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Abstract

In this paper we take up the classical sup-norm problem for automorphic forms and view
it from a new angle. Given a twist minimal automorphic representation π we consider a
special small GL2(Zp)-type V in π and prove global sup-norm bounds for an average over
an orthonormal basis of V . We achieve a non-trivial saving when the dimension of V grows.

2020 Mathematics Subject Classification: 11F03 (Primary); 11F70, 11F85,
22E50 (Secondary)

1. Introduction

It is a classical problem in analysis and mathematical physics, more precisely Quantum
Chaos, to bound the L∞-norm of certain eigenfunctions on manifolds. In the most basic
situation one considers a Riemann surfaces X of finite volume and eigenfunctions φ of the
Laplace–Beltrami operator�X . A sup-norm bound in the spectral aspect is then an estimates
of the form

‖φ‖∞
‖φ‖2

�X (1+ |tφ |) 1
2−δ+ε , (1)

where λφ = 1/4+ t2φ is the Laplace–Beltrami eigenvalue of φ. The local bound corresponds
to δ = 0 and is known in great generality. The sup-norm problem asks for improved bounds
featuring some δ > 0. The sup-norm problem has only been solved for very special surfaces
X and is hopeless in general. Indeed there is a well-known obstruction to the sup-norm
problem coming from large eigenspaces Vλ given by the inequality

dimC Vλ�X sup
φ∈Vλ

‖φ‖∞
‖φ‖2

.

This observation is enough to establish the well-known fact, that the local bound (i.e. (1)
with δ = 0) can not be improved for the sphere X = S2. So far we have only described the
most basic version of the sup-norm problem which, is already very interesting on its own.
In addition it admits many variations which have been studied throughout the years. An
example for such a variation is the so called level aspect where the base manifold changes
in some convenient family X1, X2, . . . and one keeps track of this change in the sup-norm
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518 EDGAR ASSING

bound (1) using a suitable parameter called the level. Another generalisation that should be
mentioned allows X to be a manifold of higher dimension and rank.

Essentially any progress that has been made towards the sup-norm problem as introduced
above relies on the arithmeticity of X. The basic idea introduced in the monumental paper
[14] is to employ additional symmetries (in the form of Hecke operators) to build a spectral
projector that is sharper than the one constructed with only the Laplace–Beltrami operator
at hand. Morally this might be thought of as forcing a multiplicity one situation even if the
Laplace–Beltrami eigenspaces can not be rigorously controlled. The result of this method is
a bound as in (1) with δ = 1/12 for compact quotients X = �\H constructed from maximal
orders in quaternion algebras.

Since its appearance the method from [14] has been tweaked, modified and generalised,
see for example [1, 6, 7, 21, 23] and the references within. Much work is concerned with
congruence quotients X = �0(N)\H on which so called Hecke–Maaß newforms are consid-
ered. Since these newforms enjoy a nice multiplicity one property they are natural candidates
for the sup-norm problem. In this paper we are going beyond the case of newforms and con-
sider situations where the dimension of the underlying eigenspace grows. In other words,
we solve the sup-norm problem in the dimension aspect. This aspect is a new facet of the
sup-norm problem which seems extremely interesting and is not yet well studied. While our
result is the first in p-adic setting it is only preceded by [5] where an archimedean version of
this aspect is discussed.

To explain our result and its connection to the work of Blomer, Harcos, Maga and
Milićević it will be most convenient to leave the classical world of Hecke–Maaß-newforms
behind and work in the language of automorphic forms and automorphic representations.

The sup-norm problem we will consider is connected to small GL2 (Zp)-types in cuspidal
automorphic representations π , where p> 3 is prime. Comparing this to the recent work [5]
we are replacing the archimedean place ∞ by a finite place p and the minimal U(2)-type
of some automorphic representation by a suitably chosen GL2 (Zp)-type. Note that in order
to afford interesting K-types at the archimedean place it is necessary to work over fields
admitting complex places or in higher rank. In the p-adic world we already meet interesting
cases when working with automorphic forms for GL2 over Q.

1·1. Set-up and main result

Before we continue our discussion we need to fix some notation. Let G(R)=GL2 (R)
for some ring R and let A be the adele ring over Q. We will be working with cuspidal
automorphic representations π of G(A) with unitary central character ωπ . Abusing notation
we will write π ⊂ L2

0(G(Q)\G(A),ωπ ) assuming that π acts on an irreducible subspace of
cuspidal automorphic forms by right translation. Given a compact subgroup H we write πH

for the space of H-invariant elements in π .
Set K∞ = SO(2) and Kl =GL2 (Zl) for primes l. Combining these we get the compact

subgroup K =∏
v Kv ⊂G(A). Given a prime p> 3 and m> 0 we consider the smaller

compact subgroup

K(pm)=K∞ ×Kp(m)×
∏
l �=p

Kl for Kp(pm)= 1+ pm ·Mat2×2 (Zp)⊂Kp.

Note that K(pm) is normal and of finite index in K.
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Throughout we restrict ourselves to the situation where π is unramified (i.e. spherical)
away from p. In particular it is spherical at∞ and one associates the spectral parameter tπ .
Set T = 1+ |tπ |. Further, we have

mπ =min{m ∈N : πK(pm) �= {0}}<∞. (2)

We set V = πK(pmπ ) and observe that π |K endows V with the structure of a K-module. It
turns out that, if π is twist minimal, V is irreducible (see Lemma 2·2 below). Set d= dimC V ,
choose an orthonormal basis φ1, . . . , φd for V with respect to the L2

0(G(Q)\G(A),ωπ ) inner
product. Define


(g)=
(

d∑
i=1

|φi(g)|2
) 1

2

,

which is independent of the choice of the orthonormal basis φ1, . . . , φd. We are concerned
with the sup-norm of 
(g) and obtain the following theorem which is a close analogue to
[5, theorem 1].

THEOREM 1·1. Let p> 3 be prime and suppose π is twist minimal. In the notation above
we have

‖
‖∞� T
1
2+εd

11
12+ε .

If the (arithmetic)-conductor of π is a perfect square (i.e. the exponent-conductor of the p-
component πp of π is even) or the p-component πp of π is not supercuspidal, then we have
the better bound

‖
‖∞� T
1
2+εd

5
6+ε . (3)

While in the spectral aspect (i.e. the T-aspect in our statement) we only recover the local
bound, the key feature of our theorem is the sub-local exponent in the dimension aspect d.
Given the obstruction to the sup-norm problem coming from growing eigenspaces the aspect
under consideration may seem counter intuitive. However, we are letting the dimension of
the eigenspace vary in a controlled manner and manage to show that one can still achieve a
considerable power saving in d on average over any orthonormal basis.

Note that the sup-norm bound given in the theorem holds globally. Thus, unlike the one
in [5, theorem 1], no restriction to a compact domain is necessary here. As usual when
proving global sup-norm bound the argument consists of two steps. First, a bound via the
Whittaker expansion takes care of the regions close to the cusps. This part of the argument is
fairly standard but requires some new computations of ramified Whittaker vectors. Second,
a bound obtained from the amplified pre-trace inequality is used to handle the bulk. At this
point it becomes crucial that we are only treating the average function
. Indeed, this allows
us to identify the test function on the geometric side as a character of a finite group. The
analysis of this character is carried out in Lemma 4·4 below and relies on character tables
given in [15]. This is the only place where the assumption p> 3 is used.

To end this section let us briefly discuss the numerology of the exponents in the d-aspect.
For simplicity we restrict this discussion to the cases in which our result gives the strong
bound (3). Let us start by talking about the local- (not to say trivial-) bound (in the bulk). To
obtain this we can follow Marshall’s strategy (see [18]) which leads to the following. Let F
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be any cuspidal automorphic form so that the translates φ(· k), k ∈K, generate an irreducible
K-module WF. Then choosing certain K-matrix-coefficients as test functions in the pre-trace
inequality yields

‖F|�‖∞
‖F‖2

� dimC (WF)
1
2 . (4)

Applying this to 
 upon noting that ‖
‖2 = d
1
2 suggests the local bound

‖
‖∞� d1+ε .

(The same bound can also be obtained from the Whittaker expansion coupled with a suitable
generating domain.) Thus amplification allows us to improve the exponent from the local
bound by 1/6, which should be an familiar exponent. More suggestively we can write our
main result as

‖
‖∞
‖
‖2

� d
1
2− 1

6+ε .

