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Abstract

In this paper we present a computational method for solving a class of time-lag
optimal control problems with restricted phase coordinates.

1. Introduction

In this paper we present a computational algorithm for solving a class of time-lag
optimal control problems with restricted phase coordinates. Such problems arise
in the optimal control of inventory or storage systems, where the inventory is
constrained to be non-negative and often the storage space is restricted, and also
in the optimal control of a river system [3]. Another application [4] relates to the
optimal control of a nuclear reactor.

The algorithm is an extension of the algorithm given in [6] for solving the same
class of problem, but without the restricted phase coordinates. The idea is moti-
vated by the projected gradient method found in classical optimization techniques.
Consider a trial control function, for which the state satisfies its restrictions. If the
corresponding Hamiltonian is not maximal, then the control is modified, on a
suitably small time interval, so as to reduce the objective function. This leads to
an iterative algorithm.

In Section 5 a very simple example is given, and solved analytically, to illustrate
the method. However, numerical experience and an estimate of convergence rate
are not yet available.

The present algorithm may be contrasted with that of [5], where there is a con-
vergence result, but no estimate of convergence rate; however, [5] does not include
time-delayed arguments and does not handle phase constraints. The numerical
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386 K. L. Teo and B. D. Craven [2]

experience in [6] suggests that the present algorithm, which extends that of [6],
should be numerically effective.

2. Statement of the problem, basic definitions and assumptions

Consider the following delay-differential equation on the fixed time interval
(0,71

x(0 = t fj(t-hj, x(t-hj), u(t-hj)) (1)
7 = 0

where xA(x, i j e i ! " and uA(ul,...,ur)eRr are, respectively, the state and
control vectors, &ndfJA(f{, ...,f{)eR", j = 0,1, ...,s. The hk are the time delays,
ordered so that

0=ho<hi<...<hs<T, s<co.

The initial function for the differential equation (1) is

^ ,0 ] , (2)

where <j> A(<f>u ...,</>„) is a given, absolutely continuous function on [—hs,G]
with values in Rn.

Let D be the class of all controls defined by
D A{u: u is a function from [ — hs, r ] into U, piecewise continuous on [0,T]

and with u(t) = P(t) on \_-hs,0)},
where /? is a given piecewise continuous function on [—hs,O) with values in U,
and U is a compact and convex subset of R".

By virtue of ([6], Theorem 2.3, page 318), we observe that, for each ueD,
system (l)-(2) admits a unique solution x(u)(.). Let rA(r 1 ( . . . rp), be a function
from [0,T] xRn<*+1) into R", where Rnis+1> = R"x ...xR" ((s+l) times), and let

3) c D be the class of admissible controls defined by

0 = {ueD: Tk(t, X(u)(t)) ^0,k = 1,...,/»},

where X(u)(t) denotes W«)(0, *(")('-Ai)» •••,x(u)(t-hp)). The conditions
rfc(r, AXM)(0) ^ 0, A: = 1,2,...,/?, describe the state constraints.

We may now state our problem, denoted by P, as: Subject to the dynamic
constraint (1) with the initial condition (2), find an admissible control ue£# that
will minimize the cost functional J defined by

•/(") =\ t /o(* - hJt x(u) (t - hj), u(t - hj)) dt, (3)
J 0 j = 0

where, for eachje{0, l,...,s},fi is a real-valued function.
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[3] Algorithm for time-lag optimal control problems 387

For any zeR", \\ z \\ denotes the Euclidean norm (£"=1 z?)*. For any function
g: Rm^R", dg/dx denotes the Jacobian matrix whose i,j element is dgjdxj.

The following assumptions (A) will be assumed throughout. The functions
Jl, fJ and dfJ/dx, j=l,...,s, are piecewise continuous on [0,71] for all
(x, u)eR"x U and continuous on R"xU for each te[0, T\. Moreover, for each
compact set fi c R", there exists a positive constant m so that

\\fi(t,x,v)\\^m(\ + \\x\\) and \\fj(t,x,v) || < m(l + ||x ||).

for all ye {0,1, ...,s} and for all (t, x, v) e [0, T\ xfix U. In addition, it is assumed
that r ( . , j c , / , . . . , / ) is continuous on [0,T] for each ( x , / , . . . , / ) e / ? s + 1 and
F(t, .,.,..,.) is twice continuously differentiable on Rs+1 for each te\0,T'].

