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QUASI-CONCAVE FUNCTIONS AND
CONVEX CONVERGENCE TO INFINITY

GERALD BEER

By a convex mode of convergence to infinity {Ck), we mean a sequence of
nonempty closed convex subsets of a normed linear space X such that for each k,

oo

Ck+i C intCfc and f] Ck — %, and a sequence (xn) is X is declared convergent

to infinity with respect to {Ck) provided each Ck contains xn eventually. Positive
convergence to infinity with respect to a pointed cone with nonempty interior as
well as convergence to infinity in a fixed direction fit within this framework. In
this paper we study the representation of convex modes of convergence to infinity
by quasi-concave functions and associated remetrizations of the space.

1. INTRODUCTION

Everyone agrees as to what positive convergence to infinity for a sequence (xn) in
Euclidean space means: for each fixed x, eventually x ^ xn with respect to the usual
componentwise partial order. Put differently, (xn) converges positively to infinity if
eventually xn € x 4- P where P is the cone of nonnegative vectors. Given a closed
pointed cone C for a normed linear space X with nonempty interior, it is thus natural
to declare a sequence (xn) in X positively convergent to infinity if given any x € X we
have xn £ x + C eventually. If we fix x0 € in tC, then (xn) is positively convergent to
infinity if and only if for each k £ Z+, we have xn € kx0 + C eventually. Clearly, this
condition is independent of the choice of the point x0.

Abstracting from this situation, suppose {Ak) is a sequence of nonempty closed
subsets of a (noncompact) metrisable space X such that for each k, Ak+i C

oo

and p) Ak = 0 (note that these sets could all be bounded). We declare a sequence
fc=i

(xn) convergent to infinity relative to (Ak) if each Ak contains xn eventually. Two
such sequences (Ak) and (Bk) will be declared equivalent - and we write (Ak) = (Bk)

- provided for each k € Z+ there exists n S Z+ and j € Z+ such that Ak D Bn and
Bk D Aj. and the induced equivalence classes will be called modes of convergence to

infinity [2]. Convergence of a sequence (a;n) to infinity for such an equivalence class is

Received 24th December, 1998

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/99 SA2.00+0.00.

81

https://doi.org/10.1017/S0004972700033359 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033359


82 G. Beer [2]

independent of representative, and in the sequel we shall freely engage in the abuse of

identifying equivalence classes with their representatives.

One of the first modes of convergence to infinity that comes to mind is convergence

to infinity in distance with respect to an admissible unbounded metric p, where fixing a

point x0 € X, we take Ak = {x € X : p(x, XQ) ^ k}, k = 1, 2, 3, . . . . It is a remarkable

yet simple fact that all modes of convergence to infinity arise in this way. Given a mode

of convergence to infinity (Ak), declare a subset B of X bounded with respect to (Ak)

provided for some k € Z+, we have B n Ak = 0 • It is easy to check that the bounded

sets so defined satisfy all the properties that one expects that the bounded subsets of

a metric space satisfy [2, Theorem 3.2]. Using Urysohn functions [12, p.189], one can

construct a continuous nonnegative function ip : X -4 R such that sup ip(x) < oo if

and only if B is bounded with respect to (Ak) • Then starting with an arbitrary metric

d for X, it is easily seen that p{x,y) = min{d(x,y), l } + \tp(x) -<p(y)\ is an admissible

metric for X and that the p-bounded sets coincide with the sets that are bounded with

respect to (Ak) [12, p.191], which is to say that (Ak) = {x e X : p(x,x0) ^ k} [2,

Corollary 3.3].

