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Abstract

In this paper we present new explicit simultaneous rational approximations which converge
subexponentially to the values of the Bell polynomials at the points

(γ, 1!(2a + 1)ζ(2), 2!ζ(3), . . . , (m − 1)!(a + 1 + (−1)ma)ζ(m))

where m = 1, 2, . . . , a, a ∈ N, γ is Euler’s constant and ζ is the Riemann zeta function.
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1. Introduction

In 2007 Aptekarev and his collaborators (see [1, 13]) discovered a sequence of rational
approximations p̃n/q̃n converging to Euler’s constant

γ = lim
k→∞

(
1 +

1
2

+ · · · +
1
k
− log k

)
subexponentially. More precisely, the numerators p̃n and denominators q̃n of these
approximations are positive integers generated by the recurrence relation

(16n − 15)q̃n+1 = (128n3 + 40n2 − 82n − 45)q̃n

− n2(256n3 − 240n2 + 64n − 7)q̃n−1 + n2(n − 1)2(16n + 1)q̃n−2
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with the initial conditions

p̃0 = 0, p̃1 = 2, p̃2 = 31,

q̃0 = 1, q̃1 = 3, q̃2 = 50

and the asymptotics

q̃n = (2n)!
e
√

2n

4
√

n

(
1

√
π(4e)3/8

+ O(n−1/2)
)
,

p̃n − γq̃n = (2n)!
e−
√

2n

4
√

n

(
2
√
π

(4e)3/8
+ O(n−1/2)

)
.

(1.1)

The present authors (see [7]) found explicit representations for these sequences:

q̃n =

n∑
k=0

(
n
k

)2

(n + k)!, p̃n =

n∑
k=0

(
n
k

)2

(n + k)!(Hn+k + 2Hn−k − 2Hk) (1.2)

where Hn =
∑n

k=1 1/k is the nth harmonic number and H0 := 0. Formulas (1.2) imply
that q̃n and p̃n are integers divisible by n! and n!/Dn, respectively. Here Dn denotes
the least common multiple of the numbers 1, 2, . . . , n. The linear forms p̃n − γq̃n do
not tend to zero even after cancelation of their coefficients by the large common factor
n!/Dn. Therefore this construction does not allow one to prove the irrationality of
γ, which is still an open problem. Nevertheless, the construction (1.1) present good
rational approximations to Euler’s constant as n→∞:

p̃n

q̃n
− γ = 2πe−2

√
2n(1 + O(n−1/2)).

In 2009 Rivoal (see [12]) found another way of rationally approximating the Euler
constant γ, viewed as −Γ′(1), where Γ is the usual gamma function. His construction
is based on the following third-order recurrence:

(n + 3)2(8n + 11)(8n + 19)yn+3 = (n + 3)(8n + 11)(24n2 + 145n + 215)yn+2

− (8n + 27)(24n3 + 105n2 + 124n + 25)yn+1

+ (n + 2)2(8n + 19)(8n + 27)yn,

which provides two sequences of rational numbers Pn and Qn for n ≥ 0 with the initial
values

P0 = −1, P1 = 4, P2 = 77/4,

Q0 = 1, Q1 = 7, Q2 = 65/2

such that Pn/Qn converges to γ. The sequences Pn and Qn satisfy the inclusions (see [8,
Corollary 5])

n! Qn, n! DnPn ∈ Z
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and provide better approximations to γ,∣∣∣∣∣ Pn

Qn
− γ

∣∣∣∣∣ ≤ c0e−9/2n2/3+3/2n1/3
, |Qn| = O(e3n2/3−n1/3

),

as n→∞. Unfortunately this convergence is not fast enough to imply the irrationality
of γ.

In [12] Rivoal also considered a more general construction based on simultaneous
Padé approximants to Euler’s functions,

Es(z) =

∫ ∞

0

log(t)s−1 e−t

z − t
dt, s ∈ N, z ∈ C \ [0, +∞).

This approach allows one, in principle, to find rational approximations to some other
constants related to higher derivatives of the gamma function Γ(n)(1) for n ≥ 2. Note
that Γ(n)(1) can be written as (see [3, p. 175])

Γ(n)(1) = Yn(−γ, ζ(2), −2!ζ(3), . . . , (−1)n(n − 1)!ζ(n))

where Yn is the Bell polynomial whose definition and basic properties are given below.
Unfortunately the details of this construction rapidly become very complicated and
Rivoal presented explicit rational approximations for only two numbers γ and

ζ(2) − γ2 = Γ′′(1) − 2Γ′(1)2.

More precisely, Rivoal constructed a sixth-order linear recurrence with polynomial
coefficients of degree 25 which has three solutions {a1,n}n≥0, {a2,n}n≥0, and {bn}n≥0 such
that a1,n, a2,n, bn ∈ (1/(3n)!(3n + 2)!)Z and∣∣∣∣∣γ − a1,n

bn

∣∣∣∣∣� 1
n3/8bn

,

∣∣∣∣∣ζ(2) − γ2 −
a2,n

bn

∣∣∣∣∣� 1
n3/8bn

and
|bn| ∼

c0

n3/8
exp(4

√
2n3/4 − 5

√
2/8n1/4)

as n→∞, where c0 is some positive constant independent of n. Notice that the better
inclusions, namely, n!2bn, Dnn!2a1,n, D2

nn!2a2,n ∈ Z, were proved in [8, Corollary 6].
Recently (see [6]) the authors gave a new interpretation of Aptekarev’s

approximations to Euler’s constant in terms of Meijer G-functions and hypergeometric
type series. This enabled them to find new rational approximations to γ generated by
a second-order inhomogeneous linear recurrence with polynomial coefficients. The
denominators and numerators of these approximations are given by the formulas

qn =

n∑
k=0

(
n
k

)2

k!, pn =

n∑
k=0

(
n
k

)2

k!(2Hn−k − Hk).

https://doi.org/10.1017/S1446788712000134 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000134


74 Kh. Hessami Pilehrood and T. Hessami Pilehrood [4]

The sequence {qn}n≥0 satisfies the second-order homogeneous linear recurrence

qn+2 − 2(n + 2)qn+1 + (n + 1)2qn = 0

with q0 = 1 and q1 = 2, and the sequence {pn}n≥0 is a solution of the second-order
inhomogeneous linear recurrence

pn+2 − 2(n + 2)pn+1 + (n + 1)2 pn = −
n

n + 2

with p0 = 0 and p1 = 1. Moreover,

pn

qn
− γ = e−4

√
n(2π + O(n−1/2))

as n→∞ and

qn = n!
e2
√

n

n1/4

( 1

2
√
πe

+ O(n−1/2)
)

as n→∞.
In this paper we generalize the constructions from our work in [6] and explicitly

present new simultaneous rational approximations converging subexponentially to the
values of Bell polynomials at the points of the form

(γ, 1!(2a + 1)ζ(2), 2!ζ(3), . . . , (m − 1)!(a + 1 + (−1)ma)ζ(m))

for m = 1, 2, . . . , a and a ∈ N. Note that our approach is different from that of Rivoal
and is based upon the application of Meijer G-functions and complex integrals.

We begin by recalling several known facts about the Bell polynomials. The
exponential (complete) Bell polynomials (first effectively studied by Bell (see [2])
and named in his honor) are the polynomials Yn(x1, . . . , xn) in an infinite number of
variables x1, x2, . . . defined by the formal series expansion (see [3, Section 3.3]):

exp
( ∞∑

m=1

xm
tm

m!

)
=

∞∑
n=0

Yn(x1, x2, . . . , xn)
tn

n!
. (1.3)

An explicit representation of Yn is given by (see [2, p. 264])

Yn(x1, . . . , xn) =
∑
π(n)

n!
k1! · · · kn!

( x1

1!

)k1

· · ·

( xn

n!

)kn

where the summation is taken over all partitions π(n) of n, that is, over all n-tuples of
nonnegative integers (k1, . . . , kn) such that

n∑
j=1

jk j = n.
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The Bell polynomials satisfy the following recurrence relation (see [2, p. 263]):

Yn+1(x1, . . . , xn+1) =

n∑
k=0

(
n
k

)
xk+1Yn−k(x1, . . . , xn−k), n ≥ 0, Y0 = 1,

which implies immediately that the complete Bell polynomials have integer
coefficients and therefore

n!
1!k1 k1!2!k2 k2! · · · n!kn kn!

