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Abstract

The method of matched asymptotic expansions is used to solve the problem of flow over a
thin airfoil possessing a trailing-edge appendage, which may be of a general character, but
is confined to a region of small size compared to the airfoil’s chord. A feature of this
asymptotic solution is effective de-coupling of the flow problems for the main airfoil and
the flap. The special case of an attached flat flap set at an arbitrary angle is solved in
detail.

1. Introduction

Consider the linearised formula ([3}, p. 171)

', I+
L=—2pU2j:In(x)\/I_i dx (1.1)

for the lift per unit span of a thin airfoil of chord 2/ and mean surface y = (x),
in irrotational flow of an inviscid incompressible fluid of density p, with a
uniform stream U at infinity. Clearly, to achieve large positive lift, we need large
negative 7’(x), especially near the trailing edge x = +/. Hence the conclusion,
appreciated since before manned flight (and certainly before (1.1) was first
derived) that highly-cambered trailing edges yield high lift. This is achieved on
modern commercial wings, especially in landing configurations, by deploying
trailing-edge flaps of various kinds. Such high-lift devices are discussed in
standard aerodynamic reference sources such as [1], [2], [4] and [5).
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As a simple model, consider
-l<x<l—-h,
n(x)_{a—ﬂ, I-h<x<l, (1.2)
which represents an airfoil with a flat mean surface, together with a flat attached
trailing-edge flap. If @ and B are both small, as is necessary for validity of (1.1),
the main airfoil is at angle of attack a, and the flap is of length A and is set at an
angle B to the main airfoil. The resulting lift according to (1.1) can be written

L=Ly+L,, _ C(13)
where
'Ly =2mpU%a : (1.4)
is the well known flat-plate lift of the main foil alone, and ([4], p. 486)
L, = 4pU%B[arcsin /2 + Je(1 — ¢) | (1.5)

is the additional lift due to the flap. In the above, ¢ is the ratio between flap
length and airfoil chord, i.e.

e=h/(21). (1.6)-
In most applications of interest, ¢ is small, and in that case, (1.5) reduces to
L, = 8pU%Be? + O(e). ' 1.7)

Thus such a flap achieves a lift increase equivalent to that obtained by giving an
angle of attack a to the whole airfoil, if the flap is set at an angle

B= %a/el/z. (1.8)

Results such as (1.8) again illustrate the exaggerated influence of trailing-edge
camber on lift generation. Lift increases of the order of 100% are in principle
achievable by using quite small flaps at high angles of attack. There are of course
both practical and theoretical limitations on this conclusion. The practical ques-
tion is how to keep a real viscous fluid attached to the whole flap, and a vital
consideration for design of effective high-lift devices is prevention or delay of
boundary-layer separation at critical locations such as the hinge point. Such
questions are beyond the scope of the present paper, and we refer to the reference
sources already quoted for further discussion of the consequences for flap design.

However, even from the theoretical ideal-fluid point of view, one may suspect
the validity of linearised thin airfoil theory for flap angles that are significant
enough to be useful for lift augmentation. In principle, exact (i.e. non-linear or
non-thin) two-dimensional airfoil theory can be used to compute the flow past an
airfoil with a flap of any length, set at any angle, e.g. past the lamina y = n(x),
with n(x) given by (1.2), and neither a nor B nor & necessarily smalil. That is, we
can solve Laplace’s equation for irrotational flow past such a body, with a
uniform stream and an arbitrary circulation at infinity. The appropriate circula-
tion, and hence lift, can be determined so that the Kutta smooth-detachment
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condition can be satisfied at the flap’s trailing edge, wherever it may be. However,
such an analysis is very complicated and provides little insight for general airfoil
configurations.

Since we are most interested in small ﬂaps Le. in the limit as ¢ — 0, even if the
flap angle B is not small, there is a compromise position between that of
attempting an exact solution for the complete configuration, and that of a fully
linearised theory leading to (1.1). This is provided by the method of matched
asymptotic expansions [7]. In essence, we use linearised theory in an outer domain
of length scale /, and non-linear theory in an inner domain of length scale 4. Each
of these two problems has simplified geometry, the outer geometry being that of
the main airfoil and the inner that of the flap.