We call a function <p as described above a forcing function for (Ak). Evidently, tp

is a forcing function for (Ak) if and only if ({a; : <p{x) ^ fc}) = (Ak), and a sequence

(xn) in X is convergent to infinity with respect to (Ak) if and only if lim <p(xn) — oo
n—*oo

[2]. In the case of positive convergence to infinity in R" a natural forcing function
exists: <p(a\, a2> • • • , <*„) = max {0, min{ai, a2, . . . , an}} • In the case of conver-
gence in distance with respect to an unbounded metric p for a metrisable space X, a
forcing function is f(x) = p(x,Xo) where XQ is a fixed point of X. Often, a mode of
convergence to infinity is most easily described in forcing function form. For example,
in the Euclidean plane, the following forcing function represents positive convergence to
infinity, along with the condition that c*i = 0(0:2) : y(c*i, 02) = min{o!i, a2, ai/cti)

when a i > 0 and 02 > 0 and ip(a\, 0:2) = 0 otherwise.
Returning to the context of a normed linear space X, we call a mode of convergence

to infinity convex if it has a representative (Ck) consisting of convex sets. The purpose
of this article is to show that such modes of convergence to infinity are those that admit
quasi-concave forcing functions, and we show that a uniformly continuous quasi-concave
forcing function exists if and only if a Lipschitz quasi-concave forcing function exists.
Special attention is given to the case of positive convergence to infinity as determined
by a cone with nonempty interior.

2. TERMINOLOGY AND NOTATION

Throughout, X will be a normed linear space with origin 9 and closed unit ball

U. Its continuous dual X* will have origin 8*, and closed unit ball U*. We denote
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the set of norm-one elements of X* by S*.

A function / : X —> (—00,00] is called convex if {(x, a) : x G X, a S R and a ^
f(x)} is a convex subset of X x R , and quasi-convex if for each a € R , the sublevel
set {2; € X : / ( x ) ^ a } is a convex subset of X. We call a function / concave

(respectively, quasi-concave) provided - / is convex (respectively, quasi convex). If A

is a convex subset of X, there are three basic convex functions associated with it. The
distance functional d(-,A) for A is defined by d(x,A) = inf ||a; — a\\. The indicator

function / (• ,A) for A is defined by

( 0 iixeA
I(x,A) = {

[00 if x 0 A.

The support functional s(- ,A) : X* —¥ (—00,00] for A is defined by s(y, A) = sup y(a).

The polar A° of A is defined by A0 = {y € X* : s(y, A) 4 1}. o e A

By a cone C in X we mean a convex subset of X closed under multiplication by
nonnegative scalars. For example, if A is a closed convex set, then {c S X : a + Ac G
.A for some a £ A and all A > 0} is a closed cone called the recession cone of A. A
cone C is called pointed if C D —C = 9. Given pointed cone C, the relation x ^. y
provided y-x £ C defines a partial order on X, and C is called the positive cone with
respect to this order. We denote the set of positive linear functionals on X by C*:

C* = {y G X* : Vz G C, y{x) ^ 0}.

This set is a weak*-closed cone in X*. Clearly, C* = -C° = (-C)°, and by the
Bipolar Theorem

C={xeX: V2/€C*,y(x)^0}

provided C is closed (see, for example, [4, p.222]).

3. DISTANCE FUNCTIONALS FOR CONVEX SETS AND THEIR COMPLEMENTS

A well-known formula in convex analysis gives a dual description of the distance
d(x. A) from a point x in a normed linear space X to a closed convex set A in terms
of the values of the support functional s( •, A) for the set A:

d{x, A) = sup{y(x) - s(y, A):y€U*}.

Since the dual unit ball U* is weak* compact and y S y(x) — s(y,A) is weak* upper
semicontinuous, the "sup" can be replaced by "max". Although this result follows
directly from the separation theorem (see, for example [1, p.30]), there are other ways
to prove this using more elaborate machinery. One proof is based on the representation
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of the distance function d( •, A) as the epi-sum (infimal convolution) of the norm of X

and indicator function I(•, A) of the set A, and since the conjugate of an epi-sum is the

sum of the conjugates, it is easily seen that the above formula is nothing but the second

conjugate of d( •, A) evaluated at x [11, p.62]. A second proof can be given using the

Fenchel-Moreau-Rockafellar Duality Theorem [16, pp.106-107]. Yet a third proof based

on Sion's minimax theorem [15] has been communicated to me by S. Simons: since U*

is weak* compact and (a,y) -> y(x — a) on A x U* is continuous and convex in a and

weak * -continuous and concave in y, we have

max y{x) - s{y, A) = max inf y{x) - y{a)
y£U* y€U* a£A

— inf m a x v ( x — a)

= inf lla; — all.

