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If x and y are elements in the group G, then we denote their commutator by
xo y = x~1y~1xy = x~1xy; and xo G is the set of all commutators xo g with
geG. A G-commutator sequence is a series of elements c(eG with cl+1ec,-o G.
Slightly generalizing well known results one proves that the hypercenter $$%G of
the group G is exactly the set of all elements h e G with the property:

every G-commutator sequence, containing h, contains 1 [Proposition 1.1].

It is clear that such a G-commutator sequence contains but a finite number of
distinct elements. Hence we term an element geG a Q-G-element, if every G-
commutator sequence, containing g, is finitely valued [contains but a finite
number of distinct elements]. The question arises whether the set of Q-G-elements
is a subgroup and if so how to describe this subgroup. With this in mind denote
by *$G the product of all the finite normal subgroups of G and by £}G the
uniquely determined subgroup of G with tyG £ QG and Q.G / $G = J93G. It is
easily seen that every element in £1G is a jQ-G-element [Corollary 1.2]. Terming
an element w e G a weak Q-G-element, if to every G-commutator sequence c,
with w = ct there exist positive integers i ^ j with ct = cp it is clear that Q-G-
elements are likewise weak Q-G-elements. Somewhat deeper is our principal
result:

QG = set ofQ-G-elements = set of weak Q-G-elements [Theorem 3.2].

If X is a group, then we denote by tX the product of all normal torsion
subgroups of X. This is a characteristic torsion subgroup of G which need not
contain all torsion elements of X. Then the normal subgroup N <i G is part of
£}G if, and only if,

NI(N nQG) s ^[G/(N nQG)] and ctN[(N nQG)/(tiV n J5G)] £ QG

where cxY is the centralizer of Y in X [Theorem 5.2]. In order to prove this and
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36 Reinhold Baer [2]

related results we derive in section 4 characterizations of the hypercenter which
may be of independent interest.

In contrast to the rule §>%[G I§%G] = 1 neither of the rules ^[G/'ipG] = 1
nor Q[G/QG] = 1 is true in general. Thus the following criteria are of interest:

JQ[G/QG] = 1 if, and only if, &[G/tQG] = 1;

if "#G is finite, then Q[G/-;pG] = 1

[Proposition 6.8].
Groups G with G = £}G may be termed Q-groups. Products of finitely many

normal Q-subgroups need not be £}-groups [Example 7.1], this very much in
contrast to hypercentrality. But finitely generated Q-groups are noetherian
[Proposition 7.2]. This suggests the definition of locally Q-groups [ = flQ-
groups]: these are groups whose finitely generated subgroups are Q-groups. They
have the closure property: products of [finitely or infinitely many] normal
subgroups are fiO-groups [Theorem 7.4].

Notations

A <i B: = : A is a normal subgroup of B
A c B : = : A is a proper subgroup of B
{•••} = subgroup, generated by enclosed subset
xo y = x~1y~lxy = x~1xy

x o Y = set of elements xo y with yeY
G-commutator sequence = sequence of elements ct with c l + 1 ec ,o G
CGX = centralizer of subset X in G
CG(A /B) for B -a G and B s A -a G: = : set of all g e G with g o A £ B
%G = center of G
§3G = hypercenter of G
3OG = ff-th term of ascending central chain of G
G' = {Go G} = commutator subgroup of G
tyG = product of finite normal subgroups of G

o(x) = order of [torsion] element x
tG = product of all normal torsion subgroups of G
XG = set of torsion elements in G
£}-group : = : group X with X = QX
fiQ-group : = : group whose finitely generated subgroups are JQ-groups

1. Basic facts and concepts

A G-COMMUTATOR SEQUENCE [or G-commutator series] is a sequence of
elements c^G [with 0 < i] meeting the requirement:
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[3] Finitely valued commutator sequences 37

ci+l ec ,o G for 0 < i.

xo y = x *y 1xy = x 1xy

x o G = set of elements x o g for g e G.

Here as usual

and

PROPOSITION 1.1. The hypercenter £>$G is the set of all elements heG with

the property:

every G-commutator sequence, containing h, contains also 1.

TERMINOLOGICAL REMINDERS. 3G = center of G; fy^G = hypercenter of

G = intersection of all X <s G with i(G /X) = 1.

This result is a slight generalization of Kuros [p. 219, Lemma].

PROOF. Suppose that cf is a G-commutator sequence with cf # 1 for every i.
Then there exists a normal subgroup X <3 G with c, ̂  X for every i as e.g. X = 1;
and among these there exists a maximal one, say M [Maximum Principle of Set
Theory]. Suppose that 3[G/M] ^ 1. This is equivalent to the existence of Z with

Z o G £ M c Z < G .

Because of the maximality of M there exists z with czeZ. Then
c r + 1 ec z oGc ZoG ^ M, contradicting our choice of M. Hence 1 =3[G/M];
and thus it follows from the definition of the hypercenter that §>$G £ M. Since
ct$M for every 1, we have a fortiori that c; £ § jG for every i; and we have shown:

(1) If c, is a G-commutator sequence with 1 # c; for every i, then c,£<?)3G
for every i.