Indeed, to leading order, the required outer geometry can immediately be seen
to be even simpler, namely (irrespective of the actual thin-airfoil geometry) that of
a flat plate at zero angle of attack. That is, if ¢ as defined above is the
fundamental small parameter of this problem, any measure of the local incidence
of the main foil, such as the angle of attack a, the camber, or the thickness
derivative, can be assumed to be at most of the same order as e. Equivalently, any
y-wise departure (e.g. as measured by n(x)) from y = 0 can be at most of the
order of h = O(¢)l, or else the flap would be obscured by such geometrical
features. Now any linear disturbance of the ‘order of ¢ produces effects, on flow
and hence lift, also of the order of e. But we have already seen that a flap of size ¢
produces effects of the order of /2 times its own angle of attack B, and we are
now going to assume that the latter is not small. Hence, when solving for large
effects of flaps, we can neglect the smaller (in terms of &) effects of quantities
such as the angle of attack of the main foil. More to the point, perhaps, we can
delay consideration of such effects till the next O(e) term in the asymptotic

. expansion with respect to e at which time they are simply addmve to the
" already-computed O(&!/?) effects of the flap.

At first sight, the above appears to make the outer problem trivial. After all, a
flat plate at zero angle of attack creates no disturbance to an inviscid fluid. Or at
least it does, subject to the usual aerodynamic requirement that the flow detach
smoothly from the trailing edge.

Consider, however, the flow of Figure 1. This represents a uniform stream
parallel to a flat plate y = 0, -/ < x < I, about which there is non-zero circula-
tion. The flow does not detach smoothly from the trailing edge. Instead, it is
fore-and-aft symmetric, with an aft as well as a forward stagnation point, and
passes around both end points with infinite velocity. This cannot happen in a real
fluid, of course. But the point is, the flap tries to make it happen, and the flow
shown in Figure 1 is, except for the immediate neighbourhood of the trailing
edge, close to what we might hope to achieve by a suitable trailing-edge flap
deployment.
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Figure 1. Streamlines for (outer) flow about a flat plate at zero angle of attack, but with non-zero
circulation.

This means that, for some choice of the circulation, a flow such as that of
Figure 1 solves the outer problem. All we have to do is to match with a suitable
inner approximation near the trailing edge, in order to determine the circulation
and hence the lift per unit span. This matching process requires us first to
examine the outer flow near its trailing edge, where the outer velocity field
appears to behave like the inverse square root of distance from that edge.

The inner region encompasses the complete flap, whatever may be its geometry,
but loses all of the main foil except its trailing end. Thus the flap appears to be
attached to the semi-infinite plate y = 0, x < /. Clearly there is no circulation
about such a semi-infinite body. Nevertheless there is a Kutta condition to be
satisfied, and we can and do select from a one-parameter family of flows, a

" unique member that allows smooth detachment from the trailing edge of the flap.

For example, Figure 2 shows this inner solution for B8 = 7/2, ie. for a
right-angled flap. This example is used because the inner solution is simple and
explicit, see equation (4.7) to follow, even though it suffers from the practical
defect that a real fluid cannot negotiate the right-angled corner on the upper
surface. However, more-practical flap-airfoil junctions can be treated with little
increase in difficulty. .

The flow of Figure 2 behaves at infinity like a uniform stream plus a flow
around an edge, the latter having a velocity that decays with distance like the
inverse square root. In general, a linear combination of these two flows will
possess a stagnation point somewhere on the flap, and will pass around its edge
with infinite velocity. However, for a suitable choice of the strength of the edge
flow, the stagnation point can be moved to the edge, so yielding smooth
detachment as in Figure 2.
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Figure 2. Streamlines for (inner) flow about a semi-infinite plate of zero thickness, with an attached
flat flap at right angles.