One could say that Theorem 1·1 implies ‖φi‖∞� d
1
3 on average. Note that if pmπ agrees

with the arithmetic conductor pnπ of π , then this result is not very interesting. Indeed, in this
case we can generate the elements φ1, . . . , φd in V directly from the newform φ◦ in π . By
now there are very good bounds for this newform (and thus also for the φi’s) known in the
literature. See [23] if mπ = nπ = 1 or [9] in general. However, in the remaining cases (since
π is assumed to be twist minimal these correspond to the situation where π is supercuspidal
at p) our result provides new information in the sup-norm problem. Indeed one can still
generate V from a translate of the newfom φ◦. (This is precisely the strategy used in [18, 21]
to derive local bounds for the newform of arbitrary level using (4).) Translated into the level-

aspect our result now essentially says that the sup-norm of the φi’s is bounded by p
1
3 
 nπ

2 �
on average. To the best of our knowledge this can not be derived from any known sup-norm
results on the newform φ◦.

Finally we want to compare our result to the guiding archimedean example [5, theorem 1].
Recall that we need to replace the K-module V by some irreducible U(2) representation W.
This representation W will occur as the minimal U(2)-type in some cuspidal automorphic
π of G(AQ(i)). Note that if dimC W � l we can think of π (or rather π∞) having spectral
density � l2. This explains the local bounds

‖
‖∞
‖
‖2

� l1+ε or ‖
‖∞� l
3
2+ε ,

where 
 is constructed as an average over some suitable basis of W similar to our
construction above. As result of an amplification process the authors of [5] arrive at

‖
|�‖∞
‖
‖2

� (l2)
1
2− 1

12+ε .

Our notation suggests that in the result from [5] the number l2 playes the role of our d.
This can be explained via the spectral density of π∞ and respectively πp. Indeed while in
the archimedean situation the spectral density is roughly l2 in our case the spectral density
is linearly related to d. Thus in both cases the square root of the spectral density seems to
determine the trivial bound. (This is only reasonable because we are considering minimal or
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close to minimal K-types in both cases.) Note that the quality of the saving 1/6 in the p-adic
versus 1/12 in the archimedean case comes from slightly different behaviour of the spectral
transform.

Finally, let us remark that if the exponent conductor of πp is odd and πp is supercus-
pidal, then our bounds for the spectral transform, which in this case are linked to certain
badly-behaved characters of GL2 over finite rings, are comparable to those used in [5]. This
explains that in this case we have matching numerology and obtain only a saving of 1/12 in
the final exponent. Translated to the level aspect our result states that on average the φi’s are

bounded by p
5(nπ+1)

24 . Bounds of this quality are known for newforms only in the compact
setting, see [13].

Remark 1·2. Questions of these type should be even more interesting when considered in
higher rank. The reason is that in higher rank the analogously defined small K-types can
not be generated from translates of the newform. For example if one considers a depth-zero
supercuspidal representation πp of GL3 (Qp), then it has (arithmetic)-conductor p3 and the

space π
K(3)

p (1)
p , where K(3)

p (1) is the principal congruence subgroup modulo p in GL3 (Zp),
is non-zero. However, it seems impossible to find a translate of the newform that generates

π
K(3)

p (1)
p . Indeed this would mean finding g ∈GL3 (Qp) with

K(3)
p (1)⊂ g−1

⎡
⎣ Zp Zp Zp

Zp Zp Zp

pZp pZp 1+ pZp

⎤
⎦ g.

However, the question treated in this paper still makes sense and trying to answer it is work
in progress.

2. Preliminary considerations

In this section we are putting in some ground work on which the following sections will
rely.

Recall that π was a cuspidal automorphic representation. Since we are assuming that
πv is unramified for v �= p, the (arithmetic)-conductor of π is pnπ for nπ ∈N∪ {0}. When
nπ = 0 we have d= 1 and our theorem reduces to the local bound in the spectral aspect, so
that without loss of generality we can assume nπ ≥ 1 throughout. By Flath’s factorisation
theorem we can fix an isomorphism π ∼=⊗

πv. Note that also the central character of π
factors as ωπ =⊗

v ωπv where ωπv is the central character of πv. For v �= p we can fix a
spherical (i.e. Kv-invariant vector) φ◦v ∈ πKv

v . This vector is unique up to scaling. Recall that
φi, i= 1, . . . , d forms an orthonormal basis of V = πK(pmπ ). Thus there is φ(i)

p so that we can
identify

φi = φ(i)
p ⊗

⊗
v�=p

φ◦v .

Since the spherical functions φ◦p are well understood much of our work boils down to
understanding properties of an orthogonal basis

span{φ(1)
p , . . . , φ(d)

p } = πKp(mπ )
p .

This a purely local problem, which we investigate in the following subsection.
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2·1. Local considerations

We now focus on properties of the local representation πp. We start by recalling the clas-
sification of local representations. But before we do so we need some more notation. Given
a (quasi)-character χ : Q×p →C× we write a(χ) for the (exponent)-conductor. Further write

I0(p)=
[
Z×p Zp

pZp Z×p

]
⊂Kp

for an Iwahori subgroup. Let Kp
′ =NG(Qp)(I0(p)) be the normaliser of I0(p) in G(Qp). We

also need the filtration

Kp
′(m)= 1+

[
pZp Zp

pZp pZp

]m

of Kp
′ by normal subgroups. Finally given two quasi characters χ1, χ2 : Q×p →C× we form

the (normalised) induced representation on Ind
G(Qp)
B (χ1 ⊗ χ2) as usual. If this representation

is irreducible, then we denote the so obtained representation by χ1 � χ2. We write St for the
Steinberg representation which we may identify with the unique irreducible subspace of

Ind
G(Qp)
B (|·| 12 ⊗ |·|− 1

2 ). We are now ready to recite the following well-known classification.

LEMMA 2·1. The representation πp falls into one of the following three cases:

(i) Case 1 (Principal series): there are (quasi)-characters χi : Q×p →C× such that χ1χ2 =
ωπp , a(χ1)+ a(χ2)= nπ and πp = χ1 � χ2.

(ii) Case 2 (special): there is a (quasi)-character χ : Q×p →C× with nπ = 2a(χ) if a(χ)>

0 or nπ = 1 otherwise, χ2 =ωπp and πp = χ ⊗ St.

(iii) Case 3 (Supercuspidal): the representation πp is supercuspidal. In this case we can
write πp = χ · πp

′ for a (quasi)-character χ : Q×p →C× and some twist-minimal rep-
resentation πp

′ of conductor nπ ′ which is constructed in one of the following two
ways:

(a) Case 3.1 (nπ ′ even): there is an irreducible representation τ of Z ·Kp with τ |Z =
χ−2 ·ωπp which factors through Kp(nπ ′/2) so that πp

′ = c− Ind
G(Qp)
ZKp

τ .

(b) Case 3.2 (nπ ′ odd): there is an irreducible representation τ of Kp
′ which is invariant

by Kp
′(nπ ′ − 1) with τ |Z = χ−2 ·ωπp such that πp

′ = c− Ind
G(Qp)

Kp
′ τ .

With this classification at hand we continue to study the subspaces V in more detail.

LEMMA 2·2. Suppose πp is twist minimal and let mπ be as in (2), then V = πK(mπ )
p is

irreducible as Kp-module and we have:

(i) the invariant mπ is given by

mπ =
{

nπ if πp is Case~1,

� nπ+1
2 � if πp is Case~2,3;
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(ii) the dimension of V is given by

d= pmπ ·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1+ 1
p ) if πp is Case~1,

1 if πp is Case~2,

(1− 1
p ) if πp is Case~3·1 and

(1− 1
p2 ) if πp is Case~3·2;

Proof. This is not new and we only have to ensemble the pieces appropriately. Let us
proceed case by case.

First, if πp is in Case 1, then twist-minimality implies that χ2 (or similarly χ1) is unram-
ified. Thus we have nπ = a(χ1) and the results on d and mπ follow from [20, proposition
4.3]. Irreducibility can be seen by direct computation.

Second, if πp is in Case 2 and twist minimal, then πp = St and nπ = 1. The results on d
and mπ follow again from [20, proposition 4.3]. In this case irreducibility follows from [8,
theorem 1].

Finally, if πp belongs to Case 3, then the full statement is given in [17, theorem 3·5]. (See
also [20, lemma 4·5, corollary 4·7] for the computation of mπ and d.)

2·2. A generating domain

We now switch to the global picture again and aim to produce a suitable set F ⊂G(A)
which reduces our problem to studying

S(
, F )= sup
g∈F
|
(g)|.

Let F be the standard fundamental domain for SL2 (Z)\H, which we identify with a
subset of GL2 (R) by identifying z= x+ iy ∈H with n(x)a(y) ∈ B(R)⊂GL2 (R). Here

n(x)=
(

1 x
0 1

)
and a(y)=

(
y 0
0 1

)
.

We further view F as a subset of G(A) by identifying it with its image under the usual
embedding G(R)→G(A). The same series of identifications allows us to write 
(z) for
z ∈H.

