where X⊤ and X⊥ are Jacobi fields along γ, X⊤ and (X⊤) ′ are tangent to γ, and X⊥

and (X⊥) ′ are orthogonal to γ. In particular 〈X⊤, (X⊥) ′〉 = 0 and 〈X⊥, (X⊤) ′〉 = 0.

This implies that

〈X ′(t), X(t)〉 = 〈(X⊤) ′(t), X⊤(t)〉 + 〈(X⊥) ′(t), X⊥(t)〉 ≥ 0,

and hence

(2.13) d2ϕ(x)(v)2
= 2ℓ〈X ′(ℓ), X(ℓ)〉 ≥ 0,

in any case.

By combining (2.13) with equation (2.11) above we finally get

0 ≤ d2ϕ(x)(v)2 ≤
(

2 +
2ℓ2

3
K0

)
‖v‖2

x

for all v ∈ TMx, which implies

‖d2ϕ(x)‖x ≤
(

2 +
2ℓ2

3
K0d(x, x0)2

)
,

and the proof of Proposition 2.2 finishes.

https://doi.org/10.4153/CJM-2010-013-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-013-4


A Second Order Smooth Variational Principle on Riemannian Manifolds 255

Corollary 2.6 If i(M) > 0, c(M) > 0, and the sectional curvature of M is bounded,

then M is second order uniformly bumpable.

Proof Fix any r > 0 with r < min{i(M), c(M)}, and define R = 46 + 2K0r2, where

K0 is a bound for the sectional curvature of M. For every δ ∈ (0, r) find a C∞

function θ : R → [0, 1] such that

(i) θ(t) = 1 for t ≤ 0,

(ii) θ(t) = 0 for t ≥ δ2,

(iii) ‖θ ′‖∞ ≤ 3/δ2,

(iv) ‖θ ′ ′‖∞ ≤ 10/δ4.

Now, for a given z ∈ M, consider the function ϕ(x) = d(x, z)2, and define

b : M → [0, 1] by

b(x) =

{
θ(ϕ(x)) if d(x, z) ≤ δ,

0 otherwise.

It is clear that b is C∞ smooth on M and b satisfies conditions (i) and (ii) of Defini-

tion 2.1.

In order to estimate ‖db‖∞, first note that, since x 7→ d(x, z) is 1-Lipschitz, we

have

(2.14) ‖dϕ(x)‖ ≤ 2d(x, z)

for all x ∈ B(z, r). Then for all x ∈ B(z, δ),

‖db(x)‖ =

∣∣θ ′
(
ϕ(x)

) ∣∣ ‖dϕ(x)‖ ≤ 3

δ2
2δ =

6

δ
,

and therefore

‖db‖∞ ≤ 6

δ
≤ R

δ
,

so condition (iii) of the definition is met as well. On the other hand, by using (2.14)

again, as well as Proposition 2.2, we can estimate ‖d2b‖∞ as follows. For every x ∈
B(z, δ) we have

|d2b(x)(v)2| = |θ ′ ′(ϕ(x))(dϕ(x)(v))2 + θ ′(ϕ(x))d2ϕ(x)(v)2|

≤ |θ ′ ′(ϕ(x))(dϕ(x)(v))2| + |θ ′(ϕ(x))d2ϕ(x)(v)2|,

which implies

‖d2ϕ‖∞ ≤ 46 + 2K0r2

δ2
=

R

δ2
,

that is, condition (iv) of Definition 2.1 is also satisfied.
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3 The Rest of the Proof

In this section we will show that every complete Riemannian manifold which is

second-order uniformly bumpable satisfies the natural translation to the Rieman-

nian setting of the second-order DGZ smooth variational principle (established in

[7] for all C2 smooth Banach spaces). The result will be a consequence of several

auxiliary lemmas.

Lemma 3.1 Let M be a second order uniformly bumpable Riemannian manifold.

Then there are numbers C > 1, r > 0 such that for every p ∈ M, ε > 0 and δ ∈ (0, r)

there exists a C2 smooth function b : M → [0, ε] such that:

(i) b(p) = ε = ‖b‖∞ := supx∈M |b(x)|.
(ii) ‖db‖∞ := supx∈M ‖db(x)‖x ≤ Cε/δ.

(iii) ‖d2b‖∞ := supx∈M ‖d2b(x)‖x ≤ Cε/δ2.

(iv) b(x) = 0 if x /∈ B(p, δ).

In particular, max{‖b‖∞, ‖db‖∞, ‖d2b‖∞} ≤ Cε(1 + 1/δ + 1/δ2).