Consider next an element g £ ̂ G. Then we are going to construct a G-
commutator sequence ct with g = Ci and c; ^§3G for every i. To do this we may
make the inductive hypothesis that we have already constructed elements cu •••, cn

with
g = cu c(^§3G for 1 ^ n and ci+1 ec ,o G for 1 < n.

Since in particular cn £$3G, and since [as is easily verified] 1 = 3[G/§3G], the
element cn§3G does not belong to the center. Hence there exists an element in
G/$3G which does not commute with ca§>$G; and this implies the existence of
cn+lecno G with cn+1$$$G. This completes our inductive argument; and we
have shown:

(2) If g $$3G, then there exists a G-commutator sequence c, with g = ct and
c,£<r)3G for every i.

Combination of (1) and (2) shows:
(3) The following properties of g e G are equivalent:

0)
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(ii) There exists a G-commutator sequence which contains g, though none
of its terms belongs to $)$G.

(iii) There exists a G-commutator sequence which contains g, but does not
contain 1.

Our proposition is equivalent with this statement.
= product of all finite normal subgroups of G.
= uniquely determined subgroup of G with ^3G £ QG and

It is clear that S$G and QG are well determined characteristic subgroups of G.

FINITELY VALUED is the G-commutator sequence ct, if only finitely many
of the Cj are distinct [if the set of the ct is a finite set].

COROLLARY 1.2. Every G-commutator sequence which contains an element
in £}G is finitely valued.

PROOF. Assume that the G-commutator sequence ct contains an element in
£}G. Then the elements c$G form a G/^3G-commutator sequence, containing an
element in QG/^3G = £>3[G/^JG]. It is an immediate consequence of Proposition
1.1 that 1 = c,tyG for some i [and hence for almost all i~\. Thus some cf belongs
to *PG; and this implies the existence of a finite normal subgroup £ < G which
contains some ct. Then almost all ct belong to E; and we deduce from the finiteness
of E that the G-commutator sequence c, is finitely valued.

This corollary may also be stated in the following form:
if geQG, then every G-commutator sequence which contains g is finitely

valued.

DEFINITION 1.3. (A) The element qeG is a Q.-G-element, if every G-com-
mutator sequence, containing g, is finitely valued.

(B) The element geG is a weak Q-G-element, if every G-commutator
sequence g, with g = gl satisfies g, = g} for some i i= j .

It is clear that every Q-G-element is a weak Q-G-element; and it is a con-
sequence of Corollary 1.2 that every element in QG is a £}-G-element. That
conversely every weak Q-G-element belongs to QG, will be shown below in
Theorem 3.2.

LEMMA 1.4. (A) / / a is an epimorphism of G upon H, if ht is an H-com-
mutator sequence, and if geG with g" = hi, then there exists a G-commutator
sequence g, with g — gt and g" = htfor every i.

(B) Every epimorphism of G upon H maps Q-G-elements upon S2-H-
elements and weak £i-G-elements upon weak £i-H-elements.

PROOF. Suppose that geG, that a is an epimorphism of G upon H and that
hi is an //-commutator sequence with g" = hv We let g = gt; and we make the
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[5] Finitely valued commutator sequences 39

inductive hypothesis that 0 < n and that elements g^---,gn have already been

constructed, meeting the following requirements:

gi = htfo: i = l,—,n;

9i ° G f° r 0 < » < »•

Since hn+lehno H, there exists n e f l with / i n + 1 = hno a. Since # = G°, there
exists fceG with b" = a. Let grn+1 = gno b. Then

0n+ie0no G and

<tf+1 = (flf.o bf = aCo *>* = Koa = hn+u

completing our inductive construction of the desired G-commutator sequence gt.
This proves (A); and (B) is a fairly immediate consequence of (A).

Subgroup inheritance is quite obvious: if « e U £ G, and if u is a Q-G-
element [a weak Q-G-element], then u is a .Q-U-element [a weak Q-[/-element].

LEMMA 1.5. / / g is a Zk-G-element [a weak 52-G-element'], then every
element in goG is a Q-G-element [a weak Xl-G-element\.

PROOF. Suppose that xeG and that c, is a G-commutator sequence with
go x = c,. Then the sequence g = c0, cl,c2, ••• is a G-commutator sequence too
If firstly g is a jQ-G-element, then ihe sequence c, is finitely valued so that
go x = c, is likewise a Q-G-element. Assume next that c^C/ for 0<i<j. If then g
were equal to one of the c, with 0 < i, then g would certainly not be a weak
Q-G-element; and if g # cf for 0 < i, then the elements in the sequence ct with
0 < i would likewise be pairwise different so that again g would not be a weak
Q-G-element. Hence g o x is a weak Ci-G-element whenever g is a weak Q-G-
element.