LEMMA 2·3. We have

‖
‖∞ = S(
, F ).

Proof. First we take g ∈G(A) and observe that by strong approximation we can write

g= γ zbk with γ ∈G(Q), z ∈ Z(R), b ∈F and k ∈K.

We directly obtain |φi(g)| = |φi(bk)| by automorphy and the action of Z via a unitary char-
acter. However, we now observe that if φ1, . . . , φd forms an orthonormal basis of V , then so
does π(k)φ1, . . . , π(k)φd. Let us write
(k) for the average constructed from the latter basis.
Recall that
 was independent of the choice of the underlying orthonormal basis, so that we
have 
(k) =
. We conclude that


(g)≤ S(
(k), F )= S(
, F ).
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3. The Whittaker bound

We will now start the process of deriving a first bound for 
 which will be valid (high)
up in the cusp. This is done by estimating 
 using the Whittaker expansions of the φi’s.
Throughout we will be working with an arbitrary orthogonal basis φ1, . . . , φd and consider
only g ∈F .

3·1. Reduction to a local problem

Let φ = φi for some i= 1, . . . , d. The global Whittaker period is given by

Wφ(g)=
∫
Q\A

φ(n(x)g)ψA(x)−1dx,

where ψA is the standard character of Q\A which has a factorisation ψA =⊗
v ψv for

ψ∞(x∞)= e(x∞) and ψl unramified for all primes l. Note that Wφ(· ) is right K(pmπ )-
invariant and transforms with respect to ψA when acted on by N(A) from the left. Thus
a standard trick shows that Wφ(a(q)g∞)= 0 unless 0 �= q ∈ 1

pmπ Z. Indeed, for any x with
n(x) ∈K(pmπ ), one computes

W(a(q)g∞)=W(a(q)g∞n(x))=W(n(xq)a(q)g∞)=ψA(xq)W(a(q)g∞).

we conclude that, if W(a(q)g∞) �= 0, then we have ψA(xq)= 1 for all such x. This gives
precisely the condition q ∈ 1/pmπZ.

This observation leads to the Whittaker expansion

φ(g∞)=
∑

n∈Z\{0}
Wφ

(
a(

n

pmπ
)g∞

)
.

We need to exploit the factorisation of the Whittaker function Wφ . To do so we first
observe that we have the factorisation of Whittaker models

W(π ,ψA)=
⊗

v

W(πv,ψv).

Using the factorisation of φ will now determine distinguished elements in the local
Whittaker models as follows. Starting at v=∞ we set

Wv(n(x)a(y))= |y| 12 Kitπ (2π |y|)
2|�( 1

2 + itπ )�( 1
2 − itπ )| 12

e(x),

where tπ is the spectral parameter of π∞. Of course Wv is the spherical Whittaker function
and is normalised so that ∫

R×
|Wv(a(y))|2 dy

|y| = 1,

where dy is the normal Lebesgue measure.
We turn towards the finite places v �= p given by some prime l �= p. The spherical

Whittaker function in W(πv,ψv) is then given by

Wv(a(y))= |y|
1
2
v λπ (lvl(y)).
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Here λπ (n) is defined by

L{∞,p}(s, π)=
∏

v�=p,∞
Lv(s, πv)=

∑
(n,p)=1

λπ (n)n−s

in analytic normalisation. We have set things up so that Wv(1)= 1.
Finally we turn towards v= p. Here we write W(i)

p for an element in the image of Cφ(i)
p in

the Whittaker model W(πp,ψp) such that

〈W(i)
p , W(i)

p 〉W(πp,ψp) =
∫
Q×p
|W(i)

p (a(y))|2 dy

|y| = 1,

here dy is the Haar measure of Qp normalised so that Vol (Zp, dy)= 1.

With these choices made there are constants C(i)
π ∈C× so that

Wφi(g)

‖φi‖2
=C(i)

π ·
∏

v

Wv(gv).

As shown in [19, (4·16)] (see also [16, section 4]) the absolute values of these constants
satisfy

|C(i)
π |2 = lim

s→1

ζ {p,∞}(1)ζ {p,∞}(2)

L{p,∞}(s, π ⊗ π̌ )
.

Note that we choose the global measure on Z(A)G(Q)\G(A) to be the Tamagawa measure.
In particular, the absolute value is independent of i and using [12] we get

|C(i)
π |2�ε pεnπ · (1+ tπ )ε .

Combining everything we end up with

φi(n(x)a(y))

‖φi‖2
=C(i)

π

∑
k∈N0

∑
0 �=n∈Z,
(n,p)=1

sgn (n)ρ
λπ (n)√|n| W(i)

p (a(npk−mπ ))

·W∞
(

a

(
n

pmπ−k
y

))
e

(
n

pmπ−k
x

)
,

for x ∈R and y ∈R+. Here ρ ∈ {0, 1} depends on whether φ1, . . . , φd are even or odd.

Let v1, . . . , vd be an orthogonal basis of π
Kp(mπ )
p . We fix a Whittaker functional and thus

an embedding

v �−→Wv ∈W(πp,ψp).

Define

Sπp(gp)=
d∑

i=1

|Wvi(gp)|2
〈Wvi , Wvi〉W(πp,ψp)

.

Note that Sπp is well defined as it is independent of the choice of Whittaker functional and
the choice of basis v1, . . . , vd.
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LEMMA 3·1. For any orthonormal basis φ1, . . . , φd we have


(g)≤ (dT)ε
∑
k∈N0

∑
0 �=n∈Z,
(n,p)=1

|λπ (n)|√|n| ·
∣∣∣∣W∞

(
n

pmπ−k
y

)∣∣∣∣ · Sπp(a(npk−mπ ))
1
2 ,

where g= n(x)a(y) ∈F .

Proof. To simplify notation we define

a(t)= sgn (n)ρ
λπ (n)√|n| W∞

(
n

pmπ−k
y

)
e

(
n

pmπ−k
x

)
and bi(t)=W(i)

p (a(npk−mπ ))

if t= npk−mπ for k ∈N0 and (n, p)= 1, and a(t)= 0= bi(t) otherwise. The Whittaker
expansion now neatly reads

φi(n(x)a(y))=C(i)
π

∑
t∈Q×

a(t)bi(t).

With this at hand we estimate


(g)=
⎛
⎜⎝ d∑

i=1

∣∣∣∣∣∣C(i)
π

∑
t∈Q×

a(t)bi(t)

∣∣∣∣∣∣
2
⎞
⎟⎠

1
2

≤max
i
|C(i)
π | ·

⎛
⎝ ∑

t1∈Q×

∑
t2∈Q×

a(t1)a(t2)
d∑

i=1

bi(t1)bi(t2)

⎞
⎠

1
2

� (dT)ε

⎛
⎜⎝ ∑

t1∈Q×

∑
t2∈Q×

|a(t1)a(t2)|
(

d∑
i=1

|bi(t1)|2
) 1

2
(

d∑
i=1

|bi(t2)|2
) 1

2

⎞
⎟⎠

1
2

= (dT)ε
∑

t∈Q×
|a(t)|

(
d∑

i=1

|bi(t)|2
) 1

2

.

The claim follows by inserting the definitions of a(t) and bi(t).

Before we can estimate this expression we need to investigate the size of the local average
Sπp(a(y)). This is the content of the following subsection.

3·2. Computing the local averages

The computation of Sπp(a(y)) involves a case study and each case will be treated using
different techniques. Finally, combining all possible cases, will lead to the bound

Sπp(a(p−mπ y))� d1+ε · |y|p. (5)

See Lemma 3·3, 3·6 and 3·7 below.
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3·2·1. The Steinberg representation

Let V = IndG
B (|·| 12 ⊗ |·|− 1

2 ). Then we can identify π = St with the unique irreducible

generic subspace of V . Let V∨ = IndG
B (|·|− 1

2 ⊗ |·| 12 ). This is the dual space of V and the
invariant bilinear pairing is given by

〈f , f∨〉 =
∫

K
f (k)f∨(k)dk.

Further π̃ = St can be identified as the unique irreducible generic sub-quotient of V∨.
Next we choose a basis v0, . . . , vp of VKp(1). (In an analogous way one constructs the dual

basis v∨0 , . . . , v∨p in (V∨)Kp(1).) This is done as follows: we first construct

vp(g)=Vol (B(Zp)Kp(1), dk)−
1
2 ·

⎧⎪⎨
⎪⎩
|a
d
| if g=

(
a b

0 d

)
k ∈ B(Qp)Kp(1),

0 else.