Proof In the case when ε = 1 we get a required b from the definition of second order

uniform bumpability. If ε 6= 1, it is enough to multiply b by ε.

Lemma 3.2 The space Y = {ϕ ∈ C2(M, R) : ϕ, ‖dϕ‖, ‖d2ϕ‖ are bounded on M},

endowed with the norm

‖ϕ‖Y := max{‖ϕ‖∞, ‖dϕ‖∞, ‖d2ϕ‖∞},

is a Banach space.

Proof The space (Y, ‖·‖Y ) is clearly a normed space. Let us check that it is complete.

Let (ϕn) be a Cauchy sequence in (Y, ‖ · ‖Y ). Since ‖ϕn‖Y ≥ ‖ϕn‖∞ and the space

of continuous bounded functions on M with the norm ‖ · ‖∞ is complete, we know

that there exists a continuous bounded function ϕ : M → R such that

‖ϕn − ϕ‖∞ → 0.

We have to see that ϕ ∈ C2(M), dϕ and d2ϕ are bounded, and ‖dϕn − dϕ‖∞ → 0,

and ‖d2ϕn − d2ϕ‖∞ → 0. To this end, fix a point x ∈ M and a number r with

0 < r < iM(x) and such that both expx : B(0x, r) ⊂ TMx → B(x, r) ⊂ M and its

inverse exp−1
x are 2-Lipschitz diffeomorphisms, and consider the functions ψn(y) =

ϕn ◦ expx and ψ(y) = ϕ ◦ expx, defined on the ball B(0x, r) in TMx. We have

(3.1) dψn(wy)(v) = dϕn(y)
(

d expx(wy)(v)
)
,

and

(3.2) dψ(wy)(v) = dϕ(y)
(

d expx(wy)(v)
)
,

where we denote wy = exp−1
x (y). Therefore

sup
wy∈B(0x,r)

‖dψm(wy) − dψn(wy)‖ ≤ 2 sup
y∈B(x,r)

‖dϕm(y) − dϕn(y)‖

≤ 2‖dϕm − dϕn‖∞
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and, because (ϕn) is a Cauchy sequence in Y , the definition of ‖ · ‖Y implies that the

right-hand side of the above inequality goes to 0 as m, n → ∞, which shows that

(ψn) is a Cauchy sequence in the space { f ∈ C1(B(0, r)) : f and d f are bounded}
with the norm ‖ f ‖ = max{‖ f ‖∞, ‖d f ‖∞}. Since this space is complete it follows

that ψn converges to some ψ̃ ∈ C1(B(0, r)), and dψn converges to dψ̃, in the norm

‖ · ‖∞. On the other hand we already know that ‖ϕn − ϕ‖∞ → 0, which implies

‖ψn −ψ‖∞ → 0, so ψ = ψ̃ by the uniqueness of the limit. Therefore ϕ = ψ ◦ exp−1
x

is C1 on B(x, r), and since x is arbitrary it follows that ϕ ∈ C1(M).

To see that dϕn converges to dϕ in the norm ‖ · ‖∞, let us first observe that equa-

tions (3.1) and (3.2), together with the facts that d expx(wy) is a linear isomorphism

and dψn → dψ, imply that

(3.3) ‖dϕn(y) − dϕ(y)‖y → 0,

that is dϕn → dϕ pointwise on TM∗. Now, since dϕn is a Cauchy sequence in the

norm ‖ · ‖∞, for every ε > 0 there exists n0 ∈ N such that

(3.4) ‖dϕn(y) − dϕm(y)‖y ≤ ε

for all y ∈ M, whenever n, m ≥ n0. By taking limits as m → ∞ in (3.4), and using

(3.3) and continuity of ‖ · ‖y , we deduce that

‖dϕn(y) − dϕ(y)‖y ≤ ε

for all y ∈ M, whenever n ≥ n0. This shows that ‖dϕn − dϕ‖∞ → 0.

In order to check that ϕ ∈ C2(M) and d2ϕn → d2ϕ, we need to use the following

fact, which relates the second derivatives of ψn and ϕn.

Fact 3.3 Let f : M → R be a C2 smooth function, and define h = f ◦ expx on a

neighborhood of a point 0 ∈ TMx. Let Ṽ be a vector field defined on a neighborhood

of 0 in TMx, and consider the vector field defined by V (y) = d expx(wy)
(

Ṽ (wy)
)

on a

neighborhood of x, where wy := exp−1
x (y), and let

σy(t) = expx

(
wy + tṼ (wy)

)
.