LEMMA 1.6. If N <i G, if $ is a finite set of normal subgroups of G with
X s N and N jX <= ^(G/X) for every X e g , then

NI n x s

NOTE. The requirement that 5 be finite is indispensable, witness the non-
abelian free groups which are certainly not hypercentral, though they are, by a
Theorem of Magnus, residually nilpotent; see Specht [11, p. 211, Satz 21].—This
result is, presumably, well known; we add the simple proof for the reader's
convenience.

PROOF. Consider a G-commutator sequence c( which contains elements in N.
If X e 3f> then the Xct form a G /X-commutator sequence, containing elements in
N jX £ §3(G/X). Application of Proposition 1.1 shows that almost all Xct = 1.
Hence almost all c, e X for every X e g . Since g is finite, almost all
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c,e D X.

Hence
c, Pi X = 1 for almost all i;

and now one deduces N / f) X £§g[G/ H ^ ] from Proposition 1.1 [and
Lemma 1.4, (A)]. Xe» *•»

LEMMA 1.7. / / X, Y, Z are normal subgroups of G with XY £ Z and
Z/X £ $(G/X), f/ien y/(y n X ) S ¥[GI(Y n X)'].

PROOF. Clearly

YI(Y n X) s YX/X s Z/X £ ^(G/X).

Thus 7X /X is a product of finite normal subgroups of G /X. Since the isomorphism
YX/X s Y/(Y OX) is a G-isomorphism, we deduce that Yj(Y n X) is a
product of finite normal subgroups of G/(YnX); and this implies
YI(Y nX) £ <P[G/(YnX)].

2. Automorphisms of torsionfree abelian groups

We are going to discuss in this section torsion automorphisms of torsionfree
abelian groups which meet a requirement analogous to the Q-property of group
elements.

(2.1) The multiplicative order of the complex root of unity e is 6 if, and
only if,l — e is a root of unity.

PROOF. Let c = a + ib with real a, b and i = ( - 1)*. Then e and 1 - e have
both absolute value 1 if, and only if,

a2 + b2 = 1 and (1 - a)2 + ( - ft)2 = 1.

This implies a = \ and b2 = f; and (2.1) is a fairly immediate consequence of
this.

It will be convenient to denote the composition of the abelian groups under
consideration in this section 2 as addition a + b; and the effect of the endomor-
phism P on the element a will be designated by af}.

(2.2) / / ft is a torsion automorphism of the free abelian group F of finite
rank, if F/U is finite for every ^-admissible subgroup U # 0 of F, if the order
o(fi) j= 6, and if there exists 0 ^ a e F and integers i, j with 0 ^ i < j and
a{\ - 0 = a(l - ft)1, then p = 1.

PROOF. Denote by 9 the ring of endomorphisms of F which is spanned by p.
Naturally 9 is commutative. If 0 i= ae9, then Fa is an infinite free abelian group
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[7] Finitely valued commutator sequences 41

so that the kernel of a is not of finite index in F. But the kernel of a is /^-admissible
because of the commutativity of 9 [and P,ae&]. It follows therefore from our
hypothesis that the kernel of a is 0; and we have shown:

(1) I f /eFand ae6 with/tr = 0, t hen /= 0 or a = 0.
Application of Baer [3; p. 143, Folgerung 1] shows furthermore:
(2) 6 is a domain of integrity and 9+ is torsionfree of finite rank so that 9 is a

subring of a finite algebraic number field.
[This could also be directly deduced from (1).]
Assume by way of contradiction that /? =£ 1. There exist by hypothesis

0 # a e F and integers i, j with 0 ^ i < j and

a(l - pj = a(l - p)J.

Because of (1) and a ^ 0 it follows that

and from 1 - ^ 0 and (2) together with 0 < ;" - i we deduce

Thus /? and 1 — fi are [by (2)] complex roots of unity; and this implies o (/?) = 6
because of (2.1), a contradiction proving the desired f$ = 1.

REMARK 2.3. Denote by e a primitive [complex] 6-th root of unity and let R
be the ring of complex numbers, spanned by e. Then R is a domain of integrity
and F = i?+ is a free abelian group of finite rank. It is a consequence of (2.1) that
1 — e too is a root of unity.

If ft is the automorphism of F, effected by multiplication by e, then all the
hypotheses of (2.2) are satisfied by F and /? with the exception of o(/?) ¥= 6. This
shows the indispensability of this hypothesis.

(2.4) / / fi is a torsion automorphism of the torsionfree abelian group
F ^ 0, ifo(P) is not a multiple of 6, and if for every 0 ^ a e F there exist integers
i,j with 0 <; i < j and a(l - P)' = a(l - P)J, then there exists 0 ^ / e F with
f=fP-

PROOF. If /ef , then the set fJP, •••,/j3°w~1 is ^-invariant so that the finitely
generated subgroup {/,//?, •••JP°m~i} is /^-admissible. This subgroup is free
abelian of finite rank, since F is torsionfree. Hence

(1) every element in F is contained in a /^-admissible subgroup of F which is
free abelian of finite rank.