In the results to follow, we need

DEFINITION 2.1. For each ueD, the absolutely continuous function

solution of

t=oj=o 5x, > (4)

= - l , J
/7/i the final condition

= 0 forallt^T, i = \,...,ri\
and (5)

*o(O=O forallt^T. j

DEHNITION 2.2. t/j/ng //ie abbreviation *¥{t)for (ip(t+h0), ij/it+hj, ...,\p(t+hs))
we define the Hamiltonian H: [0,T]xR"x UxRin+1Hs+ ^^R1 to be

t i (6)

3. Preliminaries

In order to devise a computational algorithm for approximating problem P, we
need certain preparatory results to be presented in this section. For these, we need

DEFINITION 3.1. 4̂ control u*e@ is said to be an extremal control if it satisfies
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the following condition

lT H(t,x(u*)(t),u*(t),V(u*Kt))dt
J 0

= max| fT//(r,x(u*)(0,u(0,'P(O

REMARK 3.2. For awe®, let ©'(«) denote the points of discontinuity of the
functions

//(.,x(«)(.),«(•)) and 3/ /( . ,x(t t )( . ) ,u()) / , , , f

7 = 0 , 1 , ...,s.

Now let 0(w) consist of all the0'e0'(«) and the points 6'+hj,j= 1, ...,s, 0 and 7\
Note that if all the functions mentioned in this remark are continuous then the
set 0(u) reduces to {0,T}.

REMARK 3.3. When a piecewise continuous function y, having discontinuities
at a and b, is considered in [a, &], y(a) shall mean y(a+0), and y(b) shall mean
y(b-O).

In the following Remark, we divide the interval [0, T~] into intervals of length,
at most, hv Then, the differential equation (1) can be treated as a differential
equation without delays since all the delayed terms will occur in previous intervals
and therefore will have already been calculated.

REMARK 3.4. For u1 e 3, define

1) = {*e[0,T]: Tk(t, AV)(0) = 0 for some k = 1,...,/?}.

Let tce [0, T\ be such that
(i) tc = T i fmax$( w

1 )=r ;

(ii) /c>maxO(«') if ^(M1) is non-empty and maxO(M1)<7';
(iii) tc > 0 if O(wx) is empty.

If max (DC"1) =T, set /, = / 2 =0 ; if max ̂ (u1) < T, set /t =0 , / 2 >0 ; if tc = 0 or
if ?C6<5(M'), set /x = 0 , /2>0' 1° a^ other cases, choose constants /]>0, /2>0.
Let E > 0 be such that no OeQfu1) (denned in Remark 3.2) is contained in the
interval [/c~

£'i>'c+e^2] a s a n interior point, and no intervals

[tc-£li+hj,tc+el2+hj~], 7 = 0, l,...,s,

overlap. Let w be a vector in U such that w ̂  ul(tc). Let Qe = [tc—ell,tc+£l2]
and let

uJ(0 otherwise.
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[5] Algorithm for time-lag optimal control problems 389

By the definition of u\, we observe that ul(t)=u\t) on [-As,/c-e/,). Thus,
r(t,X(ulXt)) = r(t,X(u1)(t)) on [(U-e/J.

Consider the differential equation (1) on \_tc — ell,tc+el2]. By its construction,
this interval does not contain 8eO(ul) as interior points and hence the right-
hand side of (1) is continuous for u =ul. It is also continuous in this interval for
u =u\ because ul(t) = w on [tc — £/,,/c+e/2]. Therefore, it can be shown easily
that, for all te(tc-el1,te+el2'],

; w)(tc) + o(a), (8)

where

au1; w) (Q = (h + l2) U\tc, x(ul) (/,), w) -f°(tc, xiu1) (O, u\tcm +o(6), (9)
and o(e) is such that

Define

Sdi1; w)(re) = ( « « 1 ; w)(tc), ^ I I 1 ; w)(/«-*,), - ^ ( w 1 ; w)Cc-^))- (10)

Since

«t
1(0 = «1(0 on l-hntr-li),

it follows that

x(«,1)(0=x(«1)(0 on [ -*„«„- / ! ] .

Further, we recall that no [rc — el^+hj, tc+el2+hj], j = 0,1, ...,s, overlap. Thus,
we obtain readily that

Z(u1;w)(tc-hJ) = 0, j = l,...,s. (11)

Now, by virtue of the conditions imposed on r given in assumption (A) and
equations (8), (9), (10) and (11), we deduce from Taylor's theorem that

E(ut; w)(tc)+o(s))

= rk(t,x(ul)(t))+e(drk(t,x(.ui)(t))/dx) (12)

]
for k = l,...,p, on [tc-elutc+dz~].