∈ Z (1.4)

for k1, . . . , kn as above. The first six complete Bell polynomials are as follows:

Y0 = 1, Y1(x1) = x1, Y2(x1, x2) = x2
1 + x2, Y3(x1, x2, x3) = x3

1 + 3x1x2 + x3,

Y4(x1, x2, x3, x4) = x4
1 + 6x2

1x2 + 4x1x3 + 3x2
2 + x4,

Y5(x1, x2, x3, x4, x5) = x5
1 + 10x3

1x2 + 10x2
1x3 + 15x1x2

2 + 5x1x4 + 10x2x3 + x5.

Let x1, x2, . . . , xn, . . . , y1, y2, . . . , yn, . . . , be two infinite sequences of independent
variables. Then we may easily deduce the addition theorem (see [2, p. 265])

Yn(x1 + y1, . . . , xn + yn) = [Y(x) + Y(y)]n

from (1.3). In ordinary notation this is equivalent to

Yn(x1 + y1, . . . , xn + yn) =

n∑
k=0

(
n
k

)
Yk(x1, . . . , xk)Yn−k(y1, . . . , yn−k). (1.5)

The Bell polynomials play an important role in taking the nth derivative of a
composite function. That is, the nth derivative of the function e f (x) can be expressed in
terms of known quantities by( d

dx

)n

e f (x) = e f (x) · Yn( f ′(x), f ′′(x), . . . , f (n)(x)). (1.6)

This formula is also known as Faà di Bruno’s formula for the nth derivative of the
composite function.

As usual, let (λ)m be the Pochhammer symbol (or the shifted factorial) defined by
(λ)0 = 1 and

(λ)m = λ(λ + 1) · · · (λ + m − 1)

for m ≥ 1 and let H(m)
n be a generalized harmonic number given by H(m)

n =
∑n

k=1 1/km

and H(1)
n = Hn.

We are now able to formulate our main result.

T 1.1. Let a ≥ 2 be an integer. For µ = 1, 2, . . . , a − 1 and any nonnegative
integer n define the following sequences of rational numbers:

qn :=
n∑

k=0

(
n
k

)a

k! ∈ Z, pn,µ :=
n∑

k=0

(
n
k

)a

k! Yµ(r1(k), r2(k), . . . , rµ(k)) ∈ Q (1.7)

https://doi.org/10.1017/S1446788712000134 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000134


76 Kh. Hessami Pilehrood and T. Hessami Pilehrood [6]

where

rm(k) := (m − 1)!(aH(m)
n−k + (−1)m(a − 1)H(m)

k ) (1.8)

for k = 0, 1, . . . , n. Let

αµ := Yµ(γ, 1!(2a − 1)ζ(2), 2!ζ(3), . . . , (µ − 1)!(a + (−1)µ(a − 1))ζ(µ)).

Suppose that the coefficients bm(a) are defined by the expansion

−a log
(
1 +

a∑
m=1

(2 − m+1
a )m

(m + 1)!
zm

)
−

a∑
m=1

(2 − m
a )m−1

m!
zm =

a∑
m=1

bm(a)zm + O(za+1) (1.9)

for |z| < 1. In particular,

b1(a) = −a, b2(a) = (1 − a)/2, b3(a) = (1 − a)(2a − 3)/(6a).

Then for every µ = 1, 2, . . . , a − 1 there exists a positive constant cµ = cµ(a) such that
for any nonnegative integer n,

|pn,µ − qnαµ| ≤
cµn!

na/2+1/(2a)
exp

(a−1∑
m=1

(−1)mbm(a) cos(2πm/a)n1−m/a
)
.

Moreover, Dµ
n · pn,µ ∈ Z where Dn denotes the least common multiple of the numbers

1, 2, . . . , n and the following asymptotic formula holds:

qn =
n!

√
a(2π)(a−1)/2 na/2+1/(2a)

exp
( a∑

m=1

(−1)mbm(a)n1−m/a
)
(1 + O(n−1/a))

as n→∞.

The sequences {pn,µ/qn}n≥0 for µ = 1, 2, . . . , a − 1 provide good simultaneous
rational approximations converging subexponentially to the numbers αµ. Note that

α1 = γ, α2 = γ2 + (2a − 1)ζ(2), α3 = γ3 + (6a − 3)γζ(2) + 2ζ(3), . . . .

C 1.2. Let a ≥ 2 be an integer. Then for µ = 1, 2, . . . , a − 1,

∣∣∣∣∣αµ − pn,µ

qn

∣∣∣∣∣ ≤ cµ exp
(a−1∑

m=1

(−1)mbm(a)(cos(2πm/a) − 1)n1−m/a
)

< exp(a(cos(2π/a) − 1)n1−1/a(1 + o(1)))

where cµ = cµ(a) is a positive constant independent of n.
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In particular, for Euler’s constant we have the following corollary.

C 1.3. Let a ≥ 2 be an integer. Let the sequence {qn}n≥0 be defined as in (1.7)
and let

pn =

n∑
k=0

(
n
k

)a

k!(aHn−k − (a − 1)Hk)

for n ≥ 0. Then ∣∣∣∣∣γ − pn

qn

∣∣∣∣∣ < ea(cos(2π/a)−1)n1−1/a(1+o(1)).

We now consider several examples. For a = 2 our construction gives the rational
approximations to Euler’s constant studied in [6].

E 1.4. For a = 3 we define three sequences

qn =

n∑
k=0

(
n
k

)3

k!, pn,1 =

n∑
k=0

(
n
k

)3

k!(3Hn−k − 2Hk),

pn,2 =

n∑
k=0

(
n
k

)3

k!((3Hn−k − 2Hk)2 + 3H(2)
n−k + 2H(2)

k ).

Then ∣∣∣∣∣γ − pn,1

qn

∣∣∣∣∣ < c1e−9/2n2/3+3/2n1/3
,

∣∣∣∣∣γ2 + 5ζ(2) −
pn,2

qn

∣∣∣∣∣ < c2e−9/2n2/3+3/2n1/3
,

and

qn =
n!

n5/3
e3n2/3−n1/3

( e1/3

2π
√

3
+ O(n−1/3)

)
as n→∞. Applying Zeilberger’s algorithm of creative telescoping (see [11]), it is
possible to show (using the same argument as in [6, Lemma 1]) that the sequences
pn,1, qn are solutions of the third-order homogeneous linear recurrence

(n + 1)(8n − 9) fn+1 = (24n3 + 13n2 − 32n − 18) fn
− n(24n3 − 75n2 + 52n − 5) fn−1 + n(n − 1)3(8n − 1) fn−2

with initial conditions

p0,1 = 0, p1,1 = 1, p2,1 = 13/2,

q0 = 1, q1 = 2, q2 = 11,

and the sequence pn,2 is a solution of the third-order inhomogeneous linear recurrence

(n + 1)(8n − 9) fn+1 = (24n3 + 13n2 − 32n − 18) fn − n(24n3 − 75n2 + 52n − 5) fn−1

+ n(n − 1)3(8n − 1) fn−2

+ 2(8n4 − 17n3 + 74n2 − 12n − 9)/(n(n + 1))

with initial values p0,2 = 0, p1,2 = 18, p2,2 = 95.
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E 1.5. For a = 4 put

qn =

n∑
k=0

(
n
k

)4

k!, pn,1 =

n∑
k=0

(
n
k

)4

k!(4Hn−k − 3Hk),

pn,2 =

n∑
k=0

(
n
k

)4

k!(r2
1(k) + r2(k)), pn,3 =

n∑
k=0

(
n
k

)4

k!(r3
1(k) + 3r1(k)r2(k) + r3(k)),

where rm(k) is defined in (1.8). Then∣∣∣∣∣γ − pn,1

qn

∣∣∣∣∣ < c1e−4n3/4+3n1/2−5/8n1/4
,

∣∣∣∣∣γ2 + 7ζ(2) −
pn,2

qn

∣∣∣∣∣ < c2e−4n3/4+3n1/2−5/8n1/4
,∣∣∣∣∣γ3 + 21γζ(2) + 2ζ(3) −

pn,3

qn

∣∣∣∣∣ < c3e−4n3/4+3n1/2−5/8n1/4

and

qn =
c0n!
n17/8

e4n3/4−3/2n1/2+5/8n1/4
(1 + O(n−1/4))

as n→∞. Applying Zeilberger’s algorithm of creative telescoping, it is easy to
show that the sequences qn, pn,1 and pn,2 satisfy the fourth-order homogeneous linear
recurrence