From F j= 0 and (1) it follows that there exist /^-admissible subgroups of F
which are free abelian of positive rank; and among these there exists one, say A,
of minimal rank. Then A # 0 is free abelian of finite rank, A = Ap.
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0 c: B = Bp s A, then A and B have the same rank because of the minimality of
the rank of A; and this is equivalent with the finiteness of A/B. We have shown:

(2) there exists a jS-admissible free abelian subgroup A # 0 of finite rank o f f
such that 0 c B = Bfi £ A implies the finiteness of A IB.

Denote by J§ the automorphism, induced by /? in A. Then o($) is a divisor of
o{fi); and 00) =£ 6, since o(P) is by hypothesis not a multiple of 6. If a eA, then
a(l — ft)' = a(l — P)1; and it follows from our hypothesis that there exist integers
i, j with 0 ^ i < j and

a(i - ft' = fl(i - py = a(i - py = fl(i - M

Consequently we may apply (2.2) on the torsion automorphism $ of A. Hence
/5 = 1, proving that every element in A # 0 is a fixed element of /?.

(2.5) If P is a torsion automorphism of the torsionfree abelian group F, if
o(P) is not a multiple of 6, and if to every 0 ^ a e F there exist integers i, j with
0 ^ i < j and a(l - pj = a(l - P)j, then P = 1.

PROOF. Denote by Fthe set of all veF with u/? = v. This is a /^-admissible
subgroup of F. Assume by way of contradiction that V <= F. Then F* = F jV ^ 0
and p induces in F* a torsion automorphism p*. Since o(P) is a multiple of o(P*),
and since o(P) is not a multiple of 6, o(/?*) is not a multiple of 6.

If a e F, then a* = a + Ve F* and

a*(l - p*j = a(l - j8)' + K

If a # 0, then there exist by hypothesis integers i,j with 0 ^ i < ; and
a(l - j3y = a(l - j3y. It follows that

a*(l - /}•)' = a(l - 0)' + V = «(1 - y?y + V = a*(l - j3*y.

Consequently we may apply (2.4) on F*: there exists an element w* # 0 in F*
with w* = w*P*.

Naturally there exists an element weF with w* = w + V; and this element
w e F has the following properties:

w ^ F and w(P - 1) 6 V.

In particular w(p — 1) # 0, since otherwise w would be a fixed element of P and
would as such belong to V. From

wp = w + w(P - 1)

and w(P — \)P — w(fi — 1) because of w(P — \)eV, we deduce by complete
induction

wP' = w + iw(P — 1) for every positive integer i.

This implies in particular that
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w = v/P°m = w + o(P)w(P - 1).

Hence o(/?)wO? — 1) = 0; and this implies the contradiction w(j? — 1) = 0, since
F is torsionfree. From this contradiction we deduce that F = V; and this implies
/? = 1.

LEMMA 2.6. / / 8 is « finite group of automorphisms of the torsionfree
abelian group F, then the element aeF is a fixed element of 9, if (and only if)
there exist to every pe6 integers i, j with 0 ^ i < j and a(l — p)' = a(l — p)J.

PROOF. A = {a9} is a finitely generated subgroup of F, since 6 is finite; and
hence A is free abelian of finite rank. Naturally A is ^-admissible so that 6 induces
in A a finite group A of automorphisms. If A # 1, then A contains an auto-
morphism X of A with o(A) a prime p. Then X # 1, so that there exists co e 9 with
acoX ^ aco. Then <w induces in A an automorphism u> and & e A sothatcoAdi"1 = P
is an automorphism in A with o(P) = p and aft ^ a. We have shown:

(1) If A # 1, then there exists /Je A with o(jS) = p, a prime, and a ft # a.

Let B = {a,ap,ap2, ••-,a[)p~1 }.This is a ^-admissible subgroup of/I and F
and as such £ is a free abelian group of finite rank. Note that a ^ 0 because of
a + af}. There exists p e 8, inducing /? in A. By hypothesis, there exist integers ij
with 0 | i < j and a{\ - p)1' = a(l - p)J'. Since a(l - p)n = a(l - flf, we have
shown:

(2) There exist integers i,j with 0 g i < ; and a(l - j?); = a(l - 0)'.

If 0 < k < p, then

If ct is for k = 0, ---.p — 1 an integer, then

fVf V ckapA (1 - /J)' = "Z
u = o J it = o

= "l ciafa - pf\ = f"l c ^ 1 (i - py.
it = o Lt = o J

Thus it follows from (2) that

(3) there exist integers i,j with 0 ^ i < j and b(l - P)1 = 6(1 - )PJ for
every b e B .

Since B is /^-admissible, an automorphism p* is induced by j8 in B. Since
a)8 # a, p* # 1 and since o(/?) = p a prime, it follows that o(/?*) = p. Since
o(P*) is a prime, o(P*) is not a multiple of 6. By (3) we may apply (2.5) to show
that P* = 1, the desired contradiction.