Matching now simply asserts that the “inverse square root” velocity contribu-
tion from Figure 1 near its trailing edge is identical to that from Figure 2 near
irifinity. Since the latter is known, this determines the outer flow and the lift. Let
us now pursue the details of these matched expansions.

2. Formal outer expansion

We use the complex co-ordinate z = x + iy and potential f(z) = ¢ + iy. The
outer region is z = O(/). In such a region, we assume an asymptotic expansion
with respect to ¢ of the form

f(2) = U(z = 1) + £7°f1(2) + efy(2) + O(£*?) (2.1)

for flow of a uniform stream U over a thin airfoil whose maximum departure from
the plane y = 0 is O(e). Hence, as far as the O(¢'/?) potential f,(z) is concerned
(but not so for f,(z)), the airfoil can be replaced by the flat plate y = 0, |x| </
This plate can be mapped to the unit circle {{|=1 in the {-plane by the’
Joukowski mapping

z=4(¢+ ) (2.2)
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and we suggest as our solution simply a vortex at the origin in the {-plane, i.e.

hHh= 2m log{ (2.3)

for some choice (to be made later) of the circulation ;. The streamlines
corresponding to f= Uz + &/%f,(z) with &/, = —nUI are those shown in
Figure 1.

In order to proceed to the O(¢) term in (2.1), we must introduce the actual
shape of the airfoil surface. Suppose its upper (+) and lower (=) surfaces have
equations

= eny(x) (24)
for some given functions n%(x). We assume that the airfoil has a sharp trailing
edge, i.e. that nf(+/)=1n3(+1) and n3'(+!)=153(+1). Then the exact
boundary condition

3
o= ent'(x) g2 ony=en(x) (2.5)

linearises with O(&%/?) error to
g—ﬁ = Uent’(x) ony=0,. (2.6)

Hence, as we have already observed, the O(e'/?) potential €'/%f,(z) satisfies a
homogeneous boundary condition, as if the airfoil were a flat plate at zero angle
of attack.

On the other hand, the O(¢) potential ¢f,(z) contains, via (2.6), contributions
from eni’(x). These contributions are exactly as would be obtained from
linearised aitfoil theory, namely

12 =35 [ o) - (@) lop =g de + 7% 1085, @)
where m,(x) is a source strength related to the thickness, i.e.
my(x) = U [n3(x) - m3(x)], - 28)

and y,(x) is a vortex strength related to the camber, i.e.

n() = -\ [ g ot O+ @] @9)

Note that the vortex strength y,(x) is in principle not uniquely defined, and to
the expression (2.9) given above, one can add any multiple of (/2 — x2)1/2,
However, such a degree of freedom is already accounted for by the final term of
(2.7), where k, is an arbitrary constant, and { is as defined by (2.2). It may be
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verified directly that the expression (2.7) satisfies the boundary condition (2.6) on
both top and bottom surfaces.

In effect, f,(z) is just the homogeneous equivalent of f,(z). Both f,(z) and
f>(z) incorporate an arbitrary circulation about the airfoil, corresponding at
infinity to an apparent line vortex. In the case of f,(z), this vortex is all that is
responsible for the disturbance flow, whereas in the case of f,(z), there are
additional contributions arising from the airfoil shape.

No Kutta condition of bounded trailing-edge velocity has been enforced at this
stage. If it had been, we should have had to set «;, = 0, and hence f,(z) = 0.
Similarly, k, = 0 implies that f,(z) is exactly as prescribed by thin airfoil theory,
since (2.9) has the property that y,(+/) = 0.