From the definition of tc, we observe that, for all te[tc—ell,tc+el2],

rk( / ,z(«1)(O)<o, k = \,...,P. (13)
Thus, it follows from (12), (13) and assumptions {A) that there exists an 6i>0
so that

r t ( t ,*(ui)(O)<o, k = i,...,P, (14)

on [te—Elute+el2~] for all e, 0 < e<el.
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By the definition of u\ given in (7), we observe that

H,1(0 = M1(0 fo r all te(fe+e/2,re-eJ1+*i].

Therefore, the difference between the trajectories x(ul){.) and x(w*)(.) on this
interval will result only from the differing initial conditions for the differential
equation (1) on (tc+el2,tc—e/i+Ai]. The perturbation of the initial conditions is
given in equation (8) with t — tc+sl2. Thus, we may use ([1], Lemma 4.3 with
r = 1, <5f0 =<5/i = 0 , 5F(t, y) = 0 and g(t,y,a,e)=0, pages 258-259) to obtain

x(ui)(t) = x(u1)(0+e<5xi(u
1)(/)+o(e) (15)

for te(te+el2,tc — ell+h1'], where

k=i j=o dxk

for te(tc+el2,tc — el1+hl], with the initial conditions

= ««l;w)(tc), te(t-elutc+el2],
Sx(u1;w)(t) = 0, lOjlJ J

Define

SXiu1; wmWxiu1; w)(r), ̂ ( " ' ; w)(t-h1),...,Sx{u1; w)(t-hs)). (18)

Then it follows that

SX(u1;w)(t) = (8x(u1;wKt),0,...,0) on (rc+8/2, tc-d,+h{\. (19)

Now we note that, for all te(tc+el2, tc-^i+hi],

rk(t,X(ulKt)) = rk(t,X(ulKt)+e5X(ul; w)(0+o(8)), fc = 1, ...,p, (20)

where 5X{ul; w)(i) is given by (19). Next, in view of assumption (A) and the
definition of £(KX; W ) ( O given in (9), it follows from (16) to (17) and Gronwall's
inequality that \\dxiu1; w)(t)\\ is bounded on [tc+£l2,tc-di+ht] uniformly
with respect to e, 0 < e ̂  Et. Thus, by virtue of the conditions imposed on T
given in assumptions (A), (20), Taylor's theorem and the fact just mentioned
above, we deduce from the definition of tc that there exists an e2, 0<e2 < et,
such that

on (tc+el2, tc-el1+h1'] for all e, 0 < e<e2.
This procedure is repeated for an interval of length /ii (in this case, we consider

the interval (tc+Bl2+h1,tc+el2+2h1J), or until the point tc-elt+h2 is reached
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(in this case, we consider the interval (tc+el2+h1,tc — ell+h2j), or until the final
time T is reached (in this case, we consider the interval (tc+sl2+huT]). The
choice is made so that the interval is smallest. Then, as explained before, in this
interval the delay-differential equation can be treated as an ordinary differential
equation. If we reach tc—el1+h2 before proceeding a length h1 and before the
final time T is reached, we derive new versions of equations (8) and (9) on

This is necessary because in the interval

(tc-ell+h2,tc+el2+h2']

the time delays have the effect of perturbing the differential system. On a basis of
the new versions of equations (8) and (9) on (*c-e/i+/j2,fc+e/2+/*2]> it follows
from a similar argument that there exists an e3>0 so that (14) remains valid on
(tc-el1+h2, tc+el2+h2~\ for all e, 0 < £<e3.

The whole process is kept on repeating until we reach the final time T before
(or on exactly) proceeding a length hl and before (or exactly as) any of the points
tc~

eh+hj,j = 3, ...,s, is reached. At this stage, the argument is complete and we
can conclude that there exists an & > 0 such that

0, k = l,...,p, (22)

on [0,7"] for all e, 0 < e<&. This, in turn, implies that u\eS> whenever e is such
tha tO<e<8.

4. Motivation for the Algorithm

In this section we present our main result, which is Theorem 4.1. This theorem
proves that, under certain conditions, if we are given a control ul e3> that is not
an extremal control, then a new control u2e@ can be constructed so that the
corresponding objective functional will be improved. On the basis of Theorem 4.1,
we present a computational algorithm for approximating a solution of problem P
in Section 5.

THEOREM 4.1. Consider problem P. Suppose that assumptions (A) are satisfied and
that u1 eSfi is not an extremal control. Let w be a vector in U such that a> # w'Oc)
and such that

H(tc, x(ul) (tc), co, I V ) (O) > H(tc, x{ul) (O, u\Q, nu1) (te)). (23)

Further, let £lc = [tc-elu fc+£/2] and let

u (0 otherwise,
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where tc, e, lx and l2 are as defined in Remark 3.4. Then,

J{ul)-J{u\)

= f {jy(t,x(iiI)(0,o»,l«'(«1)(0)--Hax(«1)(0.«l(0,1'(«1)(0)}^+o(e) (24)
J n

Further, there exists an e0 > 0 such that

O, fc = i,. . . ,p, (25)
on [0, T] onrf

J(«1)>J(«e
1) (26)

for all e, 0<e<eo.