We have shown that A = 1 and that therefore 6 fixes every element in A.
Thus in particular a = a9, as we wanted to show.
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COROLLARY 2.7. Suppose that 9 is a group of automorphisms of the torsionfree
abelian group F and that F is generated by its elements f with the following two
properties:

(a) f9 is finite;
(b) to every pe9 there exist integers i,j with 0 g i <j andf(l—p)'=f(l — p)J-

Then 9=1.

This is an immediate consequence of Lemma 2.6.

3. The main theorem

TERMINOLOGICAL REMINDER. SIX=set of torsion elements in the group X.
Note that XX need not be a subgroup of X; if XX happens to be a subgroup

of X, then it is a characteristic torsion subgroup of X.

(3.0) (A) If X is a hypercentral group, then XX is a locally finite charac-
teristic subgroup of X.
(B) XQX is always a locally finite characteristic subgroup of X with

PROOF. (A) is a well known fact; see Baer [1 ; p. 207, Corollary].
Since $>§X is always hypercentral, it follows that X§>$X is always a locally

finite characteristic subgroup. Likewise tyX is always a locally finite characteristic
subgroup. Finally extensions of locally finite groups by locally finite groups are
locally finite; see e.g. Specht [p. 141, Satz 40*]. Combine these three facts to
obtain (B).

TERMINOLOGICAL REMINDER. If x and y are elements in G, the elements
xo(n)_y are inductively defined by the rules:

xo(0)y = x, x o ( n f l V = (xoMy)oy.

This series of elements is clearly a G-commutator sequence, beginning with x.

LEMMA 3.1. / / eeG and the set e° of elements, conjugate to e in G, is

finite, then the normal subgroup E = {ea} <i G has the following properties:

(-(a) GICGE and EfaE are finite.

(A) < (b) £ ' and XE are finite normal subgroups of G.

L(c) EjXE is free abelian of finite rank.

(B) If to every xeG there exist integers i,j with 0^i<j and eou)x = eo(i)x,
then E o G s XE.
(C) / / e is a weak D.-G-element, then £ o G s XE.

https://doi.org/10.1017/S1446788700015937 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015937


[11] Finitely valued commutator sequences 45

PROOF. It is clear that an element in G centralizes E if, and only if, it centralizes
every element in e°. Furthermore every element in G induces a permutation of the
set eG. It follows that G /cG£ is essentially the same as the group of permutations,
induced by G in the set e°. Since e° is finite by hypothesis, G/cG£ is finite. Hence

= £/(£ncG£) s £cG£/cG£ <= G/ccE

is likewise finite: we have verified (A.a).
From the finiteness ofEfoE and a Theorem of I. Schur we deduce the finiteness

of £'; see Huppert [p. 417, 2.3 SatzJ. Since E is finitely generated, so is the
abelian group £/£' . Hence %(E/E') is a finite group and (£/£') /2(£/£') is a free
abelian group of finite rank. Consequently

£(£/£') = XE/E' and (£/£')/£(£/£') = E/ZE,

since £' is finite, completing the proof of (A.b + c).

Assume now that e meets the following requirement:

(0) To every xeG .here exist integers i, j with 0 ^ i < j and

eol'}x = eo(l)x.

Let X* = XZEjZE for every subset X of G. Then £* = {e*0*}^ G* is free
abelian of finite rank by (A.c).

Since G/cG£ is finite by (A.a), and since cG£ ZEjZE £ CG.£*, it follows that
G*/(G.E* is finite. But this latter group is essentially the same as the group 9 of
automorphisms, induced in £* by G*; and thus we have shown:
(1) £ * o G*;£* is free abelian of finite rank; the group 6 of automorphisms
induced in £* by G*, is finite.

If p e 9, then /? is induced in £* by an element b e G*. If x e £*, then

(2.a) x o b = x ' V = x ' 1 / = x'"1.

From (2.a) one deduces by complete induction that

(2.b) xo(% = x("-1)( for i = 0,1,2, - .

Hence it follows from our hypothesis (0) that

(2.c) there exist integers i,j wi.h 0 ^ i < j and e*^~1)l= e* <P~1)J.

Since e*, e*", e*^-1 belong to the abelian group £*, it follows that
e*a-P)2> _ e*m-u21 _ e*«-i)2-' _ e*d-«2 J

Thus we have shown that
(2) to every p e 8 there exist integers h, k with 0 ^ h < k and
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Because of (1) and (2) we may apply Lemma 2.6 on c* e E* and the finite
group 9 of automorphisms of E*:

e* is a fixed element of 6.

But this is equivalent with e*o G* = 1; and this is in turn equivalent with

(3) eo G £ ZE.

If g e G, then we deduce from (3) that

e»o G £ ZE,

since !X£ <i G. From £ = {cG} it follows therefore that E o G s ZE, proving (B).
That (C) is a consequence of (B), is an immediate consequence of the fact

that the elements eo(l)x form for every x e G a G-commutator sequence, beginning
with e.

THEOREM 3.2. £}G = set of all Q-G-elements = set of all weak Q-G-
elements.