Still, this dual formula - in essence - is misleading. There are really just two

possibilities for a point x € X relative to A: either x G A, where the max is attained

using the zero element 9* € U*, or x & A, where the max is attained using a norm

one element y of X*. Thus, for x € Ac, we have

d{x, A) = sup y(x) - s(y, A),
yes-

Now suppose A is a closed convex body, that is, int A ^ 0, and also that A ^ X. If

x\ + r-JJ and X2 + riU are contained in A and A € (0,1), then

Xx! + (1 - X)x2 + [An + (1 - X)r2]U C A,

which shows that d( •, Ac) is a concave function on A. But this, too, can be represented
dually. It is a straight-forward exercise to show that for x € A,

d(x,Ac)= inf s(y,A) - y(x),
y€S*

[6, 13], and as a result, the distance to the boundary of a closed convex body is the

absolute value of the convex function A( •, A) : X —> R

A{x, A) = sup y{x) - s{y, A) = d{x, A) - d{x, Ac).
yes*

As a supremum of 1-Lipschitz functions, A is 1-Lipschitz, too. The function A( • ,A)

was introduced by Hirart-Urruty in [8, 9], where he showed that A can be written as
the infimal convolution of the norm with — d( •, Ac) + I(- ,A).

There is one aspect in which the formulas that represent d( •, A) and d( •, Ac) for
a convex body A are not mirror images of one another: whereas in the former case, the
"sup" is a "max", in the latter, the "inf" need not be a "min", even in Hilbert space.
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EXAMPLE. Let A = {x € £2 • Vn e Z+ \x(n)\ < 1 + l/n}. Notice that A is an
unbounded closed convex set containing the closed unit ball. Let {en : n € Z+} be the
usual orthonormal set of vectors in £2- Since bdA = {x 6 A : for some n, \x(n)\ —

1 + l / n } . it is clear that d(9, Ac) = d(9,bdA) = l. We claim that for each norm one
element y of t\ = £2, we have s(y, A) - y(6) = s(y, A) > 1. If y = en for some n, then

fn+1 \ n+l
V n J n

and similarly if y = -en for some n, then s(y,A) > 1. Otherwise, there exists 8 > 0
such that for each n, |2/(n)| < 1 — 6. Define w S 2̂ by

K;(n) <
\ -5/n i f y ( n ) < 0 .

Then y + w £ A and y(io) > 0 so that s(y, A) ^ ?/(j/ + w) = | | j / | | + j/(w) > 1.

Sublevel sets of the distance functional d( •, A) for a (convex) set A are called
outer parallel bodies of A. Formally, if A ^ 0, we shall write B\(A) for {x £ X :

d(x, A) ^ A} . Of course, in a general Banach space the inclusion A + XU C B\(A) may
be proper; the sets A + XU are often called enlargements of A. Following standard
practice in finite dimensions [7, 14], if A is a closed convex body in a normed linear
space X with A ^ X, we call the superlevel sets of the concave functional d( •, Ac)

restricted to A inner parallel bodies of the set A. For notation, if A ̂  0, we write

B-X(A) = {xeA:d(x,Ac)Z A}.

In the case of inner parallel bodies, the result will be empty if A exceeds the in-
radius of the set if that happens to be finite. With respect to Hiriart-Urruty's functional
we have the following simple, attractive formula that we shall use in Section 5:

BX(A) = {x e X : A(z, A) ^ A} (A 6 R).

Although we shall not use them, we note representation formulas for outer and inner
parallel bodies which say that an outer (respectively inner) parallel body of radius A
can be obtained by moving each of the bounding hyperplanes that define the convex
set A out (respectively, in) by a distance A ̂  0:

BX(A) = { i 6 l : Vy e 5*, y(x) ^ s(y, A) + X},

B-X(A) - {x € X : VffG5*, y(x) ^ s(y,A) - X}.