(n + 2)2(729n4 − 162n3 − 171n2 − 4n + 6) fn+2

= (2916n7 + 14 661n6 + 20 862n5 + 947n4 − 13 008n3 − 2370n2

+ 1320n + 312) fn+1 − (4374n8 − 18 468n7 − 82 674n6 − 85 776n5

− 13 062n4 + 24 204n3 + 13 528n2 + 2680n + 168) fn
+ n2(2916n7 + 28 512n6 + 61 848n5 + 37 667n4 − 12 898n3

− 17 463n2 − 2692n + 398) fn−1 − n2(n − 1)4

× (729n4 + 2754n3 + 3717n2 + 2084n + 398) fn−2

with the initial conditions

q0 = 1, q1 = 2, q2 = 19, q3 = 250,

p0,1 = 0, p1,1 = 1, p2,1 = 13, p3,1 = 409/3,

p0,2 = 0, p1,2 = 32, p2,2 = 217, p3,2 = 26 444/9,

and the sequence pn,3 satisfies the fourth-order inhomogeneous linear recurrence

(n + 2)2(729n4 − 162n3 − 171n2 − 4n + 6) fn+2

= (2916n7 + 14 661n6 + 20 862n5 + 947n4 − 13 008n3 − 2370n2

+ 1320n + 312) fn+1 − (4374n8 − 18 468n7 − 82 674n6 − 85 776n5

− 13 062n4 + 24 204n3 + 13 528n2 + 2680n + 168) fn
+ n2(2916n7 + 28 512n6 + 61 848n5 + 37 667n4 − 12 898n3
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− 17 463n2 − 2692n + 398) fn−1 − n2(n − 1)4(729n4 + 2754n3

+ 3717n2 + 2084n + 398) fn−2 − 6(729n10 + 2754n9 − 17 424n8

− 179 680n7 − 490 669n6 − 549 106n5 − 194 460n4 + 100 424n3

+ 105 332n2 + 30 840n + 3184)/(n(n + 1)2(n + 2))

with the initial values p0,3 = 0, p1,3 = 60, p2,3 = 402 and p3,3 = 50 761/9.

2. Analytical construction

Let a ≥ 2 be an integer. We consider the function

F(n, t) =
n!a

Γa−1(t + 1)Γa(n − t + 1)

for n = 0, 1, 2, . . . , and, for each integer µ with 0 ≤ µ ≤ a − 1,

Fn,µ := Fn,µ,a :=
n∑

k=0

( d
dt

)µ
F(n, t)

∣∣∣∣∣
t=k
.

L 2.1. Let a ≥ 2 be an integer. Then for each µ = 1, 2, . . . , a − 1 and ν = 1, . . . , µ
there exist constants λµ,ν which are independent of n such that for n = 0, 1, 2, . . . ,

pn,µ − qnαµ =

µ∑
ν=1

λµ,νFn,ν,

Fn,0 = qn and Dµ
n · pn,µ ∈ Z. Here the sequences qn and pn,µ are defined as in (1.7).

P. We begin by defining the function

f (t) := a log n! − a log Γ(n + 1 − t) − (a − 1) log Γ(t + 1)

for 0 ≤ t ≤ n. Then we see that

f ′(t) = aψ(n + 1 − t) − (a − 1)ψ(t + 1) (2.1)

where ψ(z) = Γ′(z)/Γ(z) is the logarithmic derivative of the gamma function (also
known as the digamma function) and, for m ≥ 2,

f (m)(t) = (−1)m−1aψ(m−1)(n + 1 − t) − (a − 1)ψ(m−1)(t + 1). (2.2)

Using the well-known formula for the derivatives of ψ(t),

ψ(m)(t) = (−1)m+1m!ζ(m + 1, t) (2.3)

for m ∈ N, where

ζ(s, t) =

∞∑
j=0

1
( j + t)s

is the Hurwitz zeta function, we may deduce that

f (m)(t) = (−1)m(m − 1)!((−1)m−1aζ(m, n + 1 − t) − (a − 1)ζ(m, t + 1))
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for m ≥ 2. We will be interested in the values of f (m)(t) at the integer points t = k for
0 ≤ k ≤ n.

When m = 1 we may use the well-known properties of the digamma function

ψ(1) = −γ, ψ(n + 1) = Hn − γ

for n ∈ N and equation (2.1) to deduce that

f ′(k) = −γ + aHn−k − (a − 1)Hk. (2.4)

It now follows from equations (2.2) and (2.3) that for any integer m ≥ 2,

f (m)(k) = (m − 1)!(((−1)m−1(a − 1) − a)ζ(m) + aH(m)
n−k + (−1)m(a − 1)H(m)

k ). (2.5)

Now using the definition of rm(k) from formula (1.8), we see that Dm
n · rm(k) ∈ Z and,

moreover, from equations (2.4) and (2.5) we may deduce that

rm(k) =

 f ′(k) + γ if m = 1,

f (m)(k) + (m − 1)!(a + (−1)m(a − 1))ζ(m) if m ≥ 2.

Now notice that F(n, t) = e f (t). In order to calculate the µth derivative of F(n, t) we
can apply the Faà di Bruno formula (1.6) to obtain( d

dt

)µ
F(n, t) = e f (t) · Yµ( f ′(t), f ′′(t), . . . , f (µ)(t))

for 1 ≤ µ ≤ a − 1. Now we apply the addition formula (1.5) to calculate

Yµ(r1(k), r2(k), . . . , rµ(k)) =

µ∑
ν=0

(
µ

ν

)
Yν( f ′(k), f ′′(k), . . . , f (ν)(k))

× Yµ−ν(γ, 1!(2a − 1)ζ(2), 2!ζ(3), . . . , (µ − ν − 1)!

× (a + (−1)µ−ν(a − 1))ζ(µ − ν)).

This implies that

Yµ(r1(k), r2(k), . . . , rµ(k))−Yµ(γ, 1!(2a − 1)ζ(2), . . . , (µ−1)!(a+(−1)µ(a−1))ζ(µ))

=

µ∑
ν=1

(
µ

ν

)
Yν( f ′(k), f ′′(k), . . . , f (ν)(k))

× Yµ−ν(γ, 1!(2a − 1)ζ(2), . . . , (µ − ν − 1)!(a + (−1)µ−ν(a − 1))ζ(µ − ν))

for 0 ≤ k ≤ n. Now multiplying both sides of the last equality by e f (k) = k!
(

n
k

)a
and

summing over k = 0, 1, 2, . . . , n,

pn,µ − qn · Yµ(γ, 1!(2a − 1)ζ(2), . . . , (µ − 1)!(a + (−1)µ(a − 1))ζ(µ))

=

µ∑
ν=1

(
µ

ν

)
Yµ−ν(γ, 1!(2a − 1)ζ(2), . . . , (µ − ν − 1)!(a + (−1)µ−ν(a − 1))ζ(µ − ν))

×

n∑
k=0

( d
dt

)ν
F(n, t)

∣∣∣∣∣
t=k

https://doi.org/10.1017/S1446788712000134 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000134


[11] Rational approximations to values of Bell polynomials 81

or

pn,µ − qnαµ =

µ∑
ν=1

λµ,νFn,ν

where qn and pn,µ are defined as in (1.7) and the constants λµ,ν given by

λµ,ν =

(
µ

ν

)
· Yµ−ν(γ, 1!(2a − 1)ζ(2), . . . , (µ − ν − 1)!(a + (−1)µ−ν(a − 1))ζ(µ − ν))

are independent of n.
To prove that Dµ

n · pn,µ ∈ Z we consider an arbitrary monomial of the expression
Dµ

n · Yµ(r1(k), . . . , rm(k)) which has the form

Dµ
n

µ!
k1! · · · kµ!