PROOF. It is a consequence of Corollary 1.2 that every element in £}G is a
Q-G-element; and it is obvious—see Definition 1.3—that every Q-G-element is a
weak £l-G-element. Hence all we have to prove is the fact that every weak JQ-G-
element belongs to £}G.

Consider an element geG such that go G is a subset of £}G. Then
(<?<PG)o (G/^G) is a subset of QG/<pG = §3(G/^G). Hence

Thus we have shown that gtyGe^(G/^G) = GG/<J3G; and this proves:

(1) If g e G and g o G is a subset of QG, then g e£>G.
Consider a weak Q-G-element e with finite e". Let E = {eG}. Then £ < G

and it follows from Lemma 3.1, (A.b) + (C) that

ZE is a finite normal subgroup of G and
eo G £ £ o G £ 2 £ £ 4JG

Application of (I) shows that eeD.G, proving:

(2) If e is a weak Q-G-element with finite eG, then e eQG.
Assume that e is a weakQ-G-element with the property that almost all elements

in eo G belong to £}G and that e^QG. If eo G were a subset of QG, then we
would deduce ceQG from (1), contradicting our assumptions. Hence

(3.a) there exists weG with eo w^QG.

If eG were finite, then we would deduce eeQG from (2), contradicting our
hypothesis. Hence
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(3.b) eG is infinite.

Because of eo x = e~1ex the set eo G is, by (3.b), infinite. Since almost all the
elements in e o G belong to QG, it follows from the infinity of e o G that an infinity
of elements i n e o G belongs to !&G. In other words:

(3.c) ( e o G ) n QG is an infinite set.

Since QG is a characteristic subgroup, (e o G)w n QG is likewise an infinite
subset of QG; and hence it follows from (3.a) that

(3.d) (eo w) [(eo G)w n ;QG] is an infinite set of elements none of which
belongs to £}G.

Next we note that by Huppert [p. 253, 1.2 Hilfssatz b)~]

(e o w) (e o x)w = e o xw e e o G for every x e G.
Thus

(eo w) [(eo G)w n QG] is a subset of eo G;

and it follows from (3.d) that this is an infinite subset of eo G none of whose
elements belongs to &G. This contradicts our assumption that almost all elements
in e o G belong to £}G; and this contradiction shows:

(3) If e is a weak Q-G-element and if almost all elements in e o G belong to
QG, then eeGG.

Consider a weak Q-G-element e and assume by way of contradiction that
e^QG. We let e = c,; and we assume that 0 < n and that we have already
constructed elements cu •••,cn with the following properties:

(4.a) c; ££>G for i = 1, ••-,«;

(4.b) c; # c,for 1 Si <j ^n;

(4.c) cf + 1 e c,o G for 0 < i < n.

Since ct = e is a weak Q-G-element, so is, by Lemma 1.5, every c,. In particular
cn is a weak Q-G-element which by (4.a) does not belong to QG. It is therefore a
consequence of (3) that infinitely many elements in cno G do not belong to
&G. Consequently there exists c n + 1 ec n o G with cn+1££iG and cn+1 # c, for
i = 1,••-,«. This completes the inductive construction of a G-commutator series ct

with e = ct [c;4!Q.G for every i] and cf # cy- for i ^j. This contradicts the fact
that e is a weak Q-G-element; and this contradiction shows that eeQG. Hence

every weak £l-G-e*ement belongs to QG,

as we intended to prove.

COROLLARY 3.3. //JV < G, then
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(a)

(b)

(c)

[JV/(JV

[N/(N

[G/{N

n

n

n

^G)]nMG,

<PG)]/([JV/(JV

^3G)]/([JV/(N

I(N

n

Reinhold Baer

n $G)] = (/

pG)]O§3[G

[14]

= (JV n QG) /(iV n

n

PROOF. Consider an element xeN. Then it follows from Proposition 1.1 that
( J V n ^ G ) * belongs to $3[G/(7V n ^G)] if, and only if, every G/(7Vn ^G)-
commutator sequence, containing (AT n $G)x, likewise contains 1; and this is
by Lemma 1.4, (A) equivalent with the fact that every G-commutator sequence,
containing x, contains elements in JV O tyG. Note that every element in ^ G is
contained in a finite normal subgroup of G. Hence our last property is equivalent
with the property that every G-commutator sequence, containing x, is finitely
valued; and this is, by definition, the same as saying that x is a d-element. Apply
Theorem 3.2 to see that this is equivalent with x eQG. Thus we have shown:

e JV n QG if, and only if, (JV n $G)x belongs to

[/v/(JV n

This fact is essentially the same as our equation (a); and the isomorphisms
(b) and (c) are readily deduced from (a).

4. The hypercentrally imbedded normal subgroups

The criteria for a normal subgroup to be part of the hypercenter which we
are going to derive in this section will be fundamental for the derivation of criteria
for a normal subgroup to be contained in the Q-subgroup which will be the
object of section 5.

PROPOSITION 4.0. The following properties of N o G are equivalent:

(i) JV is torsionfree and N S §>$G.