Further γi =wn(i) for i= 0, . . . , p− 1. For consistency of the indices we put γp = 1 so that
we can identify

B(Zp)\Kp/Kp(1)= {γ0, . . . , γp}
via the Bruhat decomposition of G(Fp). (Note that γ0 =w.) Finally define vi(g)= vp(g ·
γ−1

i ). This is the desired basis.
Now there is an (up to scaling) uniqueψp-Whittaker functional� : V→C (resp. a unique

ψ−1
p -Whittaker functional �∨ : V∨→C). As usual we set

Wv(g)=�(g.v) or Wv∨(g)=�∨(g.v∨).

We will first consider the related average

SV (y)=
p∑

i=0

Wvi(a(y))Wv∨i (a(y)).

Note that also this is independent of the choice of the particular basis v0, . . . , vp as long as
one considers the corresponding dual basis of V∨.

We will write
∫ st for the stable integral as defined [16, definition 2·1]. By [16, lemma 4·4

and remark 4·6] we get

Wvi(a(y))Wv∨i (a(y))=
∫ st

Qp

〈n(x)a(y).vi, a(y).v∨i 〉ψp(x)−1dx

= |y|p
∫ st

Qp

〈n(x)vi, v∨i 〉ψp(xy)−1dx.

Knowing the exact shape of the vi’s we can compute these integrals. First, we observe that a
simple change of variables yields

〈n(x).vi, v∨i 〉 =
∫

K
vp(kn(x)γ−1

i )v∨p (kγ−1
i )dk=

∫
K

vp(kγin(x)γ−1
i )v∨p (k)dk

= �[B(Zp)/Kp(1)∩ B(Zp)]
1
2

Vol (Kp(1), dk)
1
2

·
∫

Kp(1)
vp(kγin(x)γ−1

i )dk.
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The case i= p is somehow special and will be treated later. For now let us assume 0≤ i<
p. In this case we have

γin(x)γ−1
i =wn(i)n(x)n(− i)w−1 =wn(x)w−1.

To take advantage of the support of vp we have to investigate

kwn(x)w−1 = bk̃ ∈ B ·Kp(1).

In view of the Iwahori-factorisation of k we find that n(x) ∈N(Qp)∩Kp(1) is necessary for
the integral to be non-zero. Thus one gets

〈π(n(x))vi, v∨i 〉 = δn∈N(pZp).

With this at hand it is easy to compute∫ st

Qp

〈π(n(x))vi, v∨i 〉ψp(yx)−1dx=
∫

pZp

ψ(yx)−1dx= p−1δy∈p−1Zp
,

for 0≤ i< p.
We turn towards i= p, so that γp = 1. Further we replace y by yp−1 and consider y ∈Zp.

Recall that every k ∈Kp(1) can be written as k= tknknk ∈ B(Zp)N(pZp)tN(pZp) by using the
Iwahori-factorisation. We obtain∫ st

Qp

〈πp(n(x))vp, v∨p 〉ψp(yp−1x)−1dx

= �[B(Zp)/Kp(1)∩ B(Zp)]
1
2

Vol (Kp(1), dk)
1
2

·
∫ st

Qp

∫
Kp(1)

vp(kn(x))dkψp(yp−1x)−1dx

= �[B(Zp)/Kp(1)∩ B(Zp)]
1
2

Vol (Kp(1), dk)
1
2

·
∫

Kp(1)

∫ st

Qp

vp(nkn(x))ψp(yp−1x)−1dxdk.

Note that the integrand only depends on nk. Therefore we start by discussing a suitable
measure on Kp(1). Indeed using the Iwahori factorisation we can write∫

Kp(1)
f (k)dk= Vol (Kp(1), dk)

Vol (B(Zp)∩Kp(1), db)

∫
B(Zp)∩Kp(1)

p
∫

pZp

f (bn(pu))dudb.

If we write ṽp to be the re-normalisation of vp with ṽp(1)= 1, then we have∫ st

Qp

〈πp(n(x))vp, v∨p 〉ψp(yp−1x)−1dx= p
∫ st

Qp

∫
pZp

ṽp(n(z)tn(x))ψp(yp−1x)−1dzdx

=p
∫ st

Qp

∫
pZp

ṽp

((
1x− z−1

z zx

))
ψp(yp−1(x−z−1))−1dzdx.

In the last step we simply made a change of variables in the x-integral. A simple matrix
computation shows that (

1 x− z−1

z zx

)
= n( � )

(
(zx)−1 0

z zx

)
.
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Inserting this and using the transformation behaviour of ṽp one obtains

∫ st

Qp

〈πp(n(x))vp, v∨p 〉ψp(yp−1x)−1dx

= p
∫

pZp

ψp(yz−1p−1)
dz

|z|2p

∫ st

Qp

ṽp

((
1 0

x−1 1

))
ψp(− xyp−1)

dx

|x|2p
.

Both integrals can now be computed quite easily. Starting from the first one we obtain

p
∫

pZp

ψp(yz−1p−1)
dz

|z|2p
=
∞∑

l=1

pl+1
∫
Z×p
ψp(zyp−1−l)dz

=
vp(y)−1∑

l=1

pl+1(1− p−1)− δvp(y)≥1pvp(y) =−pδvp(y)≥1.

Turning to the other integral we find

∫ st

Qp

ṽp

((
1 0

x−1 1

))
ψp(− xyp−1)

dx

|x|2p
=

∫ st

Qp\Zp

ψp(− xyp−1)
dx

|x|2p
=
∞∑

l=1

p−l
∫
Z×p
ψp(− xyp−1−l)dx

=
vp(y)−1∑

l=1

p−l(1− p−1)− δvp(y)≥1p−vp(y)−1

= δvp(y)≥2(p−1 − p−vp(y))− δvp(y)≥1p−1−vp(y).

In particular we have

∫ st

Qp

〈πp(n(x))v0, v∨0 〉ψp(yp−1x)−1dx= δvp(y)≥2(p1−vp(y) − 1)+ δvp(y)≥1p−vp(y).

Note that this can be negative, but for non-unitary representations there is no expectation for
these integrals to be non-negative.

Combining the computations above and swapping back to y ∈ p−1Zp leads us to the
following result.

LEMMA 3·2. In the notation above we have

SV (y)= |y|p
[
δvp(y)≥−1 + δvp(y)≥0p−1|y|p + δvp(y)≥1(|y|p − 1)

]
.

We will obtain the desired estimate by relating SSt(a(y)) to SV .

LEMMA 3·3. For πp = St and y ∈Qp we have

Sπp(a(y))� |y|p.
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Proof. Recall that the definitions of Sπp and SV are independent of the choice of the

underlying basis. Thus we can choose an orthogonal basis w1, . . . , wp of π
Kp(1)
p . Viewing π

as invariant subspace of V we can assume that the wi’s are in V . We then have

Sπ (a(y))=
p∑

i=1

|Wwi(a(y))|2
〈Wwi , Wwi〉

=
p∑

i=1

Wwi(a(y))Ww∨i (a(y))

〈wi, w∨i 〉
.

Finally if we choose w∨0 ∈ (V∨)Kp(1) in the annihilator of the w1, . . . , wp and let w0 ∈ VKp(1)

be the dual element then after renormalising we have

SV (y)= Sπ (a(y))+Ww0 (a(y))Ww∨0 (a(y)).

However, since there is a unique Whittaker functional on V∨ which descents to the unique
Whittaker functional on π when viewed as a sub-quotient we must have Ww∨0 (a(y))= 0.
(Since the unique invariant subspace is non-generic.) Thus SV (y)= Sπp(a(y)) and the desired
estimate follows directly from the previous lemma.

3·2·2. Twist minimal principal series

Turning to this case we assume that πp = χ · |·|ρ � |·|−ρ where a(χ)= nπ > 0. Without
loss of generality we can assume that χ(p)= 1. (If we assume that π is unitary then it is
tempered so that ρ ∈ iR.) Now we can choose a basis in the induced picture essentially as
above, but we need to find a suitable decomposition of B(Zp)\Kp/Kp(nπ ) (since the Bruhat
decomposition does not hold in G(Zp/pmZp) if m> 1). First we start by defining

v0(g)=Vol (B(Zp)Kp(mπ ), dk)−
1
2 ·

⎧⎪⎨
⎪⎩
χ(a)| ad |

1
2+ρ if g=

(
a b

0 d

)
k ∈ B(Qp)Kp(mπ ),

0 else.

From this element we can construct a basis of π
Kp(mπ )
p as in the Steinberg case. Indeed, we

fix a system of representatives {γj} for B(Zp)\Kp/Kp(mπ ) and set vj = πp(γ−1
j )v0.

In order to explicate this basis we need to compute a suitable coset decomposition for
B(Zp)\Kp/Kp(mπ ). This is the content of the following lemma.