(
r1(k)

1!

)k1

· · ·

(rµ(k)

µ!

)kµ

=
µ!

1!k1 k1! · · · µ!kµkµ!
(Dn · r1(k))k1 · (D2

n · r2(k))k2 · · · (Dµ
n · rµ(k))kµ

where k1, . . . , kµ are nonnegative integers such that

1 · k1 + 2 · k2 + 3 · k3 + · · · + µ · kµ = µ.

Now by (1.4) and the fact that Dm
n · rm(k) ∈ Z we deduce that Dµ

n · pn,µ ∈ Z. �

Now for each integer µ with 0 ≤ µ ≤ a − 1 and u ∈ R we define a complex integral

In,µ(u) :=
1

2πi

∫
L

F(n, t)
(

π

sin πt

)µ+1

eiπtu dt

= (−1)(µ+1)nn!aG0,µ+1
a,a−1

(n + 1, . . . , n + 1
0, . . . , 0

∣∣∣∣∣eiπu
) (2.6)

where L is a loop beginning and ending at −∞ and encircling the points n, n − 1,
n − 2, . . . once in the positive direction. Without loss of generality we can assume
that L is located symmetrically with respect to the real axis. The integral converges
according to the definition of the Meijer G-function (see [9, Section 5.2]). Moreover,
if µ = a − 1 and |u| < 1/2 we can also choose the contour of integration to be a vertical
line going from c − i∞ to c + i∞ where c > n is an arbitrary constant.

Let us also define

Ĩn,µ(u) :=
n∑

k=0

res
t=k

(
F(n, t)

(
π

sin πt

)µ+1

eiπtu
)

(2.7)

for 0 ≤ µ ≤ a − 1.

L 2.2. Let a ≥ 2 and 0 ≤ µ ≤ a − 1 be integers. Then

Ĩn,µ(u) =

In,µ(u) if 0 ≤ µ ≤ a − 2,

In,µ(u) + O(n−a) if µ = a − 1,

where the constant in O is absolute.
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P. First note that

F(n, t)
(

π

sin πt

)µ+1

eiπtu =
(−1)nan!a

πa−µ−1
Γ(t − n)

(
Γ(t − n)
Γ(t + 1)

)a−1

(sin πt)a−µ−1 eiπtu.

Then note that for t lying in the segment Re t = −N − 1/2, |Im t| ≤ y0 where N is a
sufficiently large integer,

|Γ(t − n)| ≤ |Γ(Re (t − n))| = |Γ(−N − 1/2 − n)| =
π

Γ(N + 1/2 + n)
= O(e−N log N+N),∣∣∣∣∣Γ(t − n)

Γ(t + 1)

∣∣∣∣∣ = O
( 1

Nn+1

)
, |(sin πt)a−µ−1eiπtu| = O(1).

From this we conclude that the integral In,µ can be evaluated as a sum of residues at
the singular points lying inside the loop L. The integrand in (2.6) has poles of order
µ + 1 at the points 0, 1, . . . , n and, moreover, if µ = a − 1, then it has additional simple
poles at the negative integers. Therefore

In,a−1(u) = Ĩn,a−1(u) + (−1)ann!a
∑
k<0

res
t=k

(
Γ(t − n)eiπtu

(t(t − 1) · · · (t − n))a−1

)
= Ĩn,a−1(u) + (−1)ann!a

∑
k<0

res
t=k

( eiπtu

Γ(n − t + 1)(t(t − 1) · · · (t − n))a−1

π

sin πt

)
= Ĩn,a−1(u) + n!a

∞∑
k=1

(−1)(u+1)k+a−1

(n + k)!(k(k + 1) · · · (k + n))a−1

= Ĩn,a−1(u) +
1

(n + 1)a

∞∑
k=0

(−1)(u+1)k+a−1k!a−1

(n + 2)k
a

.

Finally, since ∣∣∣∣∣ ∞∑
k=0

(−1)(u+1)k+a−1k!a−1

(n + 2)k
a

∣∣∣∣∣ ≤ ∞∑
k=0

k!a−1

(n + 2)k
a
≤

∞∑
k=0

1
k!

= e,

we may deduce our result. �

3. Bernoulli polynomials

The generalized Bernoulli polynomials B(m)
n (x) of order m, where m is a positive

integer, are defined by the generating formula (see [9, Section 2.8])

zmexz

(ez − 1)m
=

∞∑
n=0

B(m)
n (x)

zn

n!
(3.1)

for |z| < 2π. Numerous properties of these polynomials can be deduced directly from
formula (3.1). We mention only two of them which will be useful in the next section.
For a detailed study of Bernoulli polynomials see [10].
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Comparing powers of z on both sides of the equality

zmeyz

(ez − 1)m
· exz =

zme(y+x)z

(ez − 1)m

leads to the addition formula

B(m)
n (x + y) =

n∑
k=0

(
n
k

)
B(m)

k (y)xn−k. (3.2)

Differentiating both sides of (3.1) with respect to z and comparing powers of z lets us
deduce the recursion formula

mB(m+1)
n (x) = (m − n)B(m)

n (x) + n(x − m)B(m)
n−1(x). (3.3)

If we set n = m in (3.3), then we see that B(m+1)
m (x) = (x − m)B(m)

m−1(x) which implies that

B(m+1)
m (x) = (x − 1)(x − 2) · · · (x − m). (3.4)

L 3.1.

(1) Let m be a positive integer. Then the following series expansion holds for
|z| < π:

zm

sinm z
=

∞∑
n=0

(−1)n4nB(m)
2n (m/2)

(2n)!
z2n.

(2) Let m be a positive even integer. Then

m∑
k=0

(
m
k

)
B(m+1)

k

(
m + 1

2

)
2k = 0. (3.5)

P. Replacing z by 2z in (3.1) and using the formula sinh z = (ez − e−z)/2, we see
that, for |z| < π,

zme(2x−m)z

sinhm z
=

∞∑
n=0

B(m)
n (x)

2nzn

n!
.

Setting x = m/2 in the above equality,

zm

sinhm z
=

∞∑
n=0

B(m)
n

(m
2

) 2nzn

n!

for |z| < π. Since the function z/sinh z is even, we may deduce that for any positive
integer m,

B(m)
2n+1

(m
2

)
= 0 (3.6)
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for n = 0, 1, 2, . . . and therefore

zm

sinhm z
=

∞∑
n=0

B(m)
2n

(m
2

) 4nz2n

(2n)!
(3.7)

for |z| < π. Now replacing z by iz in (3.7) and recalling that sin z = −i sinh(iz) gives us
the required expansion.

To prove equality (3.5) we consider the addition formula (3.2) with m and n replaced
by m + 1 and m, respectively. Setting x = 1/2 and y = (m + 1)/2 yields

m∑
k=0

(
m
k

)
B(m+1)

k

(m + 1
2

)
2k = 2mB(m+1)

m

(m + 2
2

)
.

Now since m is even, applying formula (3.4) lets us deduce that B(m+1)
m (m/2 + 1) = 0

and the lemma is proved. �

4. Properties of the integrals In,µ(u)

L 4.1. Let a ≥ 2 and 0 ≤ µ ≤ a − 1 be integers. Then

Fn,µ =



Ĩn,0(1) if µ = 0,

[µ/2]∑
j=0

c2 j+1,µ Ĩn,2 j+1(0) if µ is odd,

µ/2∑
j=1

c2 j,µRe Ĩn,2 j(1) if µ ≥ 2 is even

where cµ,µ , 0 and c j,µ for 0 ≤ j ≤ µ are real constants which are independent of n.

P. We proceed by induction on µ. For µ = 0 we easily deduce from (2.7) that

Ĩn,0(1) =

n∑
k=0

res
t=k

(
F(n, t)eiπt ·

π

sin πt

)
=

n∑
k=0

F(n, k) =

n∑
k=0

(
n
k

)a

k! = Fn,0.

Similarly, for µ = 1,

Ĩn,1(0) =

n∑
k=0

res
t=k

(
F(n, t) ·

(
π

sin πt

)2)
=

n∑
k=0

d
dt

F(n, t)
∣∣∣∣∣
t=k

= Fn,1.