These follow easily from the duality formulas given above.
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4. FORCING FUNCTIONS FOR CONVEX MODES OF CONVERGENCE TO INFINITY

Let (Ck) be a sequence of closed convex ses in a normed linear space X such that
oo

for each k, Ck+i C int Ck and f] Ck = 0 • It is not in general possible to find a forcing
fc=i

ip for (Ck) whose restriction to any Ck is concave. To see this, recall that ip is a forcing
function for (Ck) if and only if for each k £ Z+, there exist integers j and n such that

Ck D {x : ip(x) ^ 7i} and {a; : <p(x) ^ &} D Cj . This in turn forces the sets Ck to

have the common recession cone shared by the superlevel sets of <p [10, p. 180], which

may not a priori be the case. Here is a practical example.

EXAMPLE. Let XQ be a norm one vector in X, and choose yo € S* with yo(xo) = 1.

Then convergence to infinity in the direction x0 is determined by the sequence of closed

convex sets (Knn{x £ X : yo(x) ^ n}) where Kn is the closure of the set of all positive

multiples of elements XQ + U/2n. There is no compatible concave forcing function, as

the recession cones shrink to a single ray.

Evidently, each mode of convergence to infinity that admits a quasi-concave forcing

function (p is convex, for the sequence of convex sets ({x : (p(x) ^ k}) then represents

the mode of convergence. Although the search for a concave forcing function is in

general futile, we aim to show that each convex mode of convergence to infinity (Ck)

always admits a quasi-concave forcing function.

LEMMA 4 . 1 . Let X be a normed linear space, and let A ^ X be a closed convex

body in X. Suppose C is a closed convex set with C C int A. Then there exists a

closed convex body B with C C int B C B C int A.

PROOF: The function / : A -> R defined by f(x) — d(x,C) - d(x,Ac) is contin-
uous and convex. If x € C, then x E int A and so f(x) < 0. If x € bdA, then x g C

and so f(x) > 0. As a result, B = {x £ A : f(x) < 0} does the job. D

PROPOSITION 4 . 2 . Let X be a normed linear space, and let A ^ X be a

closed convex body in X. Suppose C is a closed convex set with C C int A. Then there

exists a quasi-concave continuous function f : X -¥ [0,1] such that f((intA)c) = 0

and f(C) = 1.

PROOF: We repeat the essential construction of Uryshohn's Lemma, using Lemma
4.1 above, with a special twist for the enjoyment of unilateral analysis enthusiasts. We
first take a closed convex body B1/2 such that

C C int i?i/2 C Bi/2 C int A.

Then we choose closed bodies B1/4 and -B3/4 such that

C C int B3/4 C B3/4 C int B1/2
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and

B\/2 C int Bi/4 C Bi/4 c int A.

Continuing our insertions, for each dyadic rational r e (0,1) we produce a closed convex
body Br such that whenever r < p, then

C C int Bp C Bp C int Br C Br C int A.

Define / : X —• [0,1] by }(x) = sup{r : x E i n t5 r } if x belongs to some Br and
f(x) = 0 otherwise. Since C lies inside each Br we have / (C) = 1, and since (int.A)c

meets no set Br we have /((int A)c) — 0. Also, define g : X -> [0,1] by g(x) = inf{s :
x 0 in tS s } if x fails to belong to some B3 and p(x) = 1 otherwise. We leave it to
the reader to show that / = g at each point of X. Continuity of / follows from the
lower semicontinuity of / plus the upper semicontinuity of g, properties that should
be obvious from the formula

f(x) = sup fr(x)
0<r<l

where for each dyadic rational r € (0,1), the function fr is r times the characteristic
function of int Br, and