(ii) AT n <PG = 1 and N/(N n $%G) £ ^S[G/(JV n

We precede the proof proper of this result by the derivation of various
properties some of which are not contained in this proposition.

LEMMA 4.1. / / JV <i G with N n tyG = 1 and finite JV/(JV n 3G), then N
is torsionfree with N £ 3G.

PROOF. Every torsion element in JV n 3G generates a finite normal subgroup
of G and belongs therefore to JV Pi "$G = 1. Hence

(1) JV O 3G is torsionfree.

Since N j(N O 3G) is finite, JV/3JV is finite too. Application of a Theorem of I.
Schur shows therefore the finiteness of JV'; see Huppert [p. 4.17, 2.3 SatzJ.
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From JVo G it follows that JV' is a finite normal subgroup of G. Hence
JV' c M n JJG = 1, proving the commutativity of JV. It follows that ZN is
a characteristic torsion subgroup of JV, implying ZN <\ G and, by (1),

ZN n (N n 3G) = 1.

From the finiteness of JV /(JV n 3G) we deduce now the finiteness of ZN. Hence
ZN c JV n *PG = 1; and we have shown that

(2) JV is a torsionfree abelian group.

If x e JV, then we deduce from the finiteness of JV /(JV n 3G) the existence of a
positive integer n with x" e JV O 3G. If g e G, then x, xg and x o g belong to the
torsionfree abelian normal subgroup JV <i G. Hence

(xo 0)" = (x-xx*)n = x~"x»" = x-nx"a = x ~ V = 1,

since x"e3G; and this implies xo g = 1, since JV is, by (2), torsionfree. Thus we
have shown No G = 1, implying

(3) JVS3C

The statements (2) and (3) show the validity of our lemma.

LEMMA 4.2. / / JV is a torsionfree normal subgroup of G with N £ $3G,
and if geG induces a torsion automorphism in N, then go N = 1.

PROOF. If this were false, then there would exist y e JV with yog # 1. Define
inductively the commutator sequence yo0)g by the rules:

yo<0)g = y, yo<i+1>g = [yo™g]o g.

Then yo0)g ^ 1; and you)g = 1 for almost all i by Proposition 1.1, since
yeN z S3G. Consequently there exists an integer k with

yolk-»g*l =yomg;

and clearly 2 ^ k. Thus z = yo(*~2)g is a well determined element in JV with
the following properties:

zog # 1, (zog)og = 1;

and this implies (zog)9 = zog. Since

z9 = z{z o g),

one may prove by complete induction that

z«' = z(z o g)' for every positive integer /.

Since g induces a torsion automorphism in JV, there exists a positive integer n
such that
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Hence 1 = (zo g)n, though zo g ^ 1. This contradicts the fact that zo g is an
element in the torsionfree group N, a contradiction proving our claim.

LEMMA 4.3. If N <i G with finite N/(Nr\^G) and N ntyG = 1, then
CN(N n $3G) is an abelian normal subgroup of G and N is torsionfree with
N £

PROOF. Since the hypercenter is always a hypercentral group, the set
is a characteristic subgroup; cp. Baer [1; p. 207, Corollary]. Consequently

X[N n S3G] = Nn 2§3G <a G.

If this normal subgroup of G which is part of §%G were not 1, then
3Gn2[JV O§3G] ^ 1. But every torsion element in the center generates a
finite normal subgroup so that

l c 3 c n %[N n §3G] s iV n $G = 1

by hypothesis; and this contradiction shows that I [ N n S3G] = 1. Thus we
have shown that

(1) N n&jG is torsionfree.

It is clear tha.

(2.a) A = cN(N n §3G) = N O cG(N n §36) <i G.

Furthermore

4̂ n §3G = (N n §3G) n cG(N n $3G)

implying

(2.b) An&GZiA.

Finally

^/(A n§3G) = AHA n(Nn^cy] s (̂JV n$3G)/(iV n

is finite by hypothesis. Combine this with (2.b) to see that

(2.c) 4̂/3-4 is finite.

Thus we may apply a Theorem of I. Schur to see that A' is finite; see Huppert
[p.417,2.3 Satz]. Since A' -a G is a consequence o f ^ < C [by (?.a)],it follows
that

A' s N ntyG = 1

by hypothesis proving that
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(2) cN(N O §3G) = A is an abelian normal subgroup of G.

Consequently ZA is a characteristic subgroup of A and as such ZA <3 G. It is
a consequence of (1, that ZA n (JV n$3G) = 1. Hence

ZA = X4/[!L4 n(Nn $3G)J a (JV n ^G)ZAI(N n § 3 0 s N/(JV n §30)

is finite by hypothesis. Hence

I ^ s i v n ) S C = l

by hypothesis, proving that

(3) ,4 is torsionfree.

If g is a torsion element in JV, then g induces a torsion automor-
phism in JV n §3G. Because of (1) we may apply Lemma 4.2 to show that
go(N n§3G) = 1. Hence

g e N n ca(N n $%G) = A;

and we deduce gr = 1 from (3). Thus we have shown that

(4) JV is torsionfree.