LEMMA 3·4. We have

Kp =
⊔

a∈Zp/pmπ Zp

B(Zp)γ0,aKp(mπ ) �
mπ⊔
i=1

⊔
a∈(Zp/pmπ−iZp)×

B(Zp)γi,aKp(mπ ),

for

γi,a =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
0 −1

1 a

)
if i= 0,(

1 0

api 1

)
if 1≤ i≤mπ − 1,

12 if i=mπ .

https://doi.org/10.1017/S0305004124000021 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004124000021


The sup-norm problem beyond the newform 531

Proof. Take g=
(

a b
c d

)
∈Kp and set i= vp(c). We treat several cases distinguished by the

value of i.

First, if i=mπ , then we have

g=
(

a b
c d

)
=

(
a b
0 d

)(
1− bc

ad 0
c
d 1

)
∈ B(Zp)Kp(mπ ).

Second, for 1≤ i<mπ we have

g=
(

a− bc
d b

0 d

)(
1 0
c
d 1

)
.

By right multiplication with elements in Kp(mπ ) we can view c/d ∈ piZ×p /pmπZp.
The critical contribution is given by the matrices with i= 0. We can write

g=
(ad

c − b a+ (b− ad
c )pmπ

0 c

)(
0 −1
1 d

c

)(
1+ d

c pmπ d2

c2 pmπ

−pmπ 1− d
c pmπ

)
.

Given v ∈ πKp(nπ ) we can compute the Jacquet Integral as follows. Without loss of gen-
erality assume vp(y)≥−nπ , since otherwise the Whittaker function Wv vanishes for trivial
reasons. We compute

Wv(a(y))=
∫
Qp

v(wn(x)a(y))ψp(x)−1dx

= |y|
1
2−ρ
p

∫
Qp

v(wn(x))ψp(xy)−1dx

= |y|
1
2−ρ
p p−nπ

∑
a∈Zp/pnπ Zp

ψp(ay)−1v(wn(a))

+ |y|
1
2−ρ
p

∫
Qp\Zp

|x|−2ρχ(x)−1ψ(xy)−1v(n(x−1)t)
dx

|x|p .

Note that wn(a)= γ0,a. Now we will have a closer look at the remaining integral:∫
Qp\Zp

|x|−2ρχ(x)−1ψ(xy)−1v(n(x−1)t)
dx

|x|p
=

∫
pZp

|x|2ρχ(x)ψ(x−1y)−1v(n(x)t)
dx

|x|p
= v(1)

∫
pmπ Zp

χ(x)|x|2ρψ(x−1y)−1 dx

|x|p

+
mπ−1∑

i=1

∑
b∈(Zp/pmπ−iZp)×

p−2ρiχ(b)−1v(n(bpi)t) ·
∫

1+pmπ−iZp

χ(x)−1ψ(− byxp−i)dx.

Note that n(bpi)t = γi,b.
Since the v(1)-contribution is easily computed we arrive at the following lemma.
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LEMMA 3·5. For vp(y)≥−mπ we have

Wv(a(y))= |y|
1
2−ρ
p p−mπ

∑
a∈Zp/pmπ Zp

ψp(ay)−1v(γ0,a)

+ |y|
1
2−ρ
p

mπ−1∑
i=1

∑
b∈(Zp/pmπ−iZp)×

p−2ρiχ(b)−1v(γi,b)Gmπ−i(− byp−i, χ−1)

+ |y|
1
2−ρ
p · v(γmπ ,0) ·

∫
pmπ Zp

χ(x)|x|2ρψ(x−1y)−1 dx

|x|p ,

for

Gl(y, χ)=
∫

1+plZp

χ(x)ψ(yx)dx,

This supplies us with the necessary ingredients to show the required estimate for Sπp .

LEMMA 3·6. For πp = χ |·|ρ � |·|−ρ unitary and y ∈Qp we have

Sπp(a(p−mπ y))� d1+ε |y|p.

Proof. Note that since all vj’s are translates of v0 their Whittaker-norm all coincides. So
it suffices to compute one of these norms and it is easy to see that

〈Wv0 , Wv0〉 =
∫
Q×p
|Wv0 (a(y))|2 dy

|y| = (1+ p−1).

Next we observe that one can choose representatives so that vj = πp(γ−1
i,a )v0 for some

i= i(j) and a= a(j). In particular, we can sort the terms of the sum Sπp(a(y)) according to
this i. We get

Sπp(a(y))=
mπ∑
i=0

Si(y) for Si(y)= (1+ p−1)−1
∑

a∈Zp/pmπ−iZp

|W
πp(γ−1

i,a )v0
(a(y))|2.

Applying the previous Lemma with v= πp(γ−1
i,a )v0 and taking support properties of v0 into

account provides us with nice formulae for the W
πp(γ−1

i,a )v0
(a(y)).

As soon as we can show that Si(y)� |y|p for all i we are done. We start with i= 0. Here
we have the explicit formula

Si(y)= (1+ p−1)−1
∑

a∈Zp/pmπ Zp

p−2mπ |y|pv0(1)2 = (1+ p−1)−1p−mπ |y|p
Vol (B(Zp)Kp(mπ ), dk)

= |y|p

for y ∈ p−mπZp.
We turn towards 1≤ i≤mπ − 1. In this range we get

Si(y)= (1+ p−1)−1v0(1)2|y|p
∑

a∈(Zp/pmπ−iZp)×
|Gmπ−i(− ayp−i, χ−1)|2.
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Thus we need to bound the integrals Gl(z, χ), which are somehow incomplete Gauß sums in
the sense that one sums only over a specific congruence class. These sums were essentially
computed in the proof of [2, lemma 5·8]. Indeed one extracts

Gl(zp−k, χ)=

⎧⎪⎨
⎪⎩
ε( 1

2 , χ−1)χ−1(z)p− k
2 if l≤ � a(χ)

2 �, k= a(χ) and z ∈ b(χ)+ plZp,

ψp(zpk)p−l if l≥ 
 a(χ)
2 �, k= a(χ) and z ∈−b(χ)+ pa(χ)−lZp,

0 else,

for z ∈Z×p , k ∈Z and b(χ) ∈Z×p is determined by χ . With this at hand we can easily evaluate
Si. For i≤ �mπ/2� we have

Si(y)= δvp(y)=i−mπ (1+ p−1)−1v0(1)2|y|p
∑

b∈(Zp/pmπ−iZp)×
p2i−2mπ δ−byp−vp(y)∈−b(χ)+piZp

= δvp(y)=i−mπ |y|p.

Similarly for i≥ 
mπ/2� we have

Si(y)= δvp(y)=i−mπ (1+ p−1)−1v0(1)2|y|p
∑

b∈(Zp/pmπ−iZp)×
p−mπ · δ−byp−vp(y)∈b(χ)+pmπ−iZp

= δvp(y)=i−mπ |y|p.

Finally consider i=mπ . We have

Smπ (y)= (1+ p−1)v0(1)2|y|p|
∫

pmπ Z

χ(x)|x|2ρψ(x−1y)−1 dx

|x|p |
2

= pmπ |y|p · |
∫

pmπ Zp

χ(x)|x|2ρψ(x−1y)−1 dx

|x|p |
2.

Therefore it suffices to compute the remaining integral. By some basic Gauß sum evaluations
one gets ∫

pmπ Zp

χ(x)|x|2ρψ(x−1y)−1 dx

|x|p = δy∈Zpε(
1

2
, χ)χ(y)p−

mπ
2 −2ρ[vp(y)+mπ ].

Inserting this above concludes the proof since it implies Smπ (y)= δvp(y)>0|y|p.

3·2·3. Supercuspidal representations

Let Xk be the set of character χ : Q×p →C× with a(χ)≤ k and χ(p)= 1. Note that

�Xk = pk−1(p− 1).

For χ ∈Xk and m ∈Z we will consider the functions ξ (m)
χ ∈ C∞c (Q×p ) given by

ξ (m)
χ (y)= 1p−mZ×p (y)χ(y).

Given any representation πp we write Kψp(πp) for the corresponding ψp-Kirillov model.

Note that this model contains the Schwartz functions so that we have ξ (m)
χ ∈Kψp(πp). Note

that by construction of the Kirillov model we have

Wf (a(y))= f (y) for f ∈Kψp(πp) and y ∈Q×p .
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Thus we compute

〈W
ξ

(m1)
χ1

, W
ξ

(m2)
χ2
〉 =

∫
Q×p
ξ (m1)
χ1

(y)ξ (m2)
χ2 (y)d×y= δm1=m2

∫
p−m1Z×p

χ1(y)χ−1
2 (y)d×y

= δm1=m2,
χ1=χ2

.

This suffices to compute Sπp(a(y)) for supercuspdial representations πp.