J 1 if x e fl Bs

I inf gs(x) otherwise,
V O<S<1

where for each dyadic rational s € (0,1), the function gs is s times the characteristic

function of (intBs)
c. Finally, for each a 6 (0,1], {x : f(x) ^ a } = f] i n t S r which is

a convex set, and so / is quasi-concave. D

THEOREM 4 . 3 . Suppose {Ck) is a sequence of nonempty closed convex subsets
oo

of a normed linear X such that for each k, Ck+i C intCfc and f\ Ck = 0. Then there
exists a quasi-concave forcing function ip for (Ck) • ~

PROOF: Without loss of generality, we may assume that C\ is a proper subset of

X. By Proposition 4.2, for each k € Z+ there is a continuous quasi-concave function
fk • X -> [k - 1, k] such that

f(x) = S k ~ 1 i f 2 ; e ( i n t C f c ) C

[ k if x € Ck+i •

Now define a nonnegative function y on X by

fk(x) if x € Cfc n ( intCf c + i) c for k > 2 .
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Since fk(x) = fk+i(x) — k whenever x € bdCk+i, tp is well-defined. Now the family

{(mtC2)c} U {Ck n (intC*+1)c : A = 2, 3, 4, . . . }

forms a locally finite closed cover of X, and as the restriction of tp to each closed

set in the family is continuous, tp is globally continuous [5, p.83]. Furthermore, tp

is quasi-concave, for if a ^ 0, then {x : tp{x) ^ a } = X, and if a > 0, then

{a; : <p(x) ^ a} = {a; : fk(x) #= a } where k is the smallest integer such that k ^ a.

Finally, if A; is a positive integer, then Ck D {x : tp{x) ^ k} D Ck+i, from which it

follows that ip is a forcing function for (Ck) • D

We now turn to necessary and sufficient conditions for the existence of a Lipschitz

continuous quasi-concave forcing function for a convex mode of convergence to infinity.

The result we give is anticipated by [2, Theorem 4.2] that is valid in general metric

space: However, the construction of the forcing function therein involves a sum of

functions, and quasi-concavity is not preserved by sums.

THEOREM 4 . 4 . Suppose (Ck) is a sequence of nonempty closed convex subsets
oo

of a normed linear X such that for each k, Ck+i C intC* and f] Ck = 0. The

following conditions are equivalent: ~

(1) (Ck) admits a uniformly continuous quasi-concave forcing function tp;

(2) there exists d > 0 such that for all k £ Z+ there exists n > k with

Ck DCn + SU;

(3) for all k € Z+ and r > 0, 5_r(Cfc) contains Cn for all sufficiently large

n;

(4) (Ck) admits a Lipschitz continuous quasi-concave forcing function tp.

PROOF: (1) => (2) Choose by uniform continuity of tp a number 5 > 0 such that
whenever \\x - w\\ ^ 5, then \tp(x) - tp(w)\ < 1. Fix k € Z+ and choose r > 0 such
that {a: : tp(x) ^ r} c Ck- Then choose n > k such that {x : tp(x) ^ r + l } D Cn. If
w 6 Cn and x g Ck, we have tp(w) - tp(x) ^ (r + 1) - r = 1 and so ||a,- - u>|| > 5. We
conclude that (Cn + SU) n C£ = 0, as required.

(2) => (3) Choose j € Z+ such that jS > r, and then by repeatedly applying

(2) choose a positive integer no > k such that Ck D Cno + j6U. For each n > no we

have Cn C {x : d(x, Cf.) ^ r } , as required.

(3) => (4) By passing to a subsequence, we may assume that C\ ^ X and that

for each n € Z+, C n + 1 C -B_i(Cn). For each n € Z + , define /„ : X -> [0, oo) by

fn(x) = max{n, d(x, C°)} - max{n, -A(x,Cn)}

where A(- , Cn) is the Hirart-Urruty functional. Since A(- , Cn) is convex and

1-Lipschitz, each / „ is quasi-concave and is 1-Lipschitz. Now let tp = inf fn. Then
Z+
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ip is quasi-concave, and as ip is the infimum of a family of 1-Lipschitz functions that is

somewhere finite, <p is 1-Lipschitz.