PROOF. The proof for the first part of the theorem is similar to that of Theorem
4.5 of [2] with only some obvious modifications.

In view of Remark 3.4, we observe that there exists an e>0 such that (25) holds
true on [0, T] for all e, 0 «£ £<e.

Next, we note that the functions

H(.,x(u1H.),a>,'¥(u1){.)) and H(.,x{ulK.),ttl(.),^{ulH.))

are continuous on (tc — slute+el2)- Thus, by virtue of (24) and (23), it follows
that there exists an £>0 such that

for all e, 0<e< i .
Thus, the proof is complete by choosing e0 = min {e,l}.
By repeated application of Theorem 4.1, we can construct from any admissible

control u°e@ a sequence of admissible controls {uk}c$> such that
1) for all A: = 1,2,....

REMARK 4.2. In Theorem 4.1, we do not require that a> is a vector that maxi-
mizes H(tc, xiu1) (tc), ., ^(u1) (/c)) globally on U. Thus, the maximization of
H{t,x(ul)(t), . . ^ ( M 1 ) ^ ) ) with respect to veU at each net point constructed in
step 7 of the algorithm below can be performed by any practical method, for
example, the projected gradient method, when the calculus methods fail to be
accessible in practice.

5. The algorithm

On the basis of Theorem 4.1, we present a computational algorithm for approxi-
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mating a solution of problem P as follows:
1. Select an e>0.
2. Choose a w° e D such that

for all re[0,7], where X(u°)(t) = ( V X O . ^ " " ) ^ * ! ) . ...,x(u°)(t-hs)) and
x(w°)(.) is the solution of system (l)-(2) corresponding to u°. Set

f* =max{r:

if <I>(M0) is non-empty and t* = 0 if 3>(M°) is empty. If r* = T, go to step 18. Other-
wise go to step 3.

3. Se t a=0 .
4. Calculate il/(u*)(.') by solving the system (4)-(5) corresponding to u" back-

ward in time.
5. Calculate

for each 9ve ©(«"), where [a] means the greatest integer less than or equal to a
and 0(M°) consists of all the points in Q(u") and t*. Also find B — YX=oPy, where
y' is the largest value that y takes.

6. Compute A? by

A , = ^ ± i ^ , 7 = 0 , 1 y'.

7. Define

where y = 0 , 1 , ...,y' and f(y) = 0 , 1 , ...,j8v—1. Now assign

6(1) =6(0,0), A(2) =6(0,1), ...,b(B) = 6 ( / , / ? , , - l ) .

These are denoted as £>(/n), m = l,...,B.
8. Find i^ef l , ...,5} such that ^m,) = t*.
9. Compute the (o(u°)(b(m)), m — mu...,B, by any practical method, where

o)(u") (b(m)) is a solution of

max {H{b{m), x(u*) (b{m)), v, xpiu7) (b(m))) :veU}.

10. (i) If Z>(mj) = 0, find the first m2e{mu ...,B} such that AH(b(m2))>0,
where

A//(6(m)) = H(b(m), *(«•) (6(w)), ^(M0) (6(I»)), ^(W1) (6(W)))

—H{b(m), x(u*) (b(m)), u\b{m)), il>{u*) (b(m))).

(ii) If b(m1)>0, find the first w2e{m, + l, ...,5} such that AH(b(m2))>0.
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11. Set K = 0 and define

( k ] , m = mu...,B,
[u"(t), elsewhere.

Go to step 13.

12. Define

( <a(u")(b(m)), te[b(m),b(m+iy) forme

u°(t), elsewhere.

13. If «"•K is such that

for all te\0,r\, where X(u*-*)(t)) = (x(ux-K)(t),x(u*-")(/-*,), ...,x(u*-K)(t-hs))
and x(Mailc)(.) is the solution of the system (l)-(2) corresponding to «"•*, set

* _ fmax{r: TeO(w3t>'c)} if <5(u°tllc) is non-empty,
a > K ~ j o ifO(MIK)isempty,

and go to step 15. Otherwise go to step 14.
14. Set K = K+ 1 and go to step 12.
15. (i) If f*K = T and /(w*-*)<./(«<"), set u*+1 =u"-K and go to step 18.
(ii) If t*K = T and J(ux-K) ^J(u*), set wa+1 = u* and go to step 18.
(Hi) If t*K<T, go to step 16.
16. If J(u"-K)<J(u"), set ua+1 =u"-K, t*+1 =t*tK and go to step 3. Otherwise go

to step 17.
17. If DB/2K+1] = 0 , set e =s/2 and go to step 5. Otherwise set K =K+1 and

go to step 12.
18. Stop.