For matching with the inner expansion, we shall need the behaviour of f, and
foclosetoz = +/ie.to{ = +1. Thusif weset { =1 + {,, where {; < 1, then

z=1+ (82 - 83) + o(&d). (2.10)

Henceas z —» +1,

fl(z) = i(5‘1 - %{12) + 0(§13)

2ai
- jz—1 _ )32
=i\ 12 +0(z-1)"". (2.11)

A similar but not so immediate conclusion, with a different error term, applies
to f,(z), namely as z » +1,

fo(z) = %‘/ 217_21 +0(z-1). (2.12)

The non-zero contribution to (2.12) comes, as with (2.11), from the last term of
(2.7). The integral in (2.7) has been designed so that it contributes nothing as
z — +1. In the first place, the factor (/ — §) in the denominator of the logarithm
simply contributes a physically-irrelevant constant, such that, providing the
integral converges at z = +/, its value is zero. Convergence of the integral for
f>(z) itself is not really an issue, a more severe test being a demand that the
corresponding integral for the derivative f,(z) converges as z — +/. If this is so,
then the error term in (2.12) is as written. Convergence of the integral for f,(z)
requires that m,(£) — iv,(§) tends to zero as £ — +/. This is true for y,(£) by
construction, noting that of all possible members of the one-parameter family of
vortex strengths, only the particular solution (2.9) has this property. The require-
ment of a sharp trailing edge implies that m,(+1!) =0, and this condition is
necessary for validity of (2.12).
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In summary, combining (2.1), (2.11) and (2.12) with z — [/ = O(el), the inner
expansion of the outer expansion is of the form

1/2 — —7
f(z2)=U(z-1)+ 6277';‘ ‘/ 21/2' + %]/ 21721 +0(e?). (213)

The first two terms of (2.13) are O(¢), and the third is O(&*/?).

The constants «, and and «, will now be determined by matching with the
inner flow near the trailing edge. Once this is done, any outer flow quantity
required is available with error O(¢*/2). In particular, the net circulation about
the airfoil is

k=¢"% + e[x2 + fl ¥,(x) dx] + 0(&¥?), (2.14)
-1
from which the lift per unit span,

L = —pUk, (2.15)

follows by the Kutta-Joukowski theorem. Note that if k, = k, = 0, then L is
given by (1.1), with the camber function

1(x) = se[n; (x) + nz(x)]. - (216)

3. Formal inner expansion

The inner region is defined by z — I = O(h) = O(el). Hence we may define an
inner coordinate Z by

z=14+hZ (3.1)
The potential is assumed to have an asymptotic expansion in & of the form
f(2) = 21U [eF,(Z) + €7°F,(Z) + 0(&?)]. (3.2)

Note that the fact that (3.2) starts with a term of O(e) simply corresponds to the
O(el) length scale of the inner flow; however, it also can be anticipated from a

need to match (2.13).
Specifically, matching with (2.13) demands that as Z — oo,

F(Z)-> Z + iK,Z'? (3.3)

and
F,(Z) - iK,Z'?, (3.4)
where
Ky= -
27 T2qUl
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and
K2
“2qUl

That is, the flow corresponding to F,(Z) appears at infinity like a unit uniform
stream combined with a “Z/2” potential, which is the exact solution for flow
around a semi-infinite plate Y = 0, X < 0. A similar description, but without a
uniform stream component, applies to F;(Z). The apparent semi-infinite plate at
infinity is the inner representation of the trailing edge of the main airfoil.

To this plate is attached a trailing-edge flap configuration of arbitrary geom-
etry. That is, the inner task is to solve for flow around the end of a semi-infinite
plate, to which is appended a body of, in principle, any shape whatever. Note that
we have required here that the upstream semi-infinite plate be of zero thickness.
The somewhat more general problem where the thickness of the main airfoil does
not vanish at its trailing edge would lead to an inner problem with a finite-thick-
ness plate upstream, and is left for future investigation.

In the present case, the whole inner flow is forced by the upstream conditions
(3.3), (3.4) above, and we can write

F,(2) = F(Z) + K,G(Z)

K3=

and
F(2Z) = K,G(Z),
where, as Z — oo,
F(Z)- Z
and
G(2) - iz
Both F(Z) and G(Z) can be determined uniquely for any specified appendage
geometry.