Then we have that

D2h(Ṽ , Ṽ )(wy) = D2 f (V,V )(y) + 〈∇ f (y), σ ′ ′
y (0)〉.

The proof of this fact is just a calculation, see [4, Lemma 2.7]. We apply this with

Ṽ (w) = v, a constant field on TMx, f = ϕn, h = ψn to obtain

(3.5) d2ψn(wy)(v, v) = d2ϕn(y)
(

d expx(wy)(v), d expx(wy)(v)
)

+ 〈∇ϕn(y), σ ′ ′
y (0)〉,
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where

σy(t) = expx(wy + tv).

Since the vector field M ∋ y 7→ σ ′ ′
y (0) ∈ TM is continuous and σ ′ ′

x (0) = 0, we can

assume without loss of generality that r > 0 is small enough so that ‖σ ′ ′
y (0)‖y ≤ 1

for all y ∈ B(x, r). Then, again using the fact that expx is 2-biLipschitz on B(x, r), we

get from (3.5) that

sup
wy∈B(0,r)

‖d2ψn(wy) − d2ψm(wy)‖

≤ 2 sup
y∈B(x,r)

‖d2ϕn(y) − d2ϕn(y)‖ + sup
y∈B(x,r)

‖dϕm(y) − dϕn(y)‖

≤ 2‖d2ϕn − d2ϕm‖∞ + ‖dϕn − dϕm‖∞,

which implies that (ψn) is a Cauchy sequence in the space
{

f ∈ C2
(

B(0, r)
)

: f , d f ,

and d2 f are bounded
}

with the norm ‖ f ‖ = max{‖ f ‖∞, ‖d f ‖∞, ‖d2 f ‖∞}. This

space is well known to be complete, hence there exists some ψ̃ ∈ C2
(

B(0, r)
)

such

that ψn converges to ψ̃, and d2ψn converges to d2ψ̃, in the norm ‖ · ‖∞. Since we

already know that ‖ψn −ψ‖∞ → 0, we get that ψ = ψ̃, and therefore ϕ = ψ ◦ exp−1
x

is C2 on B(x, r). It follows that ϕ ∈ C2(M).

Moreover, equation (3.5) (and the same equation replacing ϕn with ϕ and ψn

with ψ), together with the facts that d expx(wy) is a linear isomorphism, and that

dϕn → ϕ, imply that

‖d2ϕn(y) − d2ϕ(y)‖y → 0,

for each y ∈ B(x, r), that is d2ϕn → d2ϕ pointwise on T2,s(M).

By combining this with the fact that (d2ϕn) is a Cauchy sequence in the norm

‖ · ‖∞, one can easily deduce (as in the case of (dϕn)) that ‖d2ϕn − d2ϕ‖∞ → 0.

In the sequel B(ϕ, r) stands for the open ball of center ϕ and radius r in the Banach

space Y .

Lemma 3.4 Let M be a complete metric space, and (Y, ‖ · ‖) be a Banach space of

real-valued bounded and continuous functions on M satisfying the following conditions:

(i) ‖ϕ‖ ≥ ‖ϕ‖∞ = sup{|ϕ(x)| : x ∈ M} for every ϕ ∈ Y .

(ii) There are numbers C > 1, r > 0 such that for every p ∈ M, ε > 0 and δ ∈ (0, r)

there exists a function b ∈ Y such that b(p) = ε, ‖b‖Y ≤ Cε(1 + 1/δ + 1/δ2),

and b(x) = 0 if x /∈ B(p, δ).

Let f : M → R∪{+∞} be a lower semicontinuous function which is bounded below

and such that Dom( f ) = {x ∈ M | f (x) < +∞} 6= ∅. Then the set G of all the

functions ϕ ∈ Y such that f + ϕ attains a strong minimum in M contains a Gδ dense

subset of Y .

Proof The proof follows the lines of that of Lemma 3.13 in [2] (which in turn is very

similar to the original proof of [8]), with some small changes. We write the complete

proof (rather than just indicating the changes) for the reader’s convenience and for

completeness.
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Take a number N ∈ N such that N ≥ 1/r, and for every n ∈ N with n ≥ N,

consider the set

Un =

{
ϕ ∈ Y

∣∣∣ ∃x0 ∈ M : ( f + ϕ)(x0) < inf
{

( f + ϕ)(x)
∣∣ x ∈ M

∖
B
(

x0,
1

n

)}}
.

Claim 3.5 Un is open.