For µ = 2, applying equation (2.7) allows us to deduce that

Ĩn,2(1) =

n∑
k=0

res
t=k

(
F(n, t) eiπt ·

(
π

sin πt

)3)
.
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Then using the expansions (see Lemma 3.1)(
π

sin πt

)µ+1

= (−1)(µ+1)k
[µ/2]∑
j=0

(−1) j(2π)2 jB(µ+1)
2 j ( µ+1

2 )

(2 j)!(t − k)µ+1−2 j
+ O(1), (4.1)

eiπt = eiπkeiπ(t−k) = (−1)k
µ∑

j=0

(iπ) j

j!
(t − k) j + O

(
(t − k)µ+1),

F(n, t) =

µ∑
j=0

d j

dt j
F(n, t)

∣∣∣∣∣
t=k

(t − k) j

j!
+ O((t − k)µ+1) (4.2)

in a neighborhood of the integer point t = k,

res
t=k

(
F(n, t) eiπt ·

(
π

sin πt

)3)
=

1
2

d2

dt2
F(n, t)|t=k + iπ

d
dt

F(n, t)|t=k.

It follows that Fn,2 = 2Re Ĩn,2(1).
Now assume that µ > 2 and our formula holds for 0, 1, 2, . . . , µ − 1. We prove that

our formula holds for µ. If µ is odd, then

Ĩn,µ(0) =

n∑
k=0

res
t=k

(
F(n, t) ·

(
π

sin πt

)µ+1)
and from equations (4.1) and (4.2) we may deduce that

Ĩn,µ(0) =
1
µ!

Fn,µ +

[µ/2]∑
j=1

d2 j,µFn,µ−2 j.

Hence, by our inductive hypothesis, we conclude that

Fn,µ = µ!Ĩn,µ(0) − µ!
[µ/2]∑
j=1

d2 j,µFn,µ−2 j = µ!Ĩn,µ(0) +

[µ/2]−1∑
l=0

c2l+1,µ Ĩn,2l+1(0)

as required.
If µ is even, then by equation (2.7),

Ĩn,µ(1) =

n∑
k=0

res
t=k

(
F(n, t) eiπt ·

(
π

sin πt

)µ+1)
and, using the expansions (4.1)–(4.2), we may deduce that

Re Ĩn,µ(1) =

µ/2∑
j=0

(−1) j(2π)2 jB(µ+1)
2 j

( µ+1
2

)
(2 j)!

µ/2− j∑
l=0

(−1)lπ2l

(2l)!(µ − 2 j − 2l)!
Fn,µ−2 j−2l

=
1
µ!

Fn,µ +

µ/2∑
ν=1

d̃2ν,µFn,µ−2ν

(4.3)
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where d̃2ν,µ are some real constants independent of n and

d̃µ,µ = (iπ)µ
µ/2∑
j=0

4 jB(µ+1)
2 j ( µ+1

2 )

(2 j)!(µ − 2 j)!
.

We can apply equation (3.6) to rewrite the last equality as

d̃µ,µ = (iπ)µ
µ∑

j=0

2 jB(µ+1)
j ( µ+1

2 )

j!(µ − j)!
=

(iπ)µ

µ!

µ∑
j=0

(
µ

j

)
B(µ+1)

j

(
µ + 1

2

)
2 j

which implies that d̃µ,µ = 0 by Lemma 3.1. Now by equation (4.3),

Re Ĩn,µ(1) =
1
µ!

Fn,µ +

µ/2−1∑
ν=1

d̃2ν,µFn,µ−2ν

and the lemma follows by our inductive hypothesis. �

L 4.2. Let a and µ be integers satisfying a ≥ 2, 0 ≤ µ ≤ a − 1 and u ∈ R. Then for
each n = 0, 1, 2, . . . ,

In,µ(u) =
1

(2πi)a−µ−1

a−µ−1∑
k=0

(−1)k

(
a − µ − 1

k

)
In,a−1(a + u − µ − 1 − 2k).

P. Equation (2.6) and the reflection formula for the gamma function,

Γ(t − n)Γ(n − t + 1) =
(−1)nπ

sin πt
,

yield

In,µ(u) =
n!a

2πi

∫
L

eiπtu

Γa−1(t + 1)Γa(n − t + 1)

(
π

sin πt

)µ+1
dt

=
(−1)ann!a

2πi

∫
L

Γa(t − n)
Γa−1(t + 1)

(sin πt
π

)a−µ−1

eiπtu dt.

Now replacing the function sin(πt) by (eiπt − e−iπt)/(2i) and expanding using the
binomial theorem, we calculate

In,µ(u) =
(−1)ann!a

(2πi)a−µ

a−µ−1∑
k=0

(−1)k

(
a − µ − 1

k

) ∫
L

Γa(t − n)
Γa−1(t + 1)

eiπt(u+a−µ−1−2k) dt,

which completes the proof of the lemma. �
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L 4.3. Let a and µ be integers satisfying a ≥ 2, 0 ≤ µ ≤ a − 1 and u ∈ R. Then for
each n = 0, 1, 2, . . . ,

In,µ(−u) = In,µ(u),

where the bar stands for complex conjugation.

P. Making the change of variable t 7→ t in the integral In,µ(u) and using the
equalities Γ(z̄) = Γ(z) and sin(z̄) = sin(z),

In,µ(u) =
1

2πi

∫
L

F(n, t)
(

π

sin(πt)

)µ+1

eiπut dt = −
1

2πi

∫
L

F(n, t)
(

π

sin(πt)

)µ+1

eiπut dt

=
1

2πi

∫
L

(
π

sin(πt)

)µ+1

F(n, t) e−iπut dt =
1

2πi

∫
L

F(n, t)
(

π

sin πt

)µ+1
e−iπut dt

= In,µ(−u),

as required. �

5. Asymptotics of the integral In,a−1(u)

L 5.1. Let a, u ∈ Z satisfy a ≥ 2 and |u| ≤ a. Let n be a sufficiently large positive
integer. Then all roots of the polynomial

pu(τ) = eiπun(τ − 1)a − τa−1

are given by the following asymptotic expansions for k = 0, 1, . . . , a − 1:

τk(u) = 1 +

∞∑
m=1

(2 − m/a)m−1

m!
·

eim(2πk−πu)/a

nm/a
.

P. First note that the polynomial pu(τ) has no real roots on (−∞, 0]. Indeed, if we
suppose that τ = −x, where x ≥ 0, is such a root, then pu(−x) = 0 and

(−1)un(x + 1)a + xa−1 = 0. (5.1)

On the other hand, the left-hand side of equation (5.1) is positive (negative) if u is even
(odd), which is a contradiction.

Therefore it suffices to consider the equation

n(τ − 1)aeiπu = τa−1 (5.2)

in the complex τ-plane with a cut along the ray (−∞, 0]. It is easy to see that
equation (5.2) is equivalent to a relations of the form

n1/aei(πu−2πk)/a(τ − 1) = τ1−1/a (5.3)

for k = 0, 1, . . . , a − 1 where τ1−1/a = e(1−1/a) log τ and we take the principal branch of
the logarithm.
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We may immediately deduce from equation (5.3) that all roots of the polynomial
pu(τ) are given by

τk(u) = 1 +
exp( 2πk−πu

a i)

n1/a
+

a − 1
a
·

exp( 2(2πk−πu)
a i)

n2/a
+ O(n−3/a) (5.4)

for k = 0, 1, . . . , a − 1.
It is possible to find a complete asymptotic expansion in (5.4) if we apply

the Lagrange inversion formula (see [4, Section 2.2]) to equation (5.3). Indeed,
substituting τ − 1 = z and rewriting equation (5.3) as

z
(z + 1)1−1/a

= n−1/a · ei(2πk−πu)/a, (5.5)

we see that there exist positive numbers ρ1 and ρ2 such that whenever n−1/a < ρ1 the
equation (5.5) has just one solution z in the domain |z| < ρ2. That is,

z =

∞∑
m=1

cm

nm/a
eim(2πk−πu)/a (5.6)

where the coefficients cm are given by the formula

cm =
1

m!