We now verify that ip is a forcing function for (Ck). First, if a; £ Ck, then

d(x, CD = 0 and so (p(x) ̂  fk(x) = k < k + 1. This shows that {x : (p(x) > k + l} c
Ck • On the other hand, suppose x € Cik • If n <2k, then d(x, C£) ^ 2k - n and so

fn(x) ^ max{n, 2& - n} J? fc (1 ^ n < 2k).

On the other hand, if n > 2fc then fn(x) ^ 2k > k. As a result, <p(x) = inf /n(a;) ^ fc

which shows that {a; : <p{x) Js &} D C2k-

(4) => (1) This is trivial. D

From Theorem 4.4, no Lipschitz forcing function exists for the following convex

mode of convergence to infinity in the plane:

({(0:1,0:2) : o i > 0, a2 > 0 and a\a2 ^ k}).

5. POSITIVE CONVERGENCE TO INFINITY

Let C be a closed pointed cone in a normed linear space X with nonempty inte-
rior. Recall from Section 1 that positive convergence to infinity as determined by C is
represented by the sequence (kxo + C) where xo is an arbitrary point of int C. As we
shall set in Proposition 5.4 below, the bounded sets with respect to positive convergence
to infinity are those that fit the following:

DEFINITION: Let X be a normed linear space with positive cone C. We call a
subset A of X iso-bounded above with respect to C provided A — C 9̂  X.

This concept was considered by Borwein, Penot and Thera [3] in their study of
convex mappings into an ordered topological vector space. A subset A is not iso-
bounded above provided for each x 6 X there exists a £ A such that a J? x, and in
this case the authors wrote isosup A — 00. Of course, a subset A of X is called order

bounded above if for some XQ 6 X, A C XQ — C . If no such XQ exists, then it is standard
to write supvl = 00. In this section, we display natural forcing functions for positive
convergence to infinity and for the non-convex mode of convergence to infinity whose
bounded sets are those that are order bounded above. It turns out that there is no need
to assume that the cone C is pointed, only that int C ^ 0 and C ^ X. We shall not
explicitly state that C ^= X in the sequel, but this is to be understood.

The analysis is facilitated by introducing two auxiliary 1-Lipschitz functions asso-
ciated with the cone C:

g(x)=mf{y(x):y€C*nS*}
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and

h(x) = sup{y(a;) : y € C* D 5*}.

Obviously, g is concave and positively homogeneous, whereas h is convex and positively

homogeneous. Let us first express these in terms of the Hirart-Urruty functional.

LEMMA 5 . 1 . Let C be a closed convex cone in a normed linear space X with

nonempty interior. Then h — A(-, —C) and g = - A ( • ,C). In particular, h(x) ^ 0 if

and only if x € —C and g(x) ^ 0 if and only if x 6 C.

PROOF: We just verify the first statement. Since s(y, -C) is finite if and only if

y £ (-C)° = C, we have for x € X

A(a;, -C) = sup{y{x) - s{y, -C) : y e S*}

{/(z) -Q:y£C*nS*} = h(x).

That h(x) ^ 0 if and only if x € -C is a restatement of the Bipolar Theorem;

alternatively, it follows from the formula A (re, —C) = d(x, —C) - d(x, {—C)c). D

We first show that each translate of C by an element of int C contains a superlevel
set of g and vice versa, whereas each such translate of -C is contained in a sublevel
set of h and vice versa. Of course, these inclusion properties separately force C to have
nonempty interior, and so there is no hope to obtain such properties more generally.
These facts allow us to characterise usefully upper boundedness in several ways. We
then use g (respectively h) to produce a metric uniformly equivalent to the metric
determined by the initial norm whose bounded sets coincide with the iso-upper bounded
sets (respectively, order upper bounded sets).