Take ϕ ∈ Un. By the definition of Un there exists x0 ∈ M such that ( f + ϕ)(x0) <
inf{( f + ϕ)(x) | x ∈ M\B(x0,

1
n

)}. Set 2ρ = inf{( f + ϕ)(x) | x ∈ M\B(x0,
1
n

)} −
( f + ϕ)(x0) > 0. Then since ‖ · ‖Y ≥ ‖ · ‖∞, we get that BY (ϕ, ρ) ⊂ B∞(ϕ, ρ) ⊂ Un.

Claim 3.6 Un is dense in Y .

Take ϕ ∈ Y and ε > 0. Since f + ϕ is bounded below there exists x0 ∈ M such

that ( f + ϕ)(x0) < inf{( f + ϕ)(x) | x ∈ M} + ε. Set now δ = 1/n < r, and use

condition (2) to find a function b ∈ Y such that b(x0) = ε, ‖b‖Y ≤ C(n2 + n + 1)ε,

and b(x) = 0 for x /∈ B(x0,
1
n

). Then ( f + ϕ)(x0) − b(x0) < inf{( f + ϕ)(x) | x ∈ M}
and, if we define h = −b, we have

( f + ϕ + h)(x0) < inf{( f + ϕ)(x) | x ∈ M} ≤ inf
{

( f + ϕ)(x) | x /∈ B
(

x0,
1

n

)}
.

Since inf{( f + ϕ)(x) | x /∈ B(x0,
1
n

)} = inf{( f + ϕ + h)(x) | x /∈ B(x0,
1
n

)}, it

is obvious that the above inequality implies that ϕ + h ∈ Un. On the other hand,

we have ‖h‖Y ≤ C(n2 + n + 1)ε. Since C and n are fixed and ε can be taken to be

arbitrarily small, this shows that ϕ ∈ Un, and Un is dense in Y .

Therefore we can apply Baire’s theorem to conclude that the set G =

⋂∞
n=N Un

is a Gδ dense subset of Y . Now we must show that if ϕ ∈ G then f + ϕ attains a

strong minimum in M. For each n ≥ N, take xn ∈ M such that ( f + ϕ)(xn) <
inf{( f + ϕ)(x) | x /∈ B(xn,

1
n

)}. Clearly, xk ∈ B(xn,
1
n

) if k ≥ n, which implies that

(xn)∞n=N is a Cauchy sequence in M and therefore converges to some x0 ∈ M. Since f

is lower semicontinuous and
⋂∞

n=N B(x0, 1/n) = {x0}, we get

( f + ϕ)(x0) ≤ lim inf( f + ϕ)(xn)

≤ lim inf
[

inf
{

( f + ϕ)(x)
∣∣ x ∈ M \ B

(
x0,

1

n

)}]

= inf
{

inf
{

( f + ϕ)(x)
∣∣ x ∈ M \ B

(
x0,

1

n

)}
: n ∈ N, n ≥ N

}

= inf
{

( f + ϕ)(x) | x ∈ M \ {x0}
}

,

which means that f + ϕ attains a global minimum at x0 ∈ M.

Finally, let us check that in fact f + ϕ attains a strong minimum at the point x0.

Suppose {yn} is a sequence in M such that ( f + g)(yn) → ( f + g)(x0) and (yn) does

not converge to x0. We may assume d(yn, x0) ≥ ε for all n. Bearing in mind this

inequality and the fact that x0 = lim xn, we can take k ∈ N such that d(xk, yn) > 1
k

for all n, and therefore

( f + ϕ)(x0) ≤ ( f + ϕ)(xk) < inf
{

( f + ϕ)(x)
∣∣ x /∈ B

(
xk,

1

k

)}
≤ ( f + ϕ)(yn)

for all n, which contradicts the fact that ( f + ϕ)(yn) → ( f + ϕ)(x0).
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By combining Lemmas 3.1, 3.2 and 3.4 we immediately deduce the following.

Theorem 3.7 Let M be a second order uniformly bumpable complete Riemannian

manifold. Then for every lower semicontinuous function f : M → (−∞,∞] that is

bounded below with f 6≡ +∞, and for every ε > 0, there exists a C2 smooth function

ϕ : M → R such that

(i) f − ϕ attains its strong minimum on M,

(ii) ‖ϕ‖∞ < ε,

(iii) ‖dϕ‖∞ < ε,

(iv) ‖d2ϕ‖∞ < ε.

Finally, Theorem 1.1 follows from Theorem 3.7 and Corollary 2.6.
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