For future application we state this as an intermediate result:
(I) If JV«=a G with finite JV /(JV n S3G) and JV n $G = 1, then JV is torsionfree.

Denote by S the set of all X <a G with X ^ N Ci S3G and torsionfree JV /A".
It is a consequence of (4) that 1 e S. Consider a non vacuous subset 3 of S with
the tower property:

if X and Y belong to % then either X s 7 or 7 c X.

The join T = ( J x . j ^ is then a normal subgroup of G with T £ JVn
If g e JV and g"eT for some positive integer K, then there exists 7 e 3 with g" e 7.
But Ye3 implies Ye® so that g e l ' s T. Hence JV/T is torsionfree so that
Te S. We have shown that the Maximum Principle of Set Theory may be applied
on S. Consequently there exists a maximal element in 3 , say M. We let G* = G/M
and JV* = N/M. Since M £ JV n§3G, we have S3G* = (§36)/M; and this
implies in particular the iiniteness of

N* /(JV* n S3G*) = [JV /Af] / [(JV n S3G) / Af] a JV / (JV n $ 3 0 .

From M e 3 we deduce finally that JV* = JV/M is torsionfree.
Assume by way of contradiction that JV* $ §3G*. Then JV* /(/V n §3G*) is

a finite group, not 1; and since JV* is torsionfree, it follows that JV* O §36* ^ 1.
Application of the basic properties of the hypercenter shows that

(5) JV* n 3G* 94 1.
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Consider ( f < G * with JV* n 3G* £ W s JV* and finite W/(N* n 3G*). Since JV*
is torsionfree, we may apply Lemma 4.1 to show that W £ 3G*. Hence

JV* n 3G* s W £ N* n 3G*,

proving that Wj{N* n 3G*) = 1. Consequently

(6) 1 = [JV* /(JV* n 3G*)] n *P[G* /(JV* n 3G*)J.

We let G** = G* /(JV* O 3G*) and N** = N* /(/V* O 3G*). Then (6) amounts to

(7.a) 1 = JV** n tyG**.

Since the center is part of the hypercenter, it follows that

and this implies

JV** n §>$G** = (N*n$>3G*)/(N* n 3G*).

Consequently

(7.b) JV** /(JV** n §3G**) s JV* /(JV* n §3G*) s JV/(JV n §36) is finite.

Because of (7.a + b) we may apply the intermediate result (I) onto JV** to
show that

(7) JV* /(JV* n 3G*) = JV** is torsionfree.

But from (5) and the maximality of M we deduce that JV* /(JV* n 3G*) is not
torsionfree, a contradiction proving that

(8) JV* S £3G*.

Hence
1 = JV* /(JV* n §3G*) s JV/(JV

so that

(9) N

It is a consequence of (2), (4) and (9) that Lemma 4.3 is true.

PROOF OF PROPOSITION 4.0. It is quite obvious that (ii) is a consequence of
(i). Assume conversely the validity of condition (ii). Consider X < C with
JV n $3G s K £ N and finite K/(JV O £3G). Then K n IJ3G = JV O §%G s<>
that K/(K n §3G) is finite; and clearly K rS ^ G s JV n |}G = 1. Thus we may
apply Lemma 4.3 to show that K £ §>^G. But JV/(JV n §3G) is, by condition (ii),
the product of finite normal subgroups of G (N <~\ §3G), contained in
N/(N n §3G); and their triviality has just been shown. Hence N/(JV O §3G) = 1
so that JV £ $3G. Because of JV n ^G == 1 and JV/(JV n § 3 0 = 1 we may
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apply Lemma 4.3 a second time to show that N is torsionfree: we have derived (i)
from (ii) and shown the equivalence of conditions (i) and (ii).

CO-HYPERCENTRALLY IMBEDDED is the subgroup S of G, if S <i G and if there
exists to every X<a Gwithl <= X s S a Y<i Gwith Y<= Zand XjY £ §3(G/Y).

This concept will prove too restrictive for most of our needs. To formulate a
less restrictive concept we need the following definition.

A PRINCIPAL SUBGROUP of G is every subgroup of the form {gG}. These are
the normal subgroups, spanned by one element; and our notation should remind
the reader of principal ideals.

WEAKLY CO-HYPERCENTRALLY IMBEDDED is the subgroup S of G, if S o G
and {Xo G}cz X for every principal subgroup X of G with 1 c X £ S. For con-
venience' sake we shall write S m G whenever S is weakly co-hypercentrally
imbedded in G. To justify this notation and in view of some applications we prove
the

LEMMA 4.4. Co-hypercentrally imbedded subgroups are weakly co-
hypercentrally imbedded.

PROOF. Assume that S is a co-hypercentrally imbedded subgroup of G. Then
S<3 G. Consider a principal subgroup T of G with 1 <= T £ S. Then there exists
a subgroup U<\ G with U c T and 1 <= TjU £ ^(GjU). Since T is a principal