LEMMA 5 . 2 . Let C be a closed convex cone in a normed linear space X with
nonempty interior, and let xo € intC with ||a;o|| = 1- Then for each k £ Z+ there
exist integers n and j such that

(1) kxo + CDB.n{C);
(2) B.k(C)

PROOF: For (1), we show that the choice n = k does the job. We first observe that
because g is 1-Lipschitz and g(0) = 0, we have g(— XQ) ^ —1. Also, since g is concave
and positively homogeneous, g is super-additive. Thus, if x € C and d(x,Cc) ^ k,

Lemma 5.1 yields

g(x - kx0) > g(x) + g(-kxQ) ^ g(x) -k^k-k-O.

By L e m m a 5.1 aga in , we h a v e x - kxo G C , a n d s o i E kx0 + C. For (2) , choose
j £ Z+ such that jd(xo,Cc) ^ k. Now if x € jx0 + C, then as x - jx0 € C the
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definition of C* gives

g[x) = M{y(jx0) + y(sr - jx0) :y£C*nS*}

= J9(x0) = jd(x0, Cc) ^ k.

By Lemma 5.1, this shows that B-k(C) D JXQ + C, and completes the proof. D

LEMMA 5 . 3 . Let C be a closed convex cone in a normed linear space X with

nonempty interior, and let x$ S intC with \\xo\\ = 1. Then for each k € Z+ there

exist integers n and j such that

(1) nx0 - C D Bk{-C);

(2) Bj(-C) D kx0 - C.

PROOF: For (1), choose n such that g(nx0) — ng(xo) > k. Now if a; € S^ ( -C) ,
then by Lemma 5.1, we have h(x) < k. Thus, for each y e C*, we. have

y(nx0 - x) = y(nx0) - y(x) ^ g{nx0) - h(x) ^ 0.

By the Bipolar Theorem, nx0 - x € C and so nxo - C D

For (2), because h is 1-Lipschitz and h(9) = 0, we have h(kxo) ^ k \\xo\\ — k and

if x 6 kx0 - C, then h(x) ^ h(kx0) • Thus, kxo-C C Bk{-C). D

PROPOSITION 5 . 4 . Let X be a normed linear space ordered by a closed cone
C with nonempty interior. Let A be a subset of X. The following conditions are
equivalent:

(1) A is iso-bounded above;

(2) for each XQ 6 intC there exists k £ Z+ such that AD (kx0 + C) = 0;
(3) there exist n e Z+ such that B-n{C) ("I A = 0;
(4) sup g{x) < oc.

PROOF: (1) => (2) Since A is iso-bounded above, there exists x € X such that

A n (x + C) — 0. Fix xQ e intC and choose k E Z+ so large that x0 - (x/k) € C.

Since C = kC, we have A;x0 6 i + C, and so kx0 + Ccx + C + C — x + C. As a

result, we have A n (fcrco + C) = 0.

(2) => (3) Fix x0 € intC with ||a;o|| = 1 and choose k € Z+ such that An

(kx0 + C) = 0. By Lemma 5.2 we can find a positive integer n such that kx0 + C D

B_ n (C), and so i?_n (C) n A = 0.

(3) z^ (4) If a; g B_ n (C) , then either i ^ C o n e C and d(x,Cc) < n. Since

g(x) < 0 for a; £ C, and #(a:) = d(x,Cc) for a; e C, we have

sup.9(3;) ^ max{0, sup ^(a;)} ^ n.
6A' 6>lnC
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(4) =>• (1) Choose k £ Z + such that supg(a:) < k. Fix x0 £ intC with

||a;o|| = 1- By Lemma 5.2 there exists j £ Z + such that £?_fc(C) D jxo + C, and
it follows that JXQ 0 A — C. Thus, A is iso-bounded above. D

Note that the equivalence of conditions (1) and (4) says that x -t max{0,5(2;)} =

d(x, Cc) is a (quasi-concave) forcing function for positive convergence to infinity.

Essentially, this is the assertion of [3, Lemma 1.1] established using the machinery

of order-unit seminorms [4, p.230] under the assumption of normality of C. But here

we do not assume normality, and do not renorm the space.

