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Asymptotic K-Theory
for Groups Acting on Ã2 Buildings
Guyan Robertson and Tim Steger

Abstract. Let Γ be a torsion free lattice in G = PGL(3, F) where F is a nonarchimedean local field.
Then Γ acts freely on the affine Bruhat-Tits building B of G and there is an induced action on the
boundary Ω of B. The crossed product C∗-algebra A(Γ) = C(Ω) � Γ depends only on Γ and is
classified by its K-theory. This article shows how to compute the K-theory of A(Γ) and of the larger
class of rank two Cuntz-Krieger algebras.

1 Introduction

Let F be a nonarchimedean local field with residue field of order q. The Bruhat-Tits
building B of G = PGL(n + 1, F) is a building of type Ãn and there is a natural action
of G on B. The vertex set of B may be identified with the homogeneous space G/K,
where K is an open maximal compact subgroup of G. The boundary Ω of B is the
homogeneous space G/B, where B is the Borel subgroup of upper triangular matrices
in G.

Let Γ be a torsion free lattice in G = PGL(n + 1, F). Then Γ is automatically
cocompact in G [Ser, Chapitre II.1.5, p. 116] and acts freely on B. If n = 1, then Γ
is a finitely generated free group [Ser], B is a homogeneous tree, and the boundary
Ω is the projective line P1(F). If n ≥ 2 then the group Γ and its action on Ω are not
so well understood. In contrast to the rank one case, Γ has Kazhdan’s property (T)
and by the Strong Rigidity Theorem of Margulis [Mar, Theorem VII.7.1], the lattice
Γ determines the ambient Lie group G. Since the Borel subgroup B of G is unique,
up to conjugacy, it follows that the action of Γ on Ω is also unique, up to conjugacy.
This action may be studied by means of the crossed product C∗-algebra C(Ω) � Γ,
which depends only on Γ and may conveniently be denoted by A(Γ).

Geometrically, a locally finite Ãn building B is an n-dimensional contractible sim-
plicial complex in which each codimension one simplex lies on q + 1 maximal sim-
plices, where q ≥ 2. If n ≥ 2 then the number q is necessarily a prime power and is
referred to as the order of the building. The building is the union of a distinguished
family of n-dimensional subcomplexes, called apartments, and each apartment is a
Coxeter complex of type Ãn. If B is a locally finite building of type Ãn, where n ≥ 3,
then B is the building of PGL(n + 1, F) for some (possibly non commutative) local
field F [Ron, p. 137]. The case of Ã2 buildings is somewhat different, because such
a building might not be the Bruhat-Tits building of a linear group. In fact this is
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the case for the Ã2 buildings of many of the groups constructed in [CMSZ]. The
boundary Ω of B is the set of chambers of the spherical building at infinity [Ron,
Chapter 9], endowed with a natural totally disconnected compact Hausdorff topol-
ogy [CMS], [Ca, Section 4].

Given an Ãn building B with vertex set B0, there is a type map τ : B0 → Z/(n+1)Z
such that each maximal simplex (chamber) has exactly one vertex of each type. An
automorphism α of ∆ is said to be type-rotating if there exists i ∈ Z/(n + 1)Z such
that τ (αv) = τ (v) + i for all vertices v ∈ B0. If B is the Bruhat-Tits building of
G = PGL(n + 1, F) then the action of G on B is type rotating [St].

Now let Γ be a group of type rotating automorphisms of an Ãn building B and
suppose that Γ acts freely on the vertex set B0 with finitely many orbits. Then Γ
acts on the boundary Ω and the rigidity results of [KL] imply that, as in the linear
case above, the action is unique up to conjugacy and the crossed product C∗-algebra
A(Γ) = C(Ω) � Γ depends only on the group Γ.

The purpose of this paper is to compute the K-theory of the algebras A(Γ) in the
case n = 2. This is done by using the fact that the algebras are higher rank Cuntz-
Krieger algebras, whose structure theory was developed in [RS2]. In particular they
are purely infinite, simple and nuclear. It was proved in [RS2] that a higher rank
Cuntz-Krieger algebra is stably isomorphic to a crossed product of an AF algebra
by a free abelian group. The computation of the K-groups is therefore in principle
completely routine: no new K-theoretic or geometric ideas are needed. Actually or-
ganizing and performing the computations is another matter. This paper does this
in the case n = 2. The most precise results are obtained in Section 7 for the algebra
A(Γ) where Γ is an Ã2 group; that is Γ acts freely and transitively on the vertices of
an Ã2 building. Such groups have been studied intensively in [CMSZ].

The detailed numerical results of our computations are available elsewhere, but
we do present, in Example 7.3, the K-theory of A(Γ) for two torsion free lattices Γ
in PGL(3,Q2). The non isomorphism of these two groups is seen in the K-theory of
A(Γ) but not in the K-theory of the reduced group C∗-algebra C∗r (Γ).

The article concludes with some results on the order of the class of the identity in
K0

(
A(Γ)

)
.

2 Groups Acting on Ã2 Buildings: Statement of the Main Result

Let B be a finite dimensional simplicial complex, whose maximal simplices we shall
call chambers. All chambers are assumed to have the same dimension and adjacent
chambers have a common codimension one face. A gallery is a sequence of adja-
cent chambers. B is a chamber complex if any two chambers can be connected by
a gallery. B is said to be thin if every codimension one simplex is a face of precisely
two chambers. B is said to be thick if every codimension one simplex is a face of at
least three chambers. A chamber complex B is called a building if it is the union of a
family of subcomplexes, called apartments, satisfying the following axioms [Br3].

(B0) Each apartment Σ is a thin chamber complex with dimΣ = dim B.
(B1) Any two simplices lie in an apartment.
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(B2) Given apartments Σ, Σ ′ there exists an isomorphism Σ → Σ ′ fixing Σ ∩ Σ ′

pointwise.
(B3) B is thick.

A building of type Ã2 has apartments which are all Coxeter complexes of type Ã2.
Such a building is therefore a union of two dimensional apartments, each of which
may be realized as a tiling of the Euclidean plane by equilateral triangles.
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Figure 1: Part of an apartment in an Ã2 building, showing vertex types.

From now on we shall consider only locally finite buildings of type Ã2. Each vertex
v of B is labeled with a type τ (v) ∈ Z/3Z, and each chamber has exactly one vertex of
each type. An automorphismα of B is said to be type rotating if there exists i ∈ Z/3Z
such that τ

(
α(v)
)
= τ (v) + i for all vertices v ∈ B.

A sector is a π
3 -angled sector made up of chambers in some apartment (Figure 2).

Two sectors are equivalent if their intersection contains a sector.
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Figure 2: A sector in a buildingB of type Ã2.