LEMMA 3·7. Suppose πp is a twist minimal supercuspidal representation with
(exponent)-conductor nπ . Then the following is true:

(i) If nπ = 2mπ , then

Sπp(a(y))= pmπ

ζp(1)
· δy∈p−mπ Z×p ;

(ii) If nπ = 2mπ − 1, then

Sπp(a(y))= pmπ

ζp(1)
· δy∈p−mπ Z×p +

pmπ−1

ζp(1)
· δy∈p1−mπ Z×p ;

In general we have the bound

Sπp(a(p−mπ y))� d · |y|p · δy∈Zp .

Proof. We start with the case nπ = 2mπ . By [20, lemma 4·4] we find that a basis for
πKp(mπ ) in the Kirillov model is given by

{ξ (mπ )
χ : χ ∈Xmπ }.

Note that we already took advantage of twist-minimality using that nχπ = nπ for all
χ ∈Xmπ . Our computations above show that this basis is orthonormal (with respect to the
Whittaker inner product). Thus we have

Sπp(y)=
∑

χ∈Xmπ

|ξ (mπ )
χ (y)|2 = δy∈p−mπ Z×p · �Xmπ .

We turn towards the second case where nπ is odd. Then we get the orthonormal basis

{ξmπ
χ : χ ∈Xmπ } ∪ {ξmπ−1

χ : χ ∈Xmπ−1}.
It is again easy to compute the desired quantity:

Sπp(y)= δy∈p−mπ Z×p · �Xmπ + δy∈p1−mπ Z×p · �Xmπ−1.

The result follows directly.

3·3. Conclusion

We can now give a decent bound for 
(z) using the Whittaker expansion. We will use the
bound (5) and follow the standard procedure.
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LEMMA 3·8. We have


(z)�
(

dT

y

)ε (
d

1
2 T

1
6 + dT

1
2

y
1
2

)
.

Proof. Inserting (5) into Lemma 3·1 yields


(g)� d
1
2+εTε

∑
0 �=n∈Z

|λπ (n/(n, p∞))|√|n| |W∞
(

n
y

pmπ

)
|.

Estimating the remaining n-sum as for example in [23] or [21] yields the desired result.

4. A bound via the pre-trace formula

The next bound will be derived from the pre-trace inequality. We start by discussing the
local test functions. At the archimedean place we closely follow [21, section 3.5] and fix f∞
so that it satisfies:

(1) f∞(g)= 0 unless g ∈G(R)+ and u(g)≤ 1;

(2) f̂∞(σ )> 0 for all irreducible spherical unitary principal series representations σ of
G(R);

(3) f̂ (π∞) 1;

(4) |f∞(g)| ≤ T and if u(g)≥ T−2, then |f∞(g)| ≤ T
1
2 u(g)− 1

4 .

(The final property is not really necessary because we are ignoring the spectral aspect for
now.) Note that f̂ is the spherical transform (also Selberg/Harish–Chandra transform) of f
and u(g) is the point-pair invariant on group level.

At the place v= p we define multiple test functions:

f (i)
p (g)= 1ZKp(g)

〈π(g)φ(i)
p , φ(i)

p 〉πp

〈φ(i)
p , φ(i)

p 〉πp

.

LEMMA 4·1. For every irreducible admissible unitary representation σ of G(Qp) the

operator σ (f (i)
p ) is non-negative and self-adjoint. Further we have πp(f (i)

p )φ(i)
p =

dimC (π
Kp(mπ )
p )−1 · φ(i)

p .

Proof. The proof is standard and relies on Schur’s orthogonality relations for irreducible
representations of Kp. To apply this it will be important to keep in mind that πKp(mπ ) is
irreducible.

The operators are self-adjoint since f (i)
p (g−1)= f (i)

p (g). To see non-negativity we will show
the convolution identity

f (i)
p = dimC π

Kp,1(mπ ) · (f (i)
p � f (i)

p ).
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Indeed we compute

[f (i)
p � f (i)

p ](h)=
∫

Z\G
f (i)
p (g−1)f (i)

p (gh)dg

= 1ZK(h)

〈φ(i)
p , φ(i)

p 〉πp

2

∫
Kp

〈πp(g)φ(i)
p , φ(i)

p 〉πp〈πp(gh)φ(i)
p , φ(i)

p 〉πpdk

= dimC (πKp(mπ ))−1 1ZK(h)

〈φ(i)
p , φ(i)

p 〉πp

〈πp(h)φ(i)
p , φ(i)

p 〉πp

and the claimed identity follows directly.
It remains to show the final claim. First observe that the image of πp(f (i)

p )φ(i)
p is obviously

Kp(mπ )-invariant. Thus it suffices to show that

〈πp(f (i)
p )φ(i)

p , w〉πp = dimC (π
Kp(mπ )
p )−1 · 〈φ(i)

p , w〉πp

for any w ∈ πKp(mπ )
p But this follows again from the orthogonality relations since π

Kp(mπ )
p is

irreducible (as Kp-module) and

〈πp(f (i)
p )φ(i)

p , w〉πp = 〈
∫

Z\G
f (i)
p (g)πp(g)φ(i)

p dg, w〉 =
∫

Z\G
f (i)
p (g)〈πp(g)φ(i)

p , w〉πpdg.

Finally we define the unramified part of the test function fur by setting

fur =
(∑

l∈S

clκl

)
�

(∑
l∈S

clκl

)∗
+

(∑
l∈S

cl2κl2

)
�

(∑
l∈S

cl2κl2

)∗
,

for cr =
{ |λπ (r)|
λπ (r) if r= l or r= l2 for l ∈ S,

0 else,

for a set of primes S (to be determined) and normalised rth Hecke-operators κr. This
implements the usual amplification procedure. Finally we define the global test functions

f (i) = f∞ ⊗ f (i)
p ⊗ fur and f =

∑
i

f (i).

We introduce

M(l, g)= {A ∈M2(Z) : det (A)= l, A≡ g mod pmπ } for g ∈GL2 (Z/pmπZ).

Further let σ denote the irreducible representation of GL2 (Z/pmπZ) through which the irre-
ducible Kp-module πKp(mπ ) factors. This is a representation of a finite group and we write
χσ for its character. Finally we define the coefficients yr by linearising the convolutions of
Hecke-operators in the definition of fur. More precisely we write

fur =
∑

r

yrκr.

This can be compared to the analogous expression in [21, section 7].
The following pre-trace inequality provides the transition to the counting problem.
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LEMMA 4·2. For z ∈F we have

(�S)2

dimC π
Kp(mπ )
p

·
(z)2�
∑

r

|yr|√
r

∑
g∈GL2 (Z/pmπ Z)

|χσ (g)|
∑

A∈M(l,g)

|f∞(u(Az, z))|.

Proof. We start by considering the spectral expansion of the automorphic kernel kf (i) asso-
ciated to the self-adjoint operators R(f (i)) and dropping all terms except φi. The latter is
possible by positivity. We obtain

(�S)2

dimC π
Kp(mπ )
p

· φi(g∞)2 ≤ kf (i) (g, g)=
∑

r

yr

∑
γ∈Z(Q)\G(Q)

f (i)
p (γ )κr(γ )f∞(g−1∞ γ g∞).

We now sum this inequality over i to obtain

(�S)2

dimC π
Kp(mπ )
p


(g∞)2 ≤
∑

r

yr

∑
γ∈Z(Q)\G(Q)

(
d∑

i=1

f (i)
p (γ )

)
κr(γ )f∞(g−1∞ γ g∞).

Recall that the test functions f (i)
p are supported in ZKp. Thus, after choosing a suitable rep-

resentative for γ modulo Z(Q), we can assume that γ ∈Kp and write γ for the image of γ
in GL2 (Z/pmπZ). For such γ we get

d∑
i=1

f (i)
p (γ )= χσ (γ ).

The rest of the argument is standard and can for example be found in [21].

By the choice of f∞ we can already eliminate the archimedean influence from the right-
hand side. (Note that we are not aiming to amplify in the T-aspect.)

COROLLARY 4·3. For z ∈F we have

(�S)2

dimC π
Kp(mπ )
p

·
(z)2� T
∑

g∈GL2 (Z/pmπ Z)

|χσ (g)|
∑

r

|yr|√
r
· �Mz(r, g),

for

Mz(r, g)= {A ∈M2(Z) : det (A)= r, A≡ g mod pmπ and u(Az, z)≤ 1}.
This last corollary tells us that we need to control the character χσ and solve a counting

problem estimating Mz(r, g).
To estimate the character we need to define certain level sets.

Km,λ = {g ∈G(Z/pmZ) : g≡ 1 mod pλ} for 0≤ λ≤m.