REMARK 5.1. In this algorithm, we prefer to choose an initial admissible control
M° such that the set <I>(u0) is empty. Since the improvement of the objective
functional is achieved by perturbing the control u°, it appears that the closer t*
to Tthe smaller the room will be left for improving the objective functional. Thus,
in general, the optimal admissible control obtained from an initial admissible
control u0 such that <t(w°) is empty will be superior to that obtained from an
initial admissible control u0 such that t* is very close to T.

At this stage, it should be noted that we do not have a general method for
finding an initial admissible control u° such that <P(u°) is empty. However, the
finding of such an initial admissible control is possible for many practical problems.
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[11] Algorithm for time-lag optimal control problems 395

REMARK 5.2. In steps 2, 4 and 13, when we calculate x(«)(.) and ip(u)(.), we
first break up the interval [0,T~\ into [6j,Qj+{] for all 0j,0J+1sQ(u), where
0(M) is as defined in Remark 3.2. Then, the system (l)-(2) corresponding w is
solved forward in time whereas the system (4)-(5) corresponding to u is solved
backward in time, both integrations being done over the previous subintervals in
appropriate orders.

REMARK 5.3. With the state and costate variables known, an approximate
maximizing control w(Ma) is calculated at each net point by any practical method.
These net points are constructed in steps 5-7. In view of step 5, we note that the
construction of these net points depends on the quantity e.

REMARK 5.4. On the basis of Theorem 4.1, we observe that, if u*e@ and t*<T.
then the algorithm will produce an improved control Ma+1e@ after only a finite
number of iterations. However, if t* = T, then no improvement can be made in
the value of the objective functional and hence the algorithm will terminate.

REMARK 5.5. In practice, the algorithm will terminate if t*\k = T or t* = T or
any of the following conditions is satisfied:

(i) The improvement in objective functional per iteration is less than some
tolerance.

(ii) The value of Ay is less than or equal to the step size of integration,
(iii) The value of ^AH(t)dt is less than some tolerance.

REMARK 5.6. Note that the Hamiltonian function used in this algorithm is the
one for problems without restricted phase coordinates. Thus it will be more
interesting and more natural if the generalized Hamiltonian function of the type
developed in Chapter 5 of [3] can be used to derive a computational method even
for the case without time delayed arguments. This remains an open problem.

6. An example

To check the algorithm presented in Section 5, let us consider the following
simple example.

Minimize J[u] = {- x(u) (t)} dt (6.1)
«£0 Jo

(x(u)(t)=u(t), O^tZl, (6.2)

subject to{ x(u) (0) = 0, (6.3)

; i , O ^ f ^ l , (6.4)
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where u e D and D is the class of controls defined by

D = {u: u piecewise continuous real-valued function defined on [0,1] and

«(?)e[0,l] for all re [0,1]}.

The Hamiltonian for this example is

H(t,x,u,il/)=x + uij/. (6.5)

The adjoint system is

««)(!) =0. ' (6-6>

Since (6.6) is independent of u, it can be written as

= - l , te[O,l],
(6.7)

The solution of (6.7) is

-l-t. (6.8)

Now let us solve this example step by step according to the algorithm presented
in Section 5.

From step 1: Choose e = 2.
From step 2: Choose

0, /e[0,i),

0, ?e[ | , 1].

Clearly, u° e S> and t* = 0.
From step 4: ip(t) = 1 — t.
From steps 5-7: 6(1) = 0, b{2) = | and 6(3) = £.
frow 5?e/? 8: ml = 1 and 6(1) = 0 = i*.
from step 9: G>(M°)(0) = 1 , ©(«°)(i) = 1 and a>(u°)(|) = 1.
From step 10: A//(0) = 1 >0.
From step 11: u°- °(t) = 1 for all /6[0,1].
From step 13: x(u°- °) (0 = /. However, x(u°- °) ( 0 > | for all te(i, 1].
From step 12:

From step 13:

U,
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Clearly, u°- * e 3) and t£ t = 1.
From step 15(i): J(u°- *) = -£<J(u°) = - ^ .
From step 18: Stop.
In this example, the control u°-1 obtained by the algorithm presented in

Section 5 is the optimal control. However, in general, we can only expect- to
compute a sub-optimal control for a given control problem.
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