The boundaryΩ of B is defined to be the set of equivalence classes of sectors in B.
In B fix some vertex O. For any ω ∈ Ω there is a unique sector [O, ω) in the class ω
having base vertex O [Ron, Theorem 9.6]. The boundary Ω is a totally disconnected
compact Hausdorff space with a base for the topology given by sets of the form

Ω(v) = {ω ∈ Ω : [O, ω) contains v}
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Figure 3: The sector [O, ω), where ω ∈ Ω(v).

where v is a vertex of B [CMS, Section 2]. If B is the (type Ã2) Bruhat-Tits build-
ing of PGL(3, F) where F is a nonarchimedean local field then this definition of the
boundary coincides with that given in the introduction [St].

Let B be a locally finite affine building of type Ã2. Let Γ be a group of type rotating
automorphisms of B that acts freely on the vertex set with finitely many orbits. Let
t be a model tile for B consisting of two chambers with a common edge and with
vertices coordinatized as shown in Figure 4. For definiteness, assume that the vertex
( j, k) has type τ ( j, k) = j − k (mod 2) ∈ {0, 1, 2}. Let T denote the set of type
rotating isometries i : t → B, and let A = Γ \ T. Take A as an alphabet. Informally
we think of elements of A as labeling the tiles of the building according to Γ-orbits.
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Figure 4: The model tile t

Two matrices M1, M2 with entries in {0, 1} are defined as follows. If a, b ∈ A, say
that M1(b, a) = 1 if and only if there are representative isometries ia, ib in T whose
ranges lie as shown in the diagram on the right of Figure 5. In that diagram, the tiles
ia(t), ib(t) have base vertices ia(0, 0), ib(0, 0) respectively and ib(0, 0) = ia(1, 0). A
similar definition applies for M2(c, a) = 1.

In Section 5 below the following result is proved. It expresses the K-theory of
A(Γ) in terms of the cokernel of the homomorphism ZA ⊕ ZA → ZA defined by
( I−M1, I−M2 ).

Theorem 2.1 Let Γ be a group of type rotating automorphisms of a building B of
type Ã2 which acts freely on the set of vertices of B with finitely many orbits. Let Ω
be the boundary of the building and let A(Γ) = C(Ω) � Γ. Denote by M1, M2 the
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Figure 5: Definition of the transition matrices.

associated transition matrices, as defined above. Let r be the rank, and T the torsion part,
of the finitely generated abelian group coker ( I−M1, I−M2 ). Thus coker ( I−M1, I−M2 ) =
Zr ⊕ T. Then

K0

(
A(Γ)

)
= K1

(
A(Γ)

)
= Z2r ⊕ T

Remark 2.2 The group Γ in Theorem 2.1 need not necessarily be torsion free. It
may have 3-torsion and stabilize a chamber of the building.

3 Rank 2 Cuntz-Krieger Algebras

In [RS2], the authors introduced a class of C∗-algebras which are higher rank ana-
logues of the Cuntz-Krieger algebras [CK]. We shall refer to the original algebras
of [CK] as rank one Cuntz-Krieger algebras. The rank 2 case includes the algebras
A(Γ) arising from discrete group actions on the boundary of an Ã2 building as de-
scribed in Section 2. In this section we shall compute the K-theory of a general rank
2 Cuntz-Krieger algebra A.

We first outline how the algebra A is defined. For our present investigation of the
rank two case the assumptions in [RS2] can be somewhat simplified. Fix a finite set
A, which is the “alphabet”. Start with a pair of nonzero matrices M1,M2 with entries
M j(b, a) ∈ {0, 1} for a, b ∈ A. For an algebra of the form A(Γ), the alphabet A and
the matrices M1,M2 are defined in Section 2 above.

Let [m, n] denote {m,m + 1, . . . , n}, where m ≤ n are integers. If m, n ∈ Z2, say
that m ≤ n if m j ≤ n j for j = 1, 2, and when m ≤ n, let [m, n] = [m1, n1]×[m2, n2].
In Z2, let 0 denote the zero vector and let e j denote the j-th standard unit basis vector.
If m ∈ Z2

+ = {m ∈ Z2 ; m ≥ 0}, let

Wm =
{

w : [0,m]→ A ; M j

(
w(l + e j),w(l)

)
= 1 whenever l, l + e j ∈ [0,m]

}
and call the elements of Wm words. Let W =

⋃
m∈Z2

+
Wm. We say that a word w ∈Wm

has shape σ(w) = m, and we identify W0 with A in the natural way via the map
w �→ w(0). Define the initial and final maps o : Wm → A and t : Wm → A by
o(w) = w(0) and t(w) = w(m). We assume that the matrices M1, M2 satisfy the
following conditions.
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(H0) Each Mi is a nonzero {0, 1}-matrix.
(H1a) M1M2 = M2M1.
(H1b) M1M2 is a {0, 1}-matrix.
(H2) The directed graph with vertices a ∈ A and directed edges (a, b) whenever

Mi(b, a) = 1 for some i, is irreducible.
(H3) For any nonzero p ∈ Z2, there exists a word w ∈W which is not p-periodic,

i.e. there exists l so that w(l) and w(l + p) are both defined but not equal.

v(5,2)=t(v)

v(5,1)

o(v)=v(0,0) • • • • • •

• • • • • •

• • • • • •

Figure 6: Representation of a two dimensional word v of shape m = (5, 2).

If v ∈ Wm and w ∈ We j with t(v) = o(w) then there exists a unique word vw ∈
Wm+e j such that vw|[0,m] = v and t(vw) = t(w) [RS2, Lemma 1.2]. The word vw is
called the product of v and w.

t(w)

t(v)=o(w)

o(v) • • • • • •

• • • • • •

• • • • • •

• • • • • •

Figure 7: The product word vw, where w ∈We2 .

The C∗-algebra A is the universal C∗-algebra generated by a family of partial
isometries {su,v ; u, v ∈W and t(u) = t(v)} and satisfying the relations

su,v
∗ = sv,u(3.1a)

su,vsv,w = su,w(3.1b)

su,v =
∑

w∈W ;σ(w)=e j ,
o(w)=t(u)=t(v)

suw,vw(3.1c)

su,usv,v = 0 for u, v ∈W0, u �= v.(3.1d)
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It was shown in [RS2] that A is simple, unital, nuclear and purely infinite, and
that it is therefore classified by its K-theory. Moreover the algebra A(Γ) arising from
a discrete group action on the boundary of an Ã2 building is stably isomorphic to the
corresponding algebra A. See Section 5.

By [RS2, Section 6], the stabilized algebra A ⊗K can be constructed as a crossed
product by Z2. The details are as follows. Let C =

⊕
a∈A K(Ha), where Ha is a sepa-

rable infinite dimensional Hilbert space. For each l ∈ Z2
+ there is an endomorphism

αl : C→ C defined by the equation

αl(x) =
∑

w∈Wl

vwxv∗w(3.2)

where vw is a partial isometry with initial space Ho(w) and final space lying inside
Ht(w). For the precise definition we refer to [RS2], where vw is denoted ψ(s ′w,o(w)).