Note that Km,m = {1} and Km,0 =G(Z/pmZ).
Before we continue let us make a remark concerning notation. We will write A¬B=

A∩ Bc for the set-theoretic difference. We are not using A \ B, since it may be confused with
the quotient when A and B are groups.
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LEMMA 4·4. Suppose p> 3. Let π belong to Case 1, 2 or 3·1. Then, for 0≤ λ<mπ and
g ∈ Z ·Kmπ ,λ¬Z ·Kmπ ,λ+1 we have

χσ (g)� pλ. (6)

If π belongs to Case 3·2 and λ and g are as above, then we have the slightly weaker bound

χσ (g)� p
mπ+λ

2 .

Furthermore, let h ∈G(Z/pmZ) be a diagonal matrix such that G(Z/pmZ)= Z ·
SL2 (Z/pmZ) � hZ · SL2 (Z/pmZ). Then the same estimates hold for hZ ·Kmπ ,λ¬hZ ·
Kmπ ,λ+1, where det (h) is not a square modulo pmπ .

The representations of GL2 over finite rings such as Z/pmZ and their characters are well
studied but explicit estimates for the characters as needed here seem to be hard to find. We
choose to use the character tables for SL2 (Z/pmZ) computed by Kutzko [15]. This makes
it necessary to pass from SL2 to GL2 using Mackey Theory. Note that the character values
in question were calculated in [3]. However, they remain hard to extract and we hope our
approach is more transparent.

Proof. As mentioned above our starting point are well-known character tables for
SL2 (Z/pmZ). These are upgraded to GL2 (Z/pmZ) via a simple application of Mackey
theory.

Recall that p is assumed to be odd, write ωσ for the central character of σ and let
σ̃ be an irreducible component of σ |SL2 (Z/pmZ). Further, fix h such that GL2 (Z/pmZ)=
Z SL2 (Z/pmZ)∪ h · Z SL2 (Z/pmZ) and write σ̃ h(g)= σ̃ (hgh−1). If σ̃ �∼= σ̃ h, then

σ = IndGL2 (Z/pmZ)
Z·SL2 (Z/pmZ) (ωσ · σ̃ ). (7)

In this case σ |SL2 (Z/pmZ) = σ̃ + σ̃ h and we have χσ (zs)=wσ (z)[χσ̃ (s)+ χh
σ̃

(s)] for z ∈ Z and
s ∈ SL2 (Z/pmZ). Otherwise, if σ̃ ∼= σ̃ h, then

σ ⊕ σ ′ = IndGL2 (Z/pmZ)
Z·SL2 (Z/pmZ) (ωσ · σ̃ ), (8)

where σ ′ is another irreducible representation of GL2 (Z/pm
πZ). Here we have

σ |SL2 (Z/pmZ) = σ̃ and obtain χσ (zs)=ωσ (z)χσ̃ (s).
The subgroups Km,λ are all normal in Km,0, so that the sets Z ·Kmπ ,λ¬Kmπ ,λ+1 and hZ ·

Kmπ ,λ¬hZ ·Kmπ ,λ+1 can be decomposed into (disjoint) GL2 (Z/pmπ ) conjugacy classes. We
focus on estimating χσ for

g= z · s ∈ Z ·Kmπ ,λ¬Kmπ ,λ+1 ⊆ Z · SL2 (Z/pmZ).

The case g ∈ hZ · SL2 (Z/pmZ) is similar.
Let us recall that non-trivial irreducible representations of SL2 (Z/pmZ) with m> 1 have

dimensions pm(1− p−1), pm(1+ p−1) or 1/2pm(1− p−2). If m= 1, we are dealing with
the representation theory of SL2 (Fp) which was for example studied by Schur in [22]. It
turns out that, besides the normal representations of dimensions p+ 1 and p− 1, we have
certain special cases. Indeed, we have the Steinberg representation ρSt of dimension p and
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two irreducible representations ρ+ and ρh+ (resp. ρ− and ρh−) of dimension 1/2(p+ 1) (resp.
1/2(p− 1)).

We now treat each case appearing in Lemma 2·1 separately.

(a) Suppose π belongs to Case 1. We recall from Lemma 2·2 that in this case σ has
dimension pmπ (1+ 1/p). We need to look into two sub cases:

(i) Suppose mπ = 1. In this case two situations can occur. If σ stays irreducible when
restricted to SL2 (Z/pZ), then we are in case (8) and |χσ (zs)| = |χσ̃ (s)|with an irre-
ducible representation σ̃ of SL2 (Z/pZ) of dimension p+ 1. On the other hand, if
σ |SL2 (Z/pZ) = ρ+ ⊕ ρ−, then we have |χσ (zs)| = |χρ+(s)+ χρh+(s)|. In both cases
one concludes by looking up the corresponding character values, for example in
[15, table V]. (Alternatively one can compute the character of σ directly by observ-
ing that it can be realised as an irreducible parabolically induced representation of
GL (Fp).)

(ii) Suppose mπ > 1. By looking at the possible dimensions of non-trivial irreducible
representations of SL2 (Z/pmπZ) we see that σ̃ must have dimension pmπ (1+ 1/p)
as well. Thus σ remains irreducible when restricted to SL2 (Z/pmπZ) and we are
in the situation of (8). We have |χσ (zs)| = |χσ̃ (s)| and the relevant character values
for χσ̃ can be found in [15, table III].

(b) Suppose π belongs to Case 2. Here we automatically have mπ = 1 and applying
Lemma 2·2 yields that the dimension of σ is p. We conclude that we are in the situa-
tion of (8) and σ̃ = ρ is the Steinberg representation. We have |χσ (zs)| = |χσ̃ (s)| = 1
as can be seen from [15, table V]. (Alternatively one could note that σ itself is the
Steinberg representation of GL2 (Fp), whose character is also well known.)

(c) Suppose π belongs to Case 3·1. An application of Lemma 2·2 yields that σ has
dimension pmπ (1− 1/p). As in Case 1 we need to distinguish two sub cases:

(i) Suppose mπ = 1. We can have σ |SL2 (Z/pZ) = ρ− ⊕ ρh−. In this case we estimate
|χσ (zs)| = |χρ+(s)+ χρh+(s)|. Otherwise, σ |SL2 (Z/pZ) = σ̃ for an irreducible repre-

sentation σ̃ of SL2 (Z/pZ) of dimension p− 1. Here we simply have |χσ (zs)| =
|χσ̃ (s)|. The desired estimate is produced by looking up the relevant character
values. These can be found in [15, table V] for example. (Alternatively one can
observe that σ is a cuspidal representation of GL2 (Fp). It turns out that values
of characters of cuspidal representations are even known for GLn (Fp), see for
example [10].)

(ii) Suppose mπ > 1. In this case we again must be in the situation of (8). In particular,
σ̃ is a representation of dimension pmπ (1− 1/p). The relevant character values can
be found in [15, table III].

(d) Suppose π belongs to Case 3.2. Note that in this case we automatically have mπ > 1.
Furthermore, Lemma 2·2 tells us that the dimension of σ is pmπ (1− 1/p2). Thus, tak-
ing the dimensions of (irreducible) representations of SL2 (Z/pmπZ) into account, we
see that σ |SL2 (Z/pmπ Z) must be reducible, so that we are in the situation of (7). We esti-
mate |χσ (zs)| ≤ 2 max (|χσ̃ (s)|, |χσ̃ h(s)|). Both representations σ̃ and σ̃ h must have
dimension 1/2pmπ (1− 1/p2) and the corresponding character values can be found in
[15, table IV].1

1 It is maybe interesting to note that the characters appearing in Case 3.2 feature Kloosterman sums. These
sums are responsible for the large values of these characters on certain conjugacy classes.
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This exhausts all the cases and the proof is complete.

Before continuing we will discuss our choice of S. But first recall that d= dimC π
Kp(mπ )
p �

pmπ . Further note that yr = 0 unless r= 1, l1, l1l2, l21l22 for l1, l2 ∈ S. Put �= d
1
3 or �= d

1
6 .

This is a slight spoiler but for experts in amplification it should be no surprise that this is the
optimal size of the amplifier in this setting. Let

S= {l prime : l��}.

By the prime number theorem (assuming d is sufficiently large, which is no problem) we
have �S∼�/ log (�), but for us the following crude bound suffices

�S ε �
1−ε .

Before we are ready to prove our key estimate we need to establish some counting results.
Let

M(λ)
z (r)= {A ∈

[
Z pλZ

pλZ Z

]
: det (A)= r and u(Az, z)≤ 1}.

The case λ= 0 is easily handled using existing results. For example taking N = δ = 1 in [23,
proposition 6·1]. We follow standard procedure and write

M(λ)
z (r)=M(λ)

z,� (r) �M(λ)
z,p (r) �M(λ)

z,u (r).