At this stage, the constants K, and K, are not determined, and hence each
solution F,(Z) and F;(Z) is obtained as a one-parameter family. It is time to
introduce a Kutta condition. Suppose first that the appendage itself possesses one
sharp trailing edge, as would be the case for a single attached flap, located at
Z = Z,. Then, in general, the potentials F(Z) and G(Z) will each demand
infinite velocity at Z = Z,. Since F,(z) is directly proportional to G(Z), this
singularity is removable for F;(Z) only by removing the flow altogether, i.e. by
setting K; = 0.

However, for F,(Z), one must expect that there exists a non-zero unique value
of K, such that |F;)(Z,)| < co. Physically, as is usual in airfoil theory, the flow
F,(Z) contains a stagnation point whose location Z = Z¢(K,) depends on the
parameter K,. By a suitable choice of K,, we can force Zg = Z,, the resulting
flow having neither zero nor infinite velocity at that point.
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If there is more than one sharp trailing edge associated with the appendage
configuration, it can be assumed that this configuration is multiply connected,
consisting of one or more detached flaps, the number of trailing edges being one
more than the number of flaps, i.c. one trailing edge for each flap, plus one for
the main airfoil. Any other situation is indeterminate, in un-separated irrotational
flow. Thus each flap now has in effect its own circulation and its own Kutta
condition, but there is one Kutta condition left over, and this determines K,
uniquely.

In summary, whatever may be the appendage configuration (subject to the
above restriction, if non-simply connected), the inner flow will determine X,
uniquely,-and demand K, = 0. This means that, returning to the outer domain,
the lift is the sum of an O(e'/?) contribution proportional to x, = -27UIK, and
an O(¢) contribution, which (since x, = 0) is precisely that for the main airfoil
with no flap, i.e. is given by (1.1).

The remaining task is thus to find a flow F,(Z) over the exact flap surface,
satisfying (3.3) at infinity, and appropriate Kutta conditions. Although this is still
a major computational task, it is often considerably simplified relative to the full
non-linear problem, in which the airfoil geometry also enters. Indeed, even aside
from the computational simplification, the de-coupling of airfoil and flap geom-
etries achieved by the present analysis is of design significance.

4. The simple attached flap

There are some cases in which the inner flow can be solved analytically, or in
which at most a quadrature is required, and the simple attached flap of Figure 3
is one important example. The flow domain in the complex potential plane has a
cut along the negative real axis, and hence can be mapped to the upper half
t-plane by

F, = -k¢? 4.1)

for some some real positive k. Schwartz—Christoffel considerations then suggest
that the solution is given by integration of

— = 2kt| ——

dZ (z+1)ﬁ/"
dt t—A ’

(42)

where A is another real positive constant.
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Figure 3. Flow domain in the z and ¢ planes for an attached flap at angle 8.

The upper (D) and lower (B) corners map to t = -1 and ¢ = A respectively,
and, since the complex velocity is

dF, (1= X\\P/"

az (z n 1) ’
the correct change of ¥ 8 radians in the flow direction is achieved at both of
these points. These points D and B have (respectively) infinite and zero velocity,
if 8 > 0. In contrast, the end point C with ¢ = 0 has finite velocity, so that the
Kutta condition is satisfied. The far-field boundary condition (3.3) is satisfied as
t = oo, with

(4.3)

=2k (4.4)

All of the above applies for any k, A > 0, and we need two more equations in
order to determine these two parameters. In fact, for a general choice of k£ and A,
the solution (4.2) corresponds to a more general flap configuration than that of
Figure 3 since so far we have not ensured that the upper and lower corner points
D and B be at the same point of space in the physical plane. This is now achieved
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simply by demanding that the distance CD between edge and upper corner equals
that CB between edge and bottom corner. Setting both of these distances equal to
unity (as we are entitled to do, since the actual flap length h has been scaled out
by (3.1)) gives us the required two equations, namely (after division by 2k)

LA e e e

= ﬁ' (4.6)
Equation (4.5) is a single transcendental equation to determine A, after which
(4.6) determines k.