(( d
dz

)m−1

(z + 1)m(1−1/a)
)∣∣∣∣∣

z=0
. (5.7)

Suppose that there is another solution of (5.5) with |z| ≥ ρ2. Then since the function
|z|/(|z| + 1)1−1/a increases from 0 to +∞ as |z| increases from 0 to +∞,

ρ2

(ρ2 + 1)1−1/a
≤

|z|
(|z| + 1)1−1/a

≤
|z|

|z + 1|1−1/a
= n−1/a,

which is impossible if n is sufficiently large. Hence formulas (5.6) and (5.7) give the
complete asymptotic expansion for τk(u). That is,

τk(u) = 1 +

∞∑
m=1

(2 − m/a)m−1

m! nm/a
eim(2πk−πu)/a

for k = 0, 1, . . . , a − 1 and the lemma is proved. �

L 5.2. Let a, u ∈ Z satisfy a ≥ 2 and |u| ≤ a. Then the following formula holds for
the integral In,a−1(u) as n→∞:

In,a−1(u) =
(−1)u(2π)(a−1)/2

in(a−3)/2

∫
L1

g(τ)en f (τ) dτ · (1 + O(n1/a−1)) (5.8)

where

f (τ) = a(τ − 1) log(τ − 1) − (a − 1)τ log τ − τ + τ log n + iπτu, (5.9)

g(τ) =
(τ − 1)a/2

τ3(a−1)/2
. (5.10)
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If u , 0, then the contour L1 is taken to be a loop beginning and ending at −∞,
encircling the points 1, 0, −1, . . . once in the positive direction and intersecting the
real axis at the point τ0 := τ0(0). If u = 0, then we take L1 to be a vertical line going
from τ0 − i∞ to τ0 + i∞.

P. We choose the branches of the many-valued functions f (τ) and g(τ) in the τ-
plane with a cut along the ray (−∞, 1] and fix the branches of the logarithms that take
real values on the interval (1, +∞) of the real axis.

Note that the contour of integration L in the integral In,a−1(u) defined in
equation (2.6) is an arbitrary loop beginning and ending at −∞ and encircling the
points n, n − 1, n − 2, . . . once in the positive direction or an arbitrary vertical line
Re τ = c with c > n. We now set

τ0 := τ0(0) = 1 +
1

n1/a
+ O(n−2/a)

which is one of the real roots of the polynomial p0(τ) (see Lemma 5.1) and suppose
that the contour L (loop or vertical line) intersects the real axis at the point nτ0 + 1 and
that, for any point t of L, |t| ≥ nτ0 + 1.

Then the asymptotic expansion of the gamma function for large |z| (see [9,
Section 2.11]),

log Γ(z) =

(
z −

1
2

)
log z − z +

1
2

log(2π) + O(|z|−1), (5.11)

where |arg z| ≤ π − ε, ε > 0 and the constant in O is independent of z, implies that the
following formula holds for the integrand of In,a−1(u) on the contour L:

Γa(t − n)
Γa−1(t + 1)

eiπtu = exp{a log Γ(t − n) − (a − 1) log Γ(t + 1) + iπtu}

= exp
{
a
(
t − n −

1
2

)
log(t − n) − (a − 1)

(
t +

1
2

)
log(t + 1) + iπtu

+ an − t + a − 1 + log
√

2π + O(n1/a−1)
}
.

The change of variable t = nτ + 1 yields

Γa(t − n)
Γa−1(t + 1)

eiπtu = (−1)u
√

2π ean−an log n−(a−3/2) log n (τ − 1)a/2

τ3(a−1)/2
en f (τ)(1 + O(n1/a−1))

=
(−1)u(2π)(a+1)/2

n(a−3)/2n!a
g(τ) en f (τ)(1 + O(n1/a−1))

where the functions f (τ) and g(τ) are defined in equations (5.9) and (5.10). This
completes the proof of the lemma. �

The next lemma is devoted to the calculation of the asymptotics of In,a−1(u) using
the saddle-point method.
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L 5.3. Let a, u ∈ Z satisfy a ≥ 2 and |u| ≤ a. Then the asymptotic behavior of the
integral In,a−1(u) as n→∞ is given by the formula

In,a−1(u) =
(−1)nu(2π)(a−1)/2eiπu(a−1)/(2a)

√
a

n!
na/2+1/(2a)

× exp
( a∑

m=1

bm(a)e−iπmu/an1−m/a
)
(1 + O(n−1/a))

where the coefficients bm(a) are rational numbers that can be found explicitly from the
expansion (1.9).

P. It suffices to prove this lemma only for u ≤ 0 since we can use Lemma 4.3 to
reduce the case when u > 0 to this case. First we determine the saddle points of the
integrand (5.8) which are the zeros of the derivative of the function f (τ). It is easy to
see that the zeros of the derivative

f ′(τ) = a log(τ − 1) − (a − 1) log τ + log n + iπu

are simultaneously roots of the polynomial pu(τ) defined in Lemma 4.3.
For the root τk(u) where k = 0, 1, . . . , a − 1 we see by Lemma 4.3 that

τk(u) − 1 =
ei(2πk−πu)/a

n1/a

(
1 +

a − 1
a
·

ei(2πk−πu)/a

n1/a
+ O(n−2/a)

)
.

Since

−
πu
a
≤

2πk − πu
a

≤ −
πu
a

+ 2π −
2π
a
,

it is easily seen that τ0(u) is the only zero of the derivative f ′(τ) out of all of the roots
of equation (5.4). Therefore τ0(u) is the only saddle point of the function en f (τ).

By a similar argument to the one given in the proof of Lemma 4.3 we can find
complete asymptotic expansions for the points τ satisfying the equation Re f ′(τ) = 0
which is equivalent to

|z|
|z + 1|1−1/a

= n−1/a (5.12)

where z = τ − 1. If we apply the Lagrange inversion formula to the equation

z
(z + 1)1−1/a

= w,

then we see that there are positive constants δ1 and δ2 such that for |w| < δ2 there is
only one solution z to equation (5.12) satisfying |z| < δ1 and this solution is an analytic
function of w. That is,

z =

∞∑
m=1

(2 − m/a)m−1

m!
wm.
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Note that by the asymptotic formula (5.11) for the gamma function this series
converges if |w| < a/(a − 1)1−1/a. So it is clear that if n > δ−a

2 , then there is one and
only one solution of equation (5.12) in the circle |τ − 1| < δ1 given by

τ = 1 +

∞∑
m=1

(2 − m/a)m−1

m!
eimϕ

nm/a
(5.13)

for −π < ϕ ≤ π.
On the other hand, if we suppose that there is another solution with |z| ≥ δ1, then the

argument used in the proof of Lemma 4.3 gives us a contradiction if n is sufficiently
large. So, if n is large enough, the continuously differentiable curve

Re f ′(τ) = log
|τ − 1|an
|τ|a−1

= 0

approximately represents a small circle with center at τ = 1 and radius n−1/a. The
points of this curve are given by their complete asymptotic expansion (5.13).
Moreover, we have Re f ′(τ) < 0 inside this curve and Re f ′(τ) > 0 outside it. It is
easily seen that Re f ′(τk(u)) = 0 for any integers u and k.

To apply the saddle-point method to the evaluation of the integral In,a−1(u) we need
to choose a new contour of integration L2 passing through the saddle point τ0(u). If
u = 0 we use the original contour Re τ = τ0. Then for τ = τ0 + iy with −∞ < y < +∞

the Cauchy–Riemann conditions yield

d
dy

Re f (τ0 + iy) = −Im
d
dτ

f (τ0 + iy) = −a arg(τ − 1) + (a − 1) arg τ.

Since Re τ0 > 1 we see that, for y < 0,

−
π

2
< arg(τ − 1) < arg τ < 0

and therefore

d
dy

Re f (τ0 + iy) = (a − 1)(arg τ − arg(τ − 1)) − arg(τ − 1) > 0. (5.14)

This implies that Re f (τ0 + iy) strictly increases as y increases from −∞ to 0.
If y > 0, then

0 < arg τ < arg(τ − 1) <
π

2
and hence

d
dy

Re f (τ0 + iy) = (a − 1)(arg τ − arg(τ − 1)) − arg(τ − 1) < 0.