Here the subscript � indicated that we are dealing with generic matrices A=
(

a b
c d

)
with

c �= 0 and (a+ d)2 �= 4r. On the other hand u stands for unipotent so that A ∈M(λ)
z,u (r) if

and only if c= 0. Finally, A ∈M(λ)
z,p (r) if c �= 0 and (a+ d)2 = 4r. These are the parabolic

matrices.
Counting the contribution of generic matrices is a standard lattice point counting argu-

ment. Note that, since we can take z in the classical fundamental domain for SL2 (Z),
this argument can be simplified. Indeed, in contrast to [11, 23] we do not need to invoke
Atkin–Lehner operators here.

LEMMA 4·5. For λ> 1 and y≥√3/2 we have

∑
r�K

[�M(λ)
z,� (r)+M(λ)

z,p (r)]� K
3
2

pλ
+ K2

p2λ

and

∑
r�K,
r=�

�M(λ)
z,� (r)� K1+ε

pλ
+ K

3
2+ε

p2λ
.

We closely follow the argument in [23].
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Proof. Write A=
(

a b
c d

)
. Since c �= 0 and c�√ry−1 we have �K

1
2 /pλy choices for

c. Similarly, using the bound |a+ d| �√K, we have �K
1
2 possibilities to choose a+ d.

Finally, we have the bound

|−cz2 + (a− d)z+ b|2 ≤ 4Ky2. (9)

Write b= pλb′ and consider the lattice L= 〈z, pλ〉. Note that L has cocolume � pλy and first
successive minima 1 (since y 1). Let B be the ball of radius 2

√
Ky around −cz2. Then

we have

�{(b′, a− d)}� �(B∩ L)� 1+√Ky+ Ky

pλ
.

We have counted the number of possibilities for the admissible quadruples (c, b′, a+ d, a−
d). Since each of those quadruples uniquely determines a matrix A we have established

�{A ∈M(λ)
z,� (r) : r�K}� K

1
2

pλy
·K 1

2 · (1+√Ky+ Ky

pλ
)

� K

pλ
+ K

3
2

pλ
+ K2

p2λ
.

The case when we are only considering square matrices only needs a minor modification.
Indeed, instead of counting a+ d trivially as earlier we observe that

(a− d)2 + 4bc= (a+ d)2 − 4(
√

r)2.

If the matrix is parabolic the right-hand side would be 0. Thus we now consider only generic
matrices. For those we can fix the left-hand side first, so that we determine (a+ d,

√
r)

essentially as solutions to a generalised Pell equation. There are at most�Kε possibilities.

LEMMA 4·6. We have

�M(λ)
z,u (r)� rε(1+√rp−λy).

∑
l∈S

M(λ)
z,u (l)��+ �

3
2 y

pλ
,

∑
l1,l2∈S

M(λ)
z,u (l1l2)��2 + �

3y

pλ
and

∑
l1,l2∈S

M(λ)
z,u (l21l22)��2 + �

4y

pλ
.

Proof. The first estimate follows analogously to [14, (A·10)] using pλ | b. Recall the
bound |b| �√ry used in the process.

The other bounds are derived elementary using only the fact that S contains only primes.
(In contrast to [11, lemma 2·4] we do not need a lattice counting argument, because we
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have an additional congruence condition on b that we can use.) We will only show the final
estimate, since the others are derived similarly.

There are��2 possible choices for r= l21l22 ��4. Having fixed the determinant of this
form we find that there are only� 1 choices for (a,d) with ad= l21l22. Finally we observe that
we can choose b in� 1+�2y/pλ ways, since pλ | b and |b| ��2y. Putting these estimates
together completes the proof.

Remark 4·7. Suppose y≥√3/2. As in [14, (A.7)] we have the bound

|c| ≤
√

8r

y
≤

√
25r

3
. (10)

Thus if pλ ≥ 3, 5 · √r, we must have c= 0. This is because pλ | c. In this case we obtain

M(λ)
z (r)=M(λ)

z,u (r).

Finally we need to consider the parabolic contribution.

LEMMA 4·8. For λ≥ 1 and y≥√3/2 we have

∑
r�K,
r=�

�M(λ)
z,p (r)� K

3
2

pλ
.

Proof. This follows along the lines of [4, lemma 14]. We provide some details for the

convenience of the reader. Let A=
(

a b
c d

)
be a matrix contributing the the count M(λ)

z,p (r) for

some r�K with r=�. We start by recalling the bounds

cy�√K and |2cx− (a− d)| �√K.

The first one is (10) and the second one follows from (9) when looking at the imaginary part.

Now, since A is parabolic, we must have

(a+ d)2 = 4(ad− bc)= 4r.

The latter equality can be rewritten as

(a− d)2 + 4bc= 0.

This implies that, if c is fixed, then a− d has a fixed divisor of size at least
√|c|. We conclude

that there are� 1+√K/
√|c| possible choices for a− d. By summing over all possibilities

for c �= 0 and pλ | c we find that

�{c, a− d}� K

pλ
.

Finally, note that |a+ d| = 2
√

r�√K, so that there are�√K possible choices for a+ d.
Since a− d and c determine b we are done after gathering all the contributions.
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Table 1. Summary of counting results∑

r∈T
|yr|√

r
· �M(λ)

z,♦(r) ♦= u ♦= � ♦= p

T = {1} �+ �y
pλ 0 0

T = {l : l ∈ S} �
1
2 + �y

pλ
�
pλ + �

3
2

p2λ included in �

T = {l1l2 : l1, l2 ∈ S} �+ �2y
pλ

�2

pλ + �3

p2λ included in �

T = {l21l22 : l1, l2 ∈ S} 1+ �2y
pλ

�2+ε
pλ + �4+ε

p2λ
�4

pλ

total �+ �2y
pλ

�2+ε
pλ + �4+ε

p2λ
�4

pλ

We can now prove the main estimate of this section.

LEMMA 4·9. Assume p> 3. Suppose π belongs to Case 1, 2 or 3·1. Then, for
√

3/2�
y�√d we have


(x+ iy)�√Td
5
6 .

If π belongs to Case 3.2, then we have the weaker bound


(x+ iy)�√Td
11
12 for

√
3

2
� y� d

1
4 .

Proof. We start with Cases 1, 2 or 3·1. Our starting point is Corollary 4·3. Breaking the
g-sum up into pieces on which we can estimate the character using Lemma 4·4 we get

(�S)2

dimC π
Kp(mπ )
p

·
(z)2� T
∑

0≤λ≤mπ

pλ
∑

r

|yr|√
r
· �M(λ)

z (r).

We first consider the contribution of λ= 0. In this case the counting problem is
independent of p and relatively easy. Indeed we have∑

r

yr√
r
�{A ∈M2(Z) : det (A)= r and u(Az, z)≤ 1}��4 +� 5

2 y. (11)

This is for example [23, proposition 6·1] with N = δ = 1 and z ∈F so that y 1.
Next we assume λ> 0. We summarise the results from Lemma 4·5, 4·8 and 4·6 in Table I

below. Note that for the contribution of r= 1 we have used Remark 4·7.

All together this gives a contribution of

∑
r

|y|√
r
· �M(λ)

z (r)��+ �
4

pλ
+ �

2y

pλ
.

Inserting these estimates in our (amplified) pre-trace inequality we get

(�S)2

dimC π
Kp(mπ )
p

·
(z)2� T

⎛
⎝�4 +� 5

2 y+
∑

1≤λ≤mπ

pλ
[
�+ �

4

pλ
+ �

2y

pλ

]⎞⎠ .
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This simplifies to


(z)2� Td1+ε

�2−ε
(
�

5
2 y+�4 +�d

)
.

Inserting �= d
1
3 yields


(z)2� Td1+ε(d
2
3 + d

1
6 y)

which directly implies the result for the non-exceptional cases 1, 2 and 3·1.
Finally if π belongs to Case 3·2, then the same analysis with the weaker character

estimates yields

(�S)2

dimC π
Kp(mπ )
p

·
(z)2� T

⎛
⎝d

1
2�4 + d

1
2�

5
2 y+

∑
1≤λ≤mπ

p
mπ+λ

2

[
�+ �

4

pλ
+ �

2y

pλ

]⎞⎠
� T

(
d

1
2�4 + d

1
2�

5
2 y+�d1+ε) .

This prompts the choice �= d
1
6 and we find


(z)2� Td1+ε(d
5
6 + d

7
12 y)

This completes the proof.

Proof. of Theorem 1·1: We are now ready to complete the proof of our main theorem.

First of all note that it is enough to bound 
(z) for z ∈F . Next, if y�√d (resp. y� d
1
4 ),

then we are done by the previous lemma. For larger y the Whittaker expansion (see Lemma
3·8) gives even better result.
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