The proof of the following analogue for order upper boundedness based on Lemma

5.3 is left to the reader. The equivalence of conditions (1) and (2) says that the

sets which are order bounded above are the bounded sets determined by the mode

of convergence to infinity ((kxo - int C)c), and the equivalence of (1) and (4) says that

x —> d(x, —C) is a compatible forcing function.

PROPOSITION 5 . 5 . Let X be a normed linear space ordered by a closed cone

C with nonempty interior. Let A be a subset of X. The following conditions are

equivalent:

(1) A is order bounded above;

(2) for each xo 6 int C there exists k € Z+ such that A C fcx'o — C;

(3) there exist n £ Z+ such that Bn(-C) D A;

(4) sup h(x) < oo.
xeA

Upper boundedness of the functions g and h on a convex set may be recast dually
as follows.

PROPOSITION 5 . 6 . Let X be a normed linear space ordered by a closed cone

C with nonempty interior. Let A be a convex subset of X. Then:

(1) 4̂ is iso-bounded above if and only if for some A > 0 we have {XA)° n

(2) A is order bounded above if and only if for some A > 0 we have (A.4)° D

C'nS*.

PROOF: For (1), suppose A is iso-bounded above. Let xo £ in tC, and choose

k € Z+ such that A n (kx0 + C) = 0. By the separation theorem, there exists j / g S '

such that
sup{y(a) : a £ ,4} ^ inf{y(x) : x € kx0 + C}.

Clearly, y G C*, else mi{y(x) : x e kx0 + C} = - c o . Choosing A > 0 such that
Asup{y(a) : a e A} ^ 1, we see that y £ (XA)° n ( C ' n S ' ) . Conversely, if y €
(Ai4)° n (C* OS*), then sup y(x) ^ A"1 and so supg(x) ^ A"1. By Proposition 5.4,

eA £A
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A is iso-bounded above.

For (2), suppose A is order upper bounded. Choose by Proposition 5.5 A > 0

such that suph(x) < A"1. Then for each y S C* C\ S*, we have s(y,XA) < 1 and so
xeA

y E {XA)°. Conversely, if for some A > 0 we have (A.4)0 D C* D S*, then for each

y E C* n 5* we have sup y(x) < A"1 so that
xeA

sup supt/(x) = sup sup y(x)

= sup h(x) $J A"1.

This proves that A is order upper bounded. D

For completeness, we present two remetrisation theorems in the spirit of [12]. As
the proofs are almost identical modulo replacing g by h, we only provide one for the
first.

THEOREM 5 . 7 . Let X be a normed linear space ordered by a closed cone C
with nonempty interior. Then the metric p on X defined by

p(x, w) = min{||a; - w||, 1} + \d(x, Cc) - d(w, Cc)\

is uniformly equivalent to the metric of the initial norm on X, and the p-bounded

subsets coincide with the iso-upper bounded subsets of X as determined by C.

PROOF: Denote the metric determined by the norm by d. By the uniform con-
tinuity of distance functionals, p is uniformly equivalent to d. Since d(9, Cc) = 0,
Lemma 5.1 tells us that p(6,x) = min{||a;||, l } + max{0,g(x)}, where as usual

g(x)=ini{y(x):y&C*nS*}.

Thus, if A C {x : p(x, 6) ^ r } , then for each o € A, we have max{0, <?(a)} ^ r and so
sup<?(a) ^ r . Thus, A is iso-bounded above. Conversely, if A is iso-bounded above,
oG/l

then for some r > 0, sup 17(2;) ^ r and so A C {x : p(x,6) ^ r + l } . D

THEOREM 5 . 8 . Let X be a normed linear space ordered by a closed cone C

with nonempty interior. Then the metric p on X defined by

p(x,w) = min{| |a;-io| | , l} + \d(x,-C) -d(w,-C)\

is uniformly equivalent to the metric of the initial norm, and the p-bounded subsets
coincide with the order upper bounded subsets of X as determined by C.
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