Therefore the function Re f (τ0 + iy) strictly decreases as y increases from 0 to +∞.
This proves that Re f (τ0 + iy) attains its maximum on L1 at the unique point τ0 and we
can apply the saddle-point method to calculate the asymptotics of In,a−1(0) (see (5.21)).
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If u , 0 we define L2 to be a contour consisting of three parts:

(i) the half line τ = τ0 + iy with −∞ < y ≤ 0;
(ii) the segment τ = τ0 + reiϕ where ϕ = arg(τ0(u) − τ0) with 0 ≤ r ≤ |τ0(u) − τ0|,

connecting the points τ0 and τ0(u);
(iii) the half line τ = −x + i Im τ0(u) with −Re τ0(u) ≤ x < +∞.

If u = −a, then both parts (ii) and (iii) give a ray going from τ0 to −∞ along the upper
bank of the cut [−∞, 1].

We now show that we can replace the contour L1 in the integral In,a−1(u) by the
contour L2, that is, we show that∫

L1

en f (τ)g(τ) dt =

∫
L2

en f (τ)g(τ) dt. (5.15)

For this purpose we consider the circle |τ| = N where N is a sufficiently large integer.
Suppose that L−1 , L−2 (L+

1 , L+
2 ) are the points of intersection of this circle with the

contours L1 and L2 in the lower half plane (upper half plane), respectively. Then to
prove (5.15) it is sufficient to show that∫

L−1 L−2

en f (τ)g(τ) dt→ 0,
∫

L+
2 L+

1

en f (τ)g(τ) dt→ 0 (5.16)

as N→∞. Here L−1 L−2 and L+
2 L+

1 are arcs of the circle of radius N with center at
the origin. On the arcs L−1 L−2 and L+

2 L+
1 of the circle τ = Neiθ for N sufficiently large

the inequalities −π < θ < −π/4 and 3π/4 < θ ≤ π respectively hold. The value θ = π
corresponds to the upper bank of the cut (−∞, 1]. By Taylor’s formula,

log(τ − 1) = log(Neiθ − 1) = log N + iθ −
e−iθ

N
+ O(N−2)

where the constant in O(N−2) is absolute. Substituting this expansion in equation (5.9),
we see that

Re f (Neiθ) = N log N cos(θ) + N log
n
e

cos(θ)

− N(θ + πu) sin(θ) − a log N − a + O(N−1).

Note that on the arc L−2 L−1 ,

−1 ≤ cos(θ) ≤ τ0/
√

N2 + τ2
0,

sin(θ) ≤ 0 and θ + πu < 0. This yields

Re f (τ) < τ0 log N + τ0 log
n
e
− a log N − a + O(N−1) = (τ0 − a) log N + O(1). (5.17)

Similarly, on the arc L+
1 L+

2 ,

−1 ≤ cos(θ) ≤ −
√

2/2,
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sin(θ) ≥ 0 and, therefore,

Re f (τ) < −

√
2

2
N log N + O(N). (5.18)

For the function g(τ) on the arcs L−1 L−2 and L+
1 L+

2 we have the trivial estimate

|g(τ)| = O(N3/2−a) (5.19)

as N→∞.
Since the lengths of each of the arcs L−1 L−2 and L+

1 L+
2 do not exceed πN,

estimates (5.17)–(5.19) imply that the integrals in (5.16) are of orders O(Nτ0+1/2−2a)
and O(N1/2−a−

√
2/2N), respectively. Hence, the limiting relations in (5.16) hold and we

can replace the contour of integration L1 in the integral In,a−1(u) by the new contour L2.
We now show that τ0(u) is the unique maximum point of Re f (τ) on the contour L2.

Since u < 0, it follows from equation (5.14) that (d/dy) Re f (τ0 + iy) is positive when
y < 0, and therefore Re f (τ) monotonically increases on the half line τ = τ0 + iy with
−∞ < y ≤ 0. Similarly, on the half line τ = −x + i Im τ0(u),

d
dx

Re f (−x + i Im τ0(u)) = −Re
d
dτ

f (−x + i Im τ0(u)) < 0.

This shows that the function Re f (τ) monotonically decreases on the half line going
from τ0(u) to −∞ + i Im τ0(u).

Now consider the segment τ = τ0 + reiϕ defined in (ii). The derivative of Re f (τ) on
this part of L2 is given by the formula

d
dr

Re f (τ) = Re
d f (τ)

dr
= Re

(d f (τ)
dτ

·
dτ
dr

)
= Re f ′(τ) cos ϕ − Im f ′(τ) sin ϕ.

(5.20)
Note that since Re τ0(u) < Re τ0, it follows that π/2 < ϕ ≤ π and therefore the product
Re f ′(τ) · cos ϕ is positive on the segment.

Let us investigate the behavior of Im f ′(τ) on this part of the contour. Note
that Im f ′(τ0) = πu < 0 and Im f ′(τ0(u)) = 0. We show that Im f ′(τ) monotonically
increases on our segment from πu to 0. To see this we consider the derivative of
Im f ′(τ). By the Cauchy–Riemann conditions, for r > 0,

d
dr

Im f ′(τ) = Im ( f ′′(τ) · eiϕ) =
1
r

Im ( f ′′(τ) · (τ − τ0)).

Since

f ′′(τ) =
a

τ − 1
−

a − 1
τ

,

we obtain

d
dr

Im f ′(τ) =
1
r

Im
(
a(τ − τ0)
τ − 1

−
(a − 1)(τ − τ0)

τ

)
=

Im τ

r

(
a(τ0 − 1)
|τ − 1|2

−
(a − 1)τ0

|τ|2

)
.
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Since τ lies in the upper half plane, to show that (d/dr) Im f ′(τ) is positive on our
segment, it is sufficient to show that the quantity in parentheses, which we denote
by B, is positive.

For τ = τ0 + reiϕ,

B :=
a(τ0 − 1)
|τ − 1|2

−
(a − 1)τ0

|τ|2
=

h(r)
|τ − 1|2|τ|2

where
h(r) = (τ0 − a)r2 + 2rτ0(τ0 − 1) cos ϕ + τ0(τ0 − 1)(a + τ0 − 1).

Since τ0 < a, it follows easily that the quadratic polynomial h(r) has two real roots r1

and r2 such that r1 < 0 < r2 and h(r) is positive on (r1, r2) and negative on (−∞, r1),
(r2, +∞).

We now show that the point r(u) := |τ0(u) − τ0| belongs to the interval (0, r2).
Indeed, since

|τ0 − 1| =
1

n1/a
+ O(n−2/a) and |τ0(u) − 1| =

1
n1/a

+ O(n−2/a)

for n sufficiently large, we have |τ0(u) − 1| ≤ 2|τ0 − 1| and τ0 < 9/8. Therefore

r(u) = |τ0(u) − τ0| ≤ |τ0(u) − 1| + |τ0 − 1| ≤ 3(τ0 − 1).

This implies that

h(r(u)) ≥ 9(τ0 − a)(τ0 − 1)2 − 6τ0(τ0 − 1)2 + τ0(τ0 − 1)(a + τ0 − 1)

= (τ0 − 1)(a(9 − 8τ0) + 4τ0(τ0 − 1)) > 0

and hence r(u) ∈ (0, r2). This proves that (d/dr) Im f ′(τ) is positive on the segment
[0, r(u)] and therefore that Im f ′(τ) increases on this segment from πu to 0, that is,
Im f ′(τ) < 0 on [0, r(u)).

Now by (5.20) we see that (d/dr) Re f (τ) > 0 on the segment connecting τ0 and
τ0(u), and therefore Re f (τ) is monotonically increasing on this segment. Hence we
have shown that τ0(u) is the unique maximum point on the whole contour of integration
L2 and we can apply the saddle-point method (see [5, Ch. 6, Theorem 3.1]) to estimate
the integral In,a−1(u).

Recall that when u = −a the contour L2 consists of the two parts: the vertical
half line τ = τ0 + iy, −∞ < y ≤ 0, and the horizontal half line τ = −x + i0 where
x ≥ Re τ0(a), going along the upper bank of the cut (−∞, 1]. Notice that in this case
the function g(τ) has a singularity at the point τ = 0 of the contour L2. So, in order to
apply the saddle-point method in this case, we need to change the contour L2 slightly
to avoid this singularity.