For a general flap angle B, the integrals in (4.5) must be evaluated by numerical
quadrature, but for 8 = 7/2, i.e,, a right-angled flap, they can be evaluated in
closed form, and we find A = 4 and k = V3. Indeed, the whole solution then is
in closed form, namely

Z=-(t+1)"*Gt - 1)~ | (4.7)

Streamlines £F, = constant computed by combining (4.1) (with k = V3) and
(4.7) are those given in Figure 2.

For B +# #/2, having evaluated both integrals in (4.5) numerically with A as
input, we choose A so that they equal each cther. A plot of A and k versus S is
given in Figure 4. Also shown is the ratio

L

g 1
L_l' = Z = 5(1 + A)\/E (4.8)
between the O(¢'/?) lift L computed from (2.14) and (2.15) according to the
present non-linear theory, and the value L, given by the linearised theory, as in
(1.7). Note that this comparison of the present finite-8 lift is with a fully
linearised aproximation, where the mean surface is given by (1.2) and the lift by
(1.7). No comparison is made with a “pseudo-nonlinear” result that could be
obtained by replacing a, 8 and A in (1.2) by tana, tan 8 and A cos 8 respectively,
without amendment of the aerodynamics. Since L, is just the limit of L as
B — 0, the ratio L/L, starts at unity at B = 0, and it decreases with 8. That is,
the linearised theory over-predicts the lift, but not by very much. For example, its
error is less than 3% up to B = 45°, and only 12% at 8 = 90°, well beyond the
practical range of validity for attached flow.

Figure 4 includes results for “folded-back” flaps with 8 > 90°, even though
these are only of theoretical interest. For example, we find that L/L, = } as
B — 180°, i.e. when the flap is folded right back flat underneath the main foil.
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| | l | 1
0 30 60 90 120 150 180

Flap angle, B (deg.)

Figure 4. Variation with flap angle B of the parameters k and X of the inner mapping for a flat
attached flap, and of the lift reduction factor L/L, relative to that given by linearised theory.

Note that this situation still in theory yields non-zero lift, since the Kutta
condition has been enforced at the location of the flap end, not at the airfoil end,
and hence a non-zero circulation is created. However, the lift at 8 = 180° is
somewhat reduced relative to that for a deployed flap. Maximum lift (of about
14pU % /?) is achieved at B = 149°; i.e., this is the flap angle that turns an
inviscid fluid most effectively around the trailing edge of the main foil. Although
such a flow could not be achieved by a flat attached flap in a real viscous fluid, it
is instructive in setting bounds on achievable lift for flap configurations that do
permit attached flow.

5. Conclusion
The purpose of the present paper has been to outline a systematic matched

asymptotic expansion approach to study of trailing-edge appendages of small size
but at arbitrary incidence. Only the case of a simple flat attached flap has been

https://doi.org/10.1017/50334270000005695 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000005695

[14] Small trailing-edge flaps 155

treated in detail, the results agreeing with linearised theory in the limit of small
flap angle.

For general flap configurations, a significant conclusion is that the flows over
the main airfoil and the flap can be treated separately, and then matched
together. Both problems in general demand numerical solution, but this asymp-
totic procedure provides a valuable de-coupling of the geometrical complexities in
these two differently-scaled problems. For example, we should expect that details
of the main airfoil’s leading-edge geometry would influence the performance of
the trailing-edge flap in only a minor way, and the present theory builds in such a
property, by replacing the main airfoil with a semi-infinite plate, when analysing
the inner flow about the flap.

There are many possible extensions of this work. Detached and multiple flaps
are easy to treat within this same non-linear framework. This would generalise
existing linearised theories (e.g. [8], [9]) for detached flaps or tandem airfoils. The
work also has relevance to models of bluff-body aerodynamics and (especially)
hydrodynamics, in which one assumes separated flows, the main body being thin
and allowing a linearised treatment, but the trailing end having a transom or
wedge shape from which a nonlinear constant-pressure wake or cavity is shed.
Three-dimensional applications, such as to wing tips with winglets, are also under
investigation in the context of yacht keels. Ground effect aerodynamics [6]
provides another interesting extension in which, when the ground clearance is
small, even the outer problem is nonlinear.
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