For each m ∈ Z2 let C(m) be an isomorphic copy of C, and for each l ∈ Z2
+, let

α(m)
l : C(m) → C(m+l)

be a copy of αl. Let F = lim−→C(m) be the direct limit of the category of C∗-algebras

with objects C(m) and morphisms αl. Then F is an AF-algebra. Since αl is an endo-
morphism, we may identify C(m) with its image in F ([KR, Proposition 11.4.1]). If
x ∈ C, let x(m) be the corresponding element of C(m). Now A⊗K ∼= F � Z2, so that
K∗(A) = K∗(F � Z2). The action of Z2 on F is defined by two commuting genera-
tors T1, T2, where T j(x(m)) = x(m−e j ), j = 1, 2. We have K0(F) = lim−→K0(C(m)). The
maps T j induce maps (T j)∗ : K0(F)→ K0(F), j = 1, 2.

Remark 3.1 Note that in [RS2] we considered a more general algebra denoted AD,
where D is a nonempty countable set (called the set of “decorations”) and there is an
associated map δ : D → A. The algebra A described above is simply the algebra AA

where D = A and δ is the identity map on A. It was shown in [RS2, Lemma 4.13,
Corollary 4.16] that for any set D of decorations there exists an isomorphism AD ⊗
K ∼= A ⊗ K. The algebra AD therefore has the same K-theory as A, namely the
K-theory of the algebra F � Z2.

4 K-Theory for Rank 2 Cuntz-Krieger Algebras

Consider the chain complex

0←− K0(F)
( 1−T2∗, T1∗−1 )
←−−−−−−−−−− K0(F)⊕ K0(F)

(
1−T1∗
1−T2∗

)
←−−−−−− K0(F)←− 0(4.1)

For j ∈ {0, 1, 2}, denote by H j the j-th homology group of the complex (4.1). In
particular H0 = coker(1− T2∗,T1∗ − 1) and H2 = ker

(
1−T1∗
1−T2∗

)
.

Proposition 4.1 If the group H2 is free abelian then

K0(A) ∼= H0 ⊕ H2,

K1(A) ∼= H1.
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Proof As observed in the introduction, K∗(A) = K∗(F � Z2). It is known that the
Baum-Connes Conjecture with coefficients in an arbitrary C∗-algebra is true for the
group Z2 (and much more generally: [BBV] [Tu] [BCH, Section 9]). This implies
that K∗(F � Z2) coincides with its “γ-part”, and K∗(F � Z2) may be computed as
the limit of a Kasparov spectral sequence [Ka, p. 199, Theorem]. The initial terms
of the spectral sequence are E2

p,q = Hp

(
Z2,Kq(F)

)
, the p-th homology of the group

Z2 with coefficients in the module Kq(F). (See [W, Chapter 5] for an explanation of
spectral sequences and their convergence.) Noting that Kq(F) = 0 for q odd (since
the algebra F is AF), it follows that E2

p,q = 0 for q odd. Also E2
p,q = 0 for p /∈ {0, 1, 2},

and the differential d2 is zero. Thus

E∞p,q = E2
p,q =

{
Hp

(
Z2,Kq(F)

)
if p ∈ {0, 1, 2} and q is even,

0 otherwise.

To clarify notation, write G = Z2 = 〈s, t | st = ts〉. We have a free resolution F of
Z over ZG given by

0←− Z←− ZG
( 1−t, s−1 )
←−−−−−−− ZG⊕ ZG

(
1−s
1−t

)
←−−−−− ZG←− 0

It follows [Br1, Chapter III.1] that H∗
(

G,K0(F)
)
= H∗

(
F⊗G K0(F)

)
is the homol-

ogy of the complex (4.1). Therefore

E∞p,q =

{
Hp if p ∈ {0, 1, 2} and q is even,

0 otherwise.

Convergence of the spectral sequence to K∗(F � Z2) (see [W, Section 5.2]) means
that

K1(F � Z2) = H1(4.2)

and that there is a short exact sequence

0 −→ H0 −→ K0(F � Z2) −→ H2 −→ 0(4.3)

The group H2 is free abelian. Therefore the exact sequence (4.3) splits. This proves
the result

Remark 4.2 Writing A⊗K = F�Z2 = (F�Z)�Z and applying the PV-sequence
of M. Pimsner and D. Voiculescu one obtains (4.3) without using the Kasparov spec-
tral sequence. See [WO, Remarks 9.9.3] for a description of the PV-sequence and
[WO, Exercise 9.K] for an outline of the proof.
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K0(F) −−−−→ K0(F � Z2)

H0

Figure 8

Remark 4.3 From (4.1) one notes that H0 is none other than the Z2-coinvariants of
K0(F). Hence the functorial map K0(F)→ K0(F�Z2) factors through H0 (Figure 8).

It follows from the double application of the PV-sequence (Remark 4.2) that the
maps H0 → K0(F � Z2) of equation (4.3) and Figure 8 coincide. In particular, the
map in Figure 8 is injective.

Remark 4.4 Double application of the PV-sequence is not sufficient to prove the
formula (4.2). However if one generalizes [WO, Exercise 9.K] from Z to Z2 one ob-
tains a proof of (4.2) at a (relatively) low level of K-sophistication.

Choose for each a ∈ A, a minimal projection Pa ∈ K(Ha), and let [Pa] denote the
corresponding class in K0

(
K(Ha)

)
. Then K0

(
K(Ha)

)
∼= Z, with generator [Pa].

Identify ZA with K0(C) =
⊕

a K0

(
K(Ha)

)
via the map (na)a∈A �→

∑
a∈A na[Pa].

The endomorphism αl induces a map (αl)∗ on K0. The following lemma is crucial
for the calculations which follow.

Lemma 4.5 The map (αe j )∗ : K0(C)→ K0(C) is given by the matrix M j : ZA �→ ZA,
j = 1, 2.

Proof Note that (αe j )∗([Pa]) = [αe j (Pa)]. Now

αe j (Pa) =
∑

w∈We j

vwPav∗w =
∑

w∈We j ;o(w)=a

vwPav∗w.

If t(w) = b then vwPavw∗ is a minimal projection in K(Hb), and so its class in
K0

(
K(Hb)

)
equals [Pb]. Therefore

(αe j )∗([Pa]) =
∑

w∈We j ;o(w)=a

[vwPav∗w] =
∑

b;M j (b,a)=1

[Pb].

Consequently

(αe j )∗
(∑

a

na[Pa]
)
=
∑

a

na

∑
b

M j(b, a)[Pb] =
∑

b

(∑
a

M j(b, a)na

)
[Pb].

This proves the result.

Recall that M1 and M2 commute. If l = (l1, l2) ∈ Z2
+ then we write (M1,M2)l =

Ml1
1 Ml2

2 .
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Remark 4.6 The direct limit K0(F) may be constructed explicitly as follows. Con-
sider the set S consisting of all elements (sn)n∈Z2 ∈

⊕
n K0(C(n)) such that there exists

l ∈ Z2, for which sn+e j = M jsn for all n ≥ l, j = 1, 2. Say that two elements (sn)n∈Z2 ,
(tn)n∈Z2 of S are equivalent if there exists l ∈ Z2, for which sn = tn for all n ≥ l. Then
K0(F) = lim−→K0(C(n)) may be identified with S modulo this equivalence relation. We
refer to [Fu, Section 11] for more information about direct limits.

For c ∈ K0(C) = ZA let c(m) ∈ K0(C(m)) be the corresponding element in K0(F),
defined as follows.

c(m) = (sn)n∈Z2 where sn =

{
(M1,M2)(n−m)c if n ≥ m,

0 otherwise.

In particular we identify c(m) with
(

(αl)∗(c)
) (m+l)

for l ∈ Z2
+.

Define γm : K0(C)→ K0(F) by γm(c) = c(m) ∈ K0(F).

Remark 4.7 It follows immediately from the definitions that

1. T j∗γm = γm−e j .

2. γm(c) = γm+l

(
(M1,M2)lc

)
for l ∈ Z2

+.

Lemma 4.8 The following assertions hold.

1. Any element in K0(F) can be written as γm(c) for some m ∈ Z2
+ and c ∈ K0(C).

2. If c ∈ K0(C) and m ∈ Z2 then γm(c) = 0 if and only if (M1,M2)lc = 0 for some
l ∈ Z2

+.
3. T j∗γm(c) = γm(M jc) for j = 1, 2.

Proof Statements (1) and (2) follow from the definitions. To prove (3) note that(
(T j)∗γm

)
(c) = (T j )∗(c(m)) = c(m−e j ) = (M jc)(m) = (γmM j)(c).

Lemma 4.9 For j = 1, 2 the map induced on the following complex by M j acts as the
identity on the homology groups.

0←− K0(C)
( I−M2, M1−I )
←−−−−−−−−− K0(C)⊕ K0(C)

(
I−M1
I−M2

)
←−−−−−− K0(C)←− 0(4.4)

Proof Denote by [ · ] the equivalence classes in the relevant homology groups.

0-homology If c ∈ K0(C), then [c]− [M jc] = [(I −M j)c] = 0, the zero element in
the 0-homology group.

1-homology Let c1, c2 ∈ K0(C) with (I − M2)c1 = (I − M1)c2. Then [(c1, c2)] −
[(M1c1,M1c2)] =

[(
(I−M1)c1, (I−M2)c1

)]
= 0 in the 1-homology group. Likewise

for M2.

2-homology Let c ∈ K0(C) with c = M1c = M2c. Then [c] = [M jc] in the 2-
homology group.
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Lemma 4.10

lim−→
(

K0(C(m))
M j
−→ K0(C(m))

)
= K0(F)

T j∗
−−→ K0(F)

Proof The direct limit of maps makes sense because the diagram

K0(C(m))
(M1,M2)l

−−−−−→ K0(C(m+l))

M j

� �M j

K0(C(m))
(M1,M2)l

−−−−−→ K0(C(m+l))

commutes. The diagram

K0(C(m)) −−−−→ K0(F)

M j

� �T j∗

K0(C(m)) −−−−→ K0(F)

commutes by Lemma 4.8. Since K0(F) = lim−→K0(C(m)) the result follows from the
uniqueness assertion in the universal property of direct limits [Fu, Theorem 11.2].

By Lemma 4.10 we have

0←− K0(F)
( 1−T2∗, T1∗−1 )
←−−−−−−−−−− K0(F)⊕ K0(F)

(
I−T1∗
I−T2∗

)
←−−−−−− K0(F)←− 0

= lim−→
(

0←− K0(C(m))←− K0(C(m))⊕ K0(C(m))←− K0(C(m))←− 0
)

where the map K0(C(m))→ K0(C(m+l)) is given by (M1,M2)l. Now homology is con-
tinuous with respect to direct limits [Sp, Theorems 5.19, 4.17]. Therefore it follows
from Lemma 4.9 that

Hom
(

lim−→
(

0←− K0(C(m))←− K0(C(m))⊕ K0(C(m))←− K0(C(m))←− 0
))

= lim−→

(
Hom

(
0←− K0(C(m))←− K0(C(m))⊕ K0(C(m))←− K0(C(m))←− 0

))
= Hom

(
0←− K0(C)←− K0(C)⊕ K0(C)←− K0(C)←− 0

)
where Hom denotes the homology of the complex. We have proved

Lemma 4.11 The map of complexes in Figure 9 induces isomorphisms of the homology
groups.
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0 ←−−−− K0(F)
( 1−T2∗, T1∗−2)
←−−−−−−−−− K0(F)⊕ K0(F

( 1−T1∗
1−T2∗

)

←−−−−− K0(F) ←−−−− 0

γ0

� (
γ0 0
0 γ0

)

� γ0

�
0 ←−−−− K0C ←−−−−−−−−

( I−M2, M1−I )
K0C⊕ K0(C) ←−−−−

( I−M1
I−M2

)

K0(C) ←−−−− 0

Figure 9

Recall that H j denotes the j-th homology group of the complex (4.1). Lemma 4.11
shows that H j is the j-th homology group of (4.4), i.e. the j-th homology group of
the complex

0←− ZA ( I−M2, M1−I )
←−−−−−−−−− ZA ⊕ ZA

(
I−M1
I−M2

)
←−−−−−− ZA ←− 0(4.5)

Remark 4.12 In particular, H2 is a free abelian group, and so Proposition 4.1 ap-
plies.

Let tor(G) denote the torsion part of the finitely generated abelian group G, and
let rank(G) denote the rank of G; that is the rank of the free abelian part of G (also
sometimes called the torsion-free rank of G).

We have, by definition

1. H0 = coker ( I−M2, M1−I ),
2. H2 = ker

(
I−M1
I−M2

)
,

3. H1 = ker ( I−M2, M1−I ) / im
(

I−M1
I−M2

)
.

The next result determines the K-theory of the algebra A in terms of the matrices
M1 and M2.

Proposition 4.13 The following equalities hold.

rank
(

K0(A)
)
= rank

(
K1(A)

)
= rank

(
coker ( I−M1, I−M2 )

)
+ rank

(
coker ( I−Mt

1, I−Mt
2 )
)

tor
(

K0(A)
)
∼= tor

(
coker ( I−M1, I−M2 )

)
tor
(

K1(A)
)
∼= tor

(
coker ( I−Mt

1, I−Mt
2 )
)
.

In particular K0(A) and K1(A) have the same torsion free parts.

Proof We have rank ker
(

I−M1
I−M2

)
= rank coker ( I−Mt

1, I−Mt
2 ). Hence, by Proposi-

tion 4.1 (and Remark 4.12),

rank
(

K0(A)
)
= rank(H0) + rank(H2)

= rank
(

coker ( I−M1, I−M2 )
)

+ rank
(

coker ( I−Mt
1, I−Mt

2 )
)
.
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Also

rank
(

K1(A)
)
= rank(H1)

= rank
(

ker ( I−M2, M1−I )
)
− rank

(
im
(

I−M1
I−M2

))
= 2n− rank

(
im ( I−M1, I−M2 )

)
− rank

(
im ( I−Mt

1, I−Mt
2 )
)

= rank
(

coker ( I−M1, I−M2 )
)

+ rank
(

coker ( I−Mt
1, I−Mt

2 )
)
.

Since tor(H0) = tor
(

coker ( I−M1, I−M2 )
)

and tor(H2) = 0, it follows that

tor
(

K0(A)
)
= tor

(
coker ( I−M1, I−M2 )

)
.

Finally

tor
(

K1(A)
)
= tor(H1) = tor

(
coker

(
I−M1
I−M2

))
= tor

(
coker ( I−Mt

1, I−Mt
2 )
)

where the last equality follows from the Smith normal form for integer matrices.

5 K-Theory for Boundary Algebras Associated With Ã2 Buildings

Return now to the setup of Section 2. That is, let B be a locally finite affine building
of type Ã2. Let Γ be a group of type rotating automorphisms of B that acts freely on
the vertex set with finitely many orbits. Let A denote the associated finite alphabet
and let M1, M2 be the transition matrices with entries indexed by elements of A.

It was shown in [RS2] that the conditions (H0), (H1a), (H1b) and (H3) of Sec-
tion 3 are satisfied by the matrices M1, M2. It was also proved in [RS2] that condition
(H2) is satisfied if Γ is a lattice subgroup of PGL3(F), where F is a local field of char-
acteristic zero. The proof uses the Howe-Moore Ergodicity Theorem. In forthcoming
work of T. Steger it is shown how to extend the methods of the proof of the Howe-
Moore Theorem and so prove condition (H2) in the stated generality.

It follows from [RS2, Theorem 7.7] that the algebra A(Γ) is stably isomorphic to
the algebra A. Moreover if the group Γ also acts transitively on the vertices of B

(which is the case in the examples of Section 7) then A(Γ) is isomorphic to A.

Lemma 5.1 If M1, M2 are associated with an Ã2 building as in Section 2, then there
is a permutation matrix S : ZA → ZA such that S2 = I and SM1S = Mt

2, SM2S = Mt
1.

In particular coker ( I−M1, I−M2 ) = coker ( I−Mt
1, I−Mt

2 )

Proof Define s : t→ t by s(i)( j, k) = i(1−k, 1− j) for i ∈ T and 0 ≤ j, k ≤ 1. Then
s is the type preserving isometry of t given by reflection in the edge [(0, 1), (1, 0)].
(See Figure 9.) Now define a permutation s : A → A by s(Γi) = Γs(i). If a = Γia,
b = Γib ∈ A then it is clear that M1(b, a) = 1 ⇔ M2

(
s(a), s(b)

)
= 1. The situation

is illustrated, not too cryptically we hope, in Figure 10, where the tiles are located in
the building B and, for example, the tile labeled a is the range of a suitable isometry
ia : t → B with a = Γia. Let S be the permutation matrix corresponding to s. Then
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(0,0)=s(1,1)

(1,1)=s(0,0)

(0,1) (1,0).................................................................................
.........
.........
.........
.........
.........
.........
..................

.........
.........
.........
.........
.........
.........
.................................................................................

Figure 10: The reflection s of a tile t

b

a

M1(b, a) = 1

.................................................................................
.........
.........
.........
.........
.........
.........
..................

.........
.........
.........
.........
.........
.........
..........................................................................................

.........
.........
.........
.........
.........
.........
..........
.........
.........
.........
.........
.........
.........
.........
................................................................................ s(a)

s(b)

M2

(
s(a), s(b)

)
= 1

.................................................................................
.........
.........
.........
.........
.........
.........
..................

.........
.........
.........
.........
.........
.........
..........................................................................................

.........
.........
.........
.........
.........
.........
..........
.........
.........
.........
.........
.........
.........
.........
................................................................................

Figure 11: Reversing transitions between tiles

M1(b, a) = 1 ⇔ SM2S−1(a, b) = 1. Clearly S2 = I. Therefore Mt
1 = SM2S. A

similar argument proves the other equality.
The proof of Theorem 2.1 now follows immediately from Proposition 4.13 and

Lemma 5.1. The next result identifies which of the algebras A(Γ) are rank one alge-
bras.

Corollary 5.2 Continue with the hypotheses of Theorem 2.1. The following are equiv-
alent.

1. The algebra A(Γ) is isomorphic to a rank one Cuntz-Krieger algebra;
2. the algebra A(Γ) is stably isomorphic to a rank one Cuntz-Krieger algebra;
3. the group K0

(
A(Γ)

)
is torsion free.

Proof The K-theory of a rank one Cuntz Krieger algebra OA can be characterized as
follows (see [C1]):

K0(OA) = (finite group)⊕ Zk ; K1(OA) = Zk.

By Theorem 2.1, we have K0 = K1 for the algebra A(Γ). Since stably isomorphic
algebras have the same K-theory, it follows that if A(Γ) is stably isomorphic to a
rank one Cuntz-Krieger algebra then K0

(
A(Γ)

)
is torsion free.

On the other hand, suppose that G0 = K0

(
A(Γ)

)
is torsion free. Let g0 = [1] ∈

G0 be the class in K0 of the identity element of A(Γ). By a result of M. Rordam [Ror,
Proposition 6.6], there exists a simple rank one Cuntz-Krieger algebra OA such that
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K0(OA) = G0 with the class of the identity in OA being g0. Since G0 is torsion free we
necessarily have K1(OA) = G0 and by Theorem 2.1 we also have K1

(
A(Γ)

)
= G0.

Thus K∗
(
A(Γ)

)
= K∗(OA) and the identity elements of the two algebras have the

same image in K0. Since the algebras A(Γ) and OA are purely infinite, simple, nuclear
and satisfy the Universal Coefficient Theorem, it now follows from the Classification
Theorem of [Kir, Ph] that they are isomorphic.

Remark 5.3 Corollary 5.2 can be used (see Remark 8.4) to verify that almost all the
examples of rank 2 Cuntz-Krieger algebras described later are not stably isomorphic
to ordinary (rank 1) Cuntz-Krieger algebras.

6 Reduction of Order

Continue with the assumptions of Section 5. The following lemma will simplify the
calculation of the K-groups, by reducing the order of the matrices involved.

Lemma 6.1 Suppose that M1, M2 are {0, 1}-matrices acting on ZA.

(i) Let Â be a set and let π̂ : A→ Â be a surjection. Suppose that M j(b, a) = M j(b, a ′)

if π̂(a) = π̂(a ′). Let the matrix M̂ j acting on ZÂ be given by M̂ j

(
b̂, π̂(a)

)
=∑

π̂(b)=b̂ M j(b, a). Then the canonical map from ZA onto ZÂ which sends
generators to generators induces an isomorphism from coker ( I−M1, I−M2 ) onto
coker ( I−M̂1, I−M̂2 ).

(ii) Let Ǎ be a set and let π̌ : A→ Ǎ be a surjection. Suppose that M j(b, a) = M j(b ′, a)

if π̌(b) = π̌(b ′). Let the matrix M̌ j acting on ZǍ be given by M̌ j

(
π̌(b), ǎ

)
=∑

π̌(a)=ǎ M j(b, a). Then the canonical map from ZA onto ZǍ which sends
generators to generators induces an isomorphism from coker ( I−M1, I−M2 ) onto
coker ( I−M̌1, I−M̌2 ).

Proof (i) Let (ea)a∈A be the standard set of generators for the free abelian group ZA

and (eâ)â∈Â that of ZÂ. Define the map π : ZA → ZÂ by π(ea) = eπ̂(a). Observe that
the diagram

ZA M j
−−−−→ ZA

π


 
π
ZÂ M̂ j
−−−−→ ZÂ

commutes. Therefore so does the diagram

ZA ⊕ ZA ( I−M1, I−M2 )
−−−−−−−−→ ZA

π⊕π


 
π
ZÂ ⊕ ZÂ ( I−M̂1, I−M̂2 )

−−−−−−−−→ ZÂ
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Hence there is a well defined map of cokernels, which is surjective because π is.
The kernel of π is generated by {ea − ea ′ ; π̂(a) = π̂(a ′)}. Now if π̂(a) = π̂(a ′) then
according to the hypothesis of the lemma, M jea = M jea ′ and so (I−M j)(ea− ea ′) =
ea − ea ′ . Hence the kernel of π is contained in the image of the map ( I−M1, I−M2 ). It
follows by diagram chasing that the map on cokernels is injective.

(ii) The argument in this case is a little harder but similar. Note that the vertical
maps in the diagrams go up rather than down.

We now explain how Lemma 6.1 is used in our calculations to reduce calculations
based on rhomboid tiles to calculations based on triangles. Let t̂ be the model triangle
with vertices {(1, 1), (0, 1), (1, 0)}, which is the upper half of the model tile t. Let T̂

denote the set of type rotating isometries i : t̂→ B, and let Â = Γ \ T̂. We think of Â
as labels for triangles in B, just as A is thought of as labels for parallelograms. Each
type rotating isometry i : t → B restricts to a type rotating isometry ı̂ = i|t̂ : t̂ → B.
Define π̂ : A→ Â by π̂(a) = Γı̂a where a = Γia. It is clear that M j(b, a) = M j(b, a ′)

t.................................................................................
.........
.........
.........
.........
.........
.........
..................

.........
.........
.........
.........
.........
.........
................................................................................. −→

t̂
.........
.........
.........
.........
.........
.........
.........
.................................................................................

Figure 12: The restriction t→ t̂

if π̂(a) = π̂(a ′). This is illustrated in Figure 12 for the case M1(b, a) = 1. Thus the
hypotheses of Lemma 6.1(i) are satisfied.

b

π̂(a)
.................................................................................

.........
.........
.........
.........
.........
.........
..................

.........
.........
.........
.........
.........
.........
..........................................................................................

.........
.........
.........
.........
.........
.........
..........
.........
.........
.........
.........
.........
.........
.........
................................................................................

Figure 13: M1(b, a) = 1

Each matrix M̂ j has entries in {0, 1}. For example Figure 13 illustrates the config-

uration for M̂1(b̂, â) = 1.
Note that although the matrices M̂1 and M̂2 are used to simplify the final compu-

tation, they could not be used to define the algebra A because their product M̂1M̂2

need not have entries in {0, 1}. In fact in the gallery of Figure 14 the triangle labels
â and ĉ do not uniquely determine the triangle label b̂. In other words there is more
than one such two step transition from â to ĉ.
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b̂

â
.................................................................................

.........
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................................................................................

Figure 14: M̂1(b̂, â) = 1

b̂

â

ĉ

.................................................................................
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...............................................................................................................................................................
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.................................................................................

Figure 15: Non uniqueness of two-step transition

Similar arguments apply to the set Ǎ obtained by considering the model trian-
gle ť with vertices {(0, 0), (0, 1), (1, 0)}, which is the lower half of the model tile t

(Figure 15).
The map π̌ : A → Ǎ is induced by the restriction of Figure 15 and one applies

Lemma 6.1(ii) to the resulting matrices M̌1, M̌2. Figure 16 illustrates the configura-
tion for M̌1(b̌, ǎ) = 1.

t.................................................................................
.........
.........
.........
.........
.........
.........
..................

.........
.........
.........
.........
.........
.........
................................................................................. −→

ť

.................................................................................
.........
.........
.........
.........
.........
.........
.........

Figure 16: The restriction t→ ť

The same argument as in Lemma 5.1 shows that there is an isomorphismV : ZÂ →

ZǍ such that M̂1 = V−1M̌2V and vice versa.
We may summarize the preceding discussion as follows.

Corollary 6.2 Assume the notation and hypotheses of Theorem 2.1. Let M̂ j , M̌ j ( j =
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b̌

ǎ
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................................................................................

Figure 17: M̌1(b̌, ǎ) = 1

1, 2) be the matrices defined as above. Then

K0(AD) = K1(AD) = Z2r ⊕ tor
(

coker ( I−M̂1, I−M̂2 )
)

= Z2r ⊕ tor
(

coker ( I−M̌1, I−M̌2 )
)

where r = rank
(

coker ( I−M̂1, I−M̂2 )
)
= rank

(
coker ( I−M̌1, I−M̌2 )

)
.

7 K-Theory for the Boundary Algebra of an Ã2 Group

Now suppose that Γ is an Ã2 group. This means that Γ is a group of automorphisms
of the Ã2 building B which acts freely and transitively in a type rotating manner on
the vertex set of B. IfΩ is the boundary of B then the algebra A = A(Γ) was studied
in [RS1], [RS2, Section 7]. Suppose that the building B has order q. If q = 2 there
are eight Ã2 groups Γ, all of which embed as lattices in a linear group PGL(3, F) over
a local field F. If q = 3 there are 89 possible Ã2 groups, of which 65 do not embed
naturally in linear groups.

The 1-skeleton of B is the Cayley graph of the groupΓwith respect to its canonical
set P of (q2 + q + 1) generators. The set P is identified with the set of points of a finite
projective plane (P, L) and the set of lines L is identified with {x−1 ; x ∈ P}. The
relations satisfied by the elements of P are of the form xyz = 1. There is such a
relation if and only if y ∈ x−1, that is the point y is incident with the line x−1 in the
projective plane (P, L). See [CMSZ] for details.

Since Γ acts freely and transitively on the vertices of B, each element a ∈ A has
a unique representative isometry ia : t → B such that ia(0, 0) = O, the fixed base
vertex of B. We assume for definiteness that the vertex O has type 0. It then fol-
lows that the vertex ia(1, 0) has type 1, ia(0, 1) has type 2 and ia(1, 1) has type 0.
The combinatorics of the finite projective plane (P, L) shows that there are precisely
q(q + 1)(q2 + q + 1) possible choices for ia. That is #(A) = q(q + 1)(q2 + q + 1).
Thinking of the 1-skeleton of B as the Cayley graph of the group Γ with O = e, we
shall identify elements of Γ with vertices of B via γ �→ γ(O).

We now examine the transition matrices M1,M2 in this situation. If a, b ∈ A,
we have M1(b, a) = 1 if and only if there are representative isometries in a and b
respectively whose ranges are tiles which lie as shown in Figure 17. More precisely this
means that the ranges ia(t) and ia(1, 0)b(t) lie in the building as shown in Figure 17,
where they are labeled a and b respectively.
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b

a

O=ia(0,0)

ia(1,0)ia(0,1)

ia(1,1) ia(1,0)ib(1,0)

ia(1,0)ib(1,1)

M1(b, a) = 1
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Figure 18: Transitions between tiles

Lemma 7.1 The {0, 1}-matrices M j ( j = 1, 2) have order #(A) = q(q+1)(q2 +q+1)
and each row or column has precisely q2 nonzero entries.

Proof Suppose that a ∈ A has been chosen. Refer to Figure 17. In the link of the
vertex ia(1, 1), let the vertices of type 1 correspond to points in P and the vertices of
type 2 correspond to lines in L. There are then q + 1 choices for a line incident with
the point ia(0, 1); therefore there are q choices for ia(1, 0)ib(1, 0). After choosing
ia(1, 0)ib(1, 0) there are q choices for the point ia(1, 0)ib(1, 1). That choice deter-
mines b. There are therefore q2 choices for b. This proves that for each a ∈ A, there
are q2 choices for b ∈ A such that M1(b, a) = 1. That is, each column of the matrix
M1 has precisely q2 nonzero entries. A similar argument applies to rows.

In order to compute the K-theory of A = A(Γ), it follows from Section 6 that
we need only compute coker ( I−M̂1, I−M̂2 ) or equivalently coker ( I−M̌1, I−M̌2 ). For
definiteness we deal in detail with the former. We shall see that this reduces the order
of the matrices by a factor of q. Since Γ acts freely and transitively on the vertices of
B, each class â ∈ Â contains a unique representative isometry ı̂a : t → B such that
ı̂a(1, 1) = O, the fixed base vertex of B. The isometry ı̂a is completely determined by
its range which is a triangle in B whose edges are labeled by generators in P, according
to the structure of the 1-skeleton of B as a Cayley graph. In this way the element
â ∈ Â may be identified with an ordered triple (a0, a1, a2), where a0, a1, a2 ∈ P and
a0a1a2 = 1. See Figure 18.
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Figure 19: Representation of â
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Note that in this representation of â there are (q2 + q + 1) choices for a0. Having
chosen a0, there are q + 1 choices for a1, since a1 is incident with a−1

0 . The element a2

is then uniquely determined. This shows that #(Â) = (q + 1)(q2 + q + 1).
Given â ∈ Â, an element b̂ ∈ Â satisfies M̂1(b̂, â) = 1 if and only if the 1-skeleton

of B contains a diagram of the form shown in Figure 19. In terms of the projective
plane (P, L), this diagram is possible if and only if b1 /∈ a−1

1 (q2 choices for b1). Then
b0 is uniquely specified by b−1

0 = b1 ∨ a2, the line containing the points b1 and a2.
This determines b2 and hence b̂. Thus M̂1 is a {0, 1}-matrix of order (q+1)(q2 +q+1),
whose entries are specified by

M̂1(b̂, â) = 1⇔ b1 /∈ a−1
1 , b−1

0 = b1 ∨ a2.(7.1)

In particular for a fixed â ∈ Â we have M̂1(b̂, â) = 1 for precisely q2 choices of b̂ ∈ Â.
That is, each column of the matrix M̂1 has precisely q2 nonzero entries. Analogously,
for a fixed b̂ ∈ Â we have M̂1(b̂, â) = 1 for precisely q2 choices of â ∈ Â. Again refer
to Figure 19. There are precisely q2 choices of the line a−1

1 such that b1 /∈ a−1
1 . Then

a2 is specified by a2 = a−1
1 ∧ b−1

0 and this determines â completely.
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Figure 20: M̂1(b̂, â) = 1

A similar argument shows that the {0, 1}-matrix M̂2 is specified by

M̂2(b̂, â) = 1⇔ a2 /∈ b−1
2 , b0 = a−1

1 ∧ b−1
2 .(7.2)

Using the preceding discussion and the explicit triangle presentations for Ã2

groups given in [CMSZ], we may now proceed to compute the K-theory of the alge-
bra A by means of Corollary 6.2, with “upward pointing” triangles. The authors have
done extensive computations for more than 100 different groups with 2 ≤ q ≤ 11,
including all possible Ã2 groups for q = 2, 3. The complete results are available at
http://maths.newcastle.edu.au/˜guyan/Kcomp.ps.gz or from either of the authors.

Everything above applies mutatis mutandis for “downward pointing” triangles. In
an obvious notation, illustrated in Figure 20, we have

M̌1(b̌, ǎ) = 1⇔ b2 /∈ a−1
2 , a0 = b−1

1 ∧ a−1
2 .(7.3)
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Figure 21: M̌1(b̌, ǎ) = 1

The accuracy of our computations was confirmed by repeating them with “downward
pointing” triangles.

It is convenient to summarize the general structure of the matrices we are consid-
ering.

Lemma 7.2 The {0, 1}-matrices M̂ j , M̌ j ( j = 1, 2) have order #(Â) = (q + 1)(q2 +
q + 1) and each row or column has precisely q2 nonzero entries.

Example 7.3 Consider the following two Ã2 groups, which are both torsion free
lattices in PGL(3,Q2), where Q2 is the field of 2-adic numbers [CMSZ].

The group B.2 of [CMSZ], which we shall denote ΓB.2 has presentation

〈xi, 0 ≤ i ≤ 6 | x0x1x4, x0x2x1, x0x4x2, x1x5x5, x2x3x3, x3x5x6, x4x6x6〉.

The group C.1 of [CMSZ], which we shall denote ΓC.1 has presentation

〈xi, 0 ≤ i ≤ 6 | x0x0x6, x0x2x3, x1x2x6, x1x3x5, x1x5x4, x2x4x5, x3x4x6〉.

These groups are not isomorphic. Indeed the MAGMA computer algebra pack-
age shows that ΓB.2 has a subgroup of index 5, whereas ΓC.1 does not. This non
isomorphism is revealed by the K-theory of the boundary algebras. Performing the
computations above shows that

K0

(
A(ΓB.2)

)
= K1

(
A(ΓB.2)

)
= (Z/2Z)2 ⊕ Z/3Z,

K0

(
A(ΓC.1)

)
= K1

(
A(ΓC.1)

)
= (Z/2Z)4 ⊕ Z/3Z.

These examples are not typical in that K∗ of a boundary algebra usually has a free
abelian component. Note also that in both these cases [1] = 0 in K0

(
A(Γ)

)
. See

Remark 8.4.
On the other hand, using the results of V. Lafforgue [La], the K-theory of the

reduced group C∗-algebras of these groups can easily be computed. The result is the
same for these two groups:

K0

(
C∗r (ΓB.2)

)
= K0

(
C∗r (ΓC.1)

)
= Z,

K1

(
C∗r (ΓB.2)

)
= K1

(
C∗r (ΓC.1)

)
= (Z/2Z)2 ⊕ Z/3Z.
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8 The Class of the Identity in K-Theory

Continue with the assumptions of Section 7; that is Γ is an Ã2 group. Since the
algebras A(Γ) are purely infinite, simple, nuclear and satisfy the Universal Coefficient
Theorem [RS2, Remark 6.5], it follows from the Classification Theorem of [Kir, Ph]
that they are classified by their K-groups together with the class [1] in K0 of the
identity element 1 of A(Γ). It is therefore important to identify this class. We prove
that [1] is a torsion element of K0.

Let i ∈ T, that is, suppose that i : t → B is a type rotating isometry. Let Ω(i)
be the subset of Ω consisting of those boundary points represented by sectors which
originate at i(0, 0) and contain i(t). Clearly Ω(γi) = γΩ(i) for γ ∈ Γ. For each i ∈ t

let 1i be the characteristic function of the set Ω(i).

•
O

a.................................................................................
.........
.........
.........
.........
.........
.........
..........
.........
.........
.........
.........
.........
.........
.........
................................................................................ ...

...
...
...
...
...
...

...
...

...
...

...
...

... ω

Figure 22: 1a(ω) = 1

Lemma 8.1 If i1, i2 ∈ T with Γi1 = Γi2 then [1i1 ] = [1i2 ].

Proof If i1 = γi2 with γ ∈ Γ then the covariance condition for the action of Γ
on C(Ω) implies that 1i1 = γ1i2γ

−1. The result now follows because equivalent
idempotents belong to the same class in K0.

For each a ∈ A let 1a = 1ia . See Figure 21. It follows from the discussion in [CMS,
Section 2] that the identity function in C(Ω) may be expressed as 1 =

∑
a∈A 1a.

Proposition 8.2 In the group K0

(
A(Γ)

)
we have (q2 − 1)[1] = 0.

Proof Referring to Figure 17, we have for each a ∈ A, 1a =
∑

1ia(1,0)ib , where the
sum is over all b ∈ A such that ib(t) lies as shown in Figure 17; that is the sum is over
all b ∈ A such that M1(b, a) = 1. Now by Lemma 8.1, [1ia(1,0)ib ] = [1ib ] = [1b] and
so

[1a] =
∑
b∈A

M1(b, a)[1b].

It follows that
[1] =

∑
a∈A

[1a] =
∑
a∈A

∑
b∈A

M1(b, a)[1b].
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By Lemma 7.1, there are q3(q + 1)(q2 + q + 1) nonzero terms in this double sum and
each term [1b] occurs exactly q2 times. Thus [1] = q2

∑
a∈A[1a] = q2[1], which

proves the result.

Proposition 8.3 For q �≡ 1 (mod 3), q − 1 divides the order of [1]. For q ≡ 1
(mod 3), (q− 1)/3 divides the order of [1].

Proof By [RS2, Theorem 7.7], the algebra A(Γ) is isomorphic to the algebra A,
which is in turn stably isomorphic to the algebra F � Z2 [RS2, Theorem 6.2]. We
refer to Section 1 for notation and terminology. Recall that F = lim−→C(m) where

C(m) ∼=
⊕

a∈A K(Ha). The isomorphism A(Γ) → A has the effect 1a �→ sa,a

and the isomorphism A ⊗ K → F � Z2 sends sa,a ⊗ E1,1 to a minimal projection
Pa ∈ K(Ha) ⊂ C(0) ⊂ F.

As an abelian group in terms of generators and relations, we have

coker ( I−M1, I−M2 ) =
〈

ea ; ea =
∑

b

M j(b, a)eb, j = 1, 2
〉
.(8.1)

By Lemma 4.11 coker ( I−M1, I−M2 ) is isomorphic to H0 = coker(1−T2∗,T1∗−1).
Under this identification,

∑
a∈A ea maps to the coset of [1] ∈ K0(F). By Remark 4.3

that coset maps to [1] ∈ K0(F � Z2) under the injection of (4.3). Thus the order of
[1] ∈ K0(F � Z2) is equal to the order of

∑
a∈A ea in coker ( I−M1, I−M2 ).

Each of the relations in the equation (8.1) expresses a generator ea as the sum
of exactly q2 generators. It follows that there exists a homomorphism ψ from
coker ( I−M1, I−M2 ) to Z/(q2 − 1) which sends each generator to 1 + (q2 − 1)Z. As∑

a∈A ea has q(q + 1)(q2 + q + 1) terms,

ψ
(∑

a∈A

ea

)
≡ q(q + 1)(q2 + q + 1) ≡ 3(q + 1) (mod q2 − 1)

Consequently, the order of ψ(
∑

a∈A ea) is

q2 − 1(
q2 − 1, 3(q + 1)

) = q2 − 1

(q + 1)(q− 1, 3)
=

q− 1

(q− 1, 3)

=

{
q− 1 if q �≡ 1 (mod 3),

(q− 1)/3 if q ≡ 1 (mod 3).

The result follows since the order of
∑

a∈A ea is necessarily a multiple of the order
of ψ(

∑
a∈A ea).

Remark 8.4 Propositions 8.2 and 8.3 give upper and lower bounds for the order of
[1] in K0. The authors have computed the K-groups for the boundary algebras asso-
ciated with more than one hundred different Ã2 groups, for 2 ≤ q ≤ 11. These nu-
merical results strongly suggest that if q �≡ 1 (mod 3) [respectively q ≡ 1 (mod 3)]
then the order of [1] is precisely q − 1 [respectively (q − 1)/3]. Our computational
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results are complete in two cases: if q = 2 the [1] = 0 and if q = 3 then [1] has order
2.

Propositions 8.2 and 8.3 show that if q �= 2, 4 then [1] is a nonzero torsion element
in K0

(
A(Γ)

)
. It follows from Corollary 5.2 that for q �= 2, 4 the corresponding

algebras are not isomorphic to any rank one Cuntz-Krieger algebra. The only group
Γ among the eight groups for q = 2, for which K0

(
A(Γ)

)
is torsion free is the group

B.3. We do not know if such a group exists for q = 4.

References
[BCH] P. Baum, A. Connes and N. Higson, Classifying space for proper actions and K-theory of group

C∗-algebras. In: C∗-algebras 1943–1993, A Fifty Year Celebration, 241–291, Contemporary
Math. 167, Amer. Math. Soc., 1994.
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