It is easy to see that, instead of the horizontal line τ = −x + i0 with x ≥ −1/2, we
can take a contour consisting of the semicircle τ = 1/2eiϕ for 0 ≤ ϕ ≤ π and the ray
τ = −x + i0 with x ≥ 1/2. Then∫

L2

en f (τ)g(τ) dt =

∫ τ0+i0

τ0−i∞
en f (τ)g(τ) dt +

∫ 1/2+i0

τ0+i0
en f (τ)g(τ) dt + O(Cnn1/2)
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where C = C(a) is some positive constant independent of n. So, in this case, we can
apply the saddle-point method to the contour

L2,a := {τ0 + iy | −∞ < y ≤ 0} ∪ {x + i0 | 1/2 ≤ x ≤ τ0}

and, as we can see from equation (5.22) below, the quantity O(Cnn1/2) has no influence
on the contribution of the saddle point. Finally, applying the saddle-point method, we
calculate

In,a−1(u) =
(−1)u(2π)(a/2)

in(a−2)/2
e(πi/2)−(i/2) arg f ′′(τ0(u))| f ′′(τ0(u))|−1/2

× g(τ0(u))en f (τ0(u))(1 + O(n−1/a)).
(5.21)

In order to find the contribution of the saddle point, we evaluate

f (τ0(u)) = −a log(τ0(u) − 1) − τ0(u) = πui + log n − 1 −
a∑

m=1

(2 − m
a )m−1

m!
e−iπmu/a

nm/a

− a log
(
1 +

a∑
m=1

(2 − m+1
a )m

(m + 1)!
e−iπmu/a

nm/a

)
+ O(n−1−1/a).

Now expanding the logarithm in powers of e−iπu/an−1/a, we see that

−a log
(
1 +

a∑
m=1

(2 − m+1
a )m

(m + 1)!
e−iπmu/a

nm/a

)
−

a∑
m=1

(2 − m
a )m−1

m!
e−iπmu/a

nm/a

=

a∑
m=1

bm(a)
e−iπmu/a

nm/a
+ O(n−1−1/a)

where the bm(a) are rational coefficients depending only on a. In particular, b1(a) = −a,
b2(a) = (1 − a)/2 and b3(a) = (1 − a)(2a − 3)/(6a). It follows from equation (5.22) that

en f (τ0(u)) =
(−1)unn!
√

2πn
exp

( a∑
m=1

bm(a) e−iπmu/an1−m/a
)
(1 + O(n−1/a)). (5.22)

Since

g(τ0(u)) = e−iπu/2 n−1/2(1 + O(n−1/a)), f ′′(τ0(u)) = aeiπu/a n1/a(1 + O(n−1/a)),

we obtain the asymptotic behavior of In,a−1(u):

In,a−1(u) =
(−1)nu(2π)(a−1)/2eiπu(a−1)/2a

√
a

n!
n(a/2)+(1/2a)

× exp
( a∑

m=1

bm(a)e−iπmu/an1−m/a
)
(1 + O(n−1/a)),

and the lemma is proved. �
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6. Proof of Theorem 1.1

L 6.1. Let a and µ be positive integers satisfying a ≥ 2 and 0 ≤ µ ≤ a − 1. Then
there exist positive constants λ0 = λ0(a) and λ1 = λ1(a) such that for every positive
integer n,

|In,µ(0)| ≤
λ0n!

na/2+1/(2a)
exp

(a−1∑
m=1

bm(a) cos
(
πm(a − µ − 1)

a

)
n1−m/a

)
, (6.1)

and for infinitely many positive integers n a similar lower bound holds. That is,

|In,µ(0)| ≥
λ1n!

na/2+1/(2a)
exp

a−1∑
m=1

bm(a) cos
(πm(a − µ − 1)

a

)
n1−m/a

 . (6.2)

Moreover, the asymptotic formula

|In,µ(1)| =
n!

√
a (2π)((a−1)/2)−µ na/2+1/(2a)

× exp
(a−1∑

m=1

bm(a) cos
(
πm(a − µ)

a

)
n1−m/a

)
(1 + O(n−1/a))

holds as n→∞.

P. By Lemma 4.2,

In,µ(1) =
1

(2πi)a−µ−1

a−µ−1∑
k=0

(−1)k

(
a − µ − 1

k

)
In,a−1(a − µ − 2k). (6.3)

It now follows by Lemmas 5.3 and 4.3 that the sum on the right-hand side of equation
(6.3) contains exactly one term with dominant asymptotics, that is, In,a−1(a − µ).
Therefore

|In,µ(1)| ∼
1

(2π)a−µ−1
|In,a−1(a − µ)|

=
n!

√
a (2π)(a−1)/2−µ na/2+1/(2a)

× exp
(a−1∑

m=1

bm(a) cos
(
πm(a − µ)

a

)
n1−m/a

)
(1 + O(n−1/a)),

as required.
Similarly, to evaluate the integral In,µ(0) we may apply Lemma 4.2 to obtain

In,µ(0) =
1

(2πi)a−µ−1

a−µ−1∑
k=0

(−1)k

(
a − µ − 1

k

)
In,a−1(a − µ − 1 − 2k). (6.4)
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It follows by Lemma 4.3 that if a − µ is odd, then the quantity In,µ(0) represents
a linear combination of In,a−1(0) and sums of the complex conjugates In,a−1(u) and
In,a−1(u) for u = 2, 4, . . . , a − µ − 1. Similarly, if a − µ is even, then In,µ(0) is equal to
a linear combination of differences of the complex conjugates In,a−1(u) and In,a−1(u)
for u = 1, 3, . . . , a − µ − 1. Now by Lemma 5.3 it is clear that the term with dominant
exponent on the right of (6.4) is Re In,a−1(a − µ − 1) or Im In,a−1(a − µ − 1) depending
on whether a − µ is odd or even.

By Lemma 4.3 we obtain

Re In,a−1(a − µ − 1) =
(2π)(a−1)/2

√
a

n!
na/2+1/(2a)

cos(P(n))

× exp
( a∑

m=1

bm(a) cos
(
πm(a − µ − 1)

a

)
n1−m/a

)
(1 + O(n−1/a))

and

Im In,a−1(a − µ − 1) =
(−1)n(2π)(a−1)/2

√
a

n!
na/2+1/(2a)

sin(P(n))

× exp

 a∑
m=1

bm(a) cos
(πm(a − µ − 1)

a

)
n1−m/a

 (1 + O(n−1/a))

where

P(n) =
π(a − µ − 1)(a − 1)

2a
−

a∑
m=1

bm(a) sin
(
πm(a − µ − 1)

a

)
n1−m/a.

Since the sine and cosine functions are bounded, we immediately obtain the required
upper bound (6.1). On the other hand, by Weil’s theorem, it is possible to show (see
Rivoal’s argument in the proof of [12, Proposition 13]) that each of the sequences for
cos(P(n)) and sin(P(n)) is dense in the interval [−1, 1]. This implies that there are
infinitely many n such that the absolute values of the cosine (sine) are not less than
1/2 and hence the lower bound (6.2) follows for infinitely many n. �

L 6.2. Let a ≥ 2 be an integer. Then there exists a positive constant λ = λ(a) such
that for every µ = 0, 1, . . . , a − 1,

|Fn,µ| ≤
λ n!

na/2+1/(2a)
exp

(a−1∑
m=1

(−1)mbm(a) cos
(2πm

a

)
n1−m/a

)
.

Moreover, the asymptotic formula

qn =
n!

√
a(2π)(a−1)/2na/2+1/(2a)

exp
( a∑

m=1

(−1)mbm(a)n1−m/a
)
(1 + O(n−1/a))

holds as n→∞.

https://doi.org/10.1017/S1446788712000134 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000134


98 Kh. Hessami Pilehrood and T. Hessami Pilehrood [28]

P. The proof follows easily from Lemmas 4.1, 2.2 and 6.1 and the fact that
qn = Fn,0 = In,0(1). �

Our Theorem now follows by Lemmas 2.1 and 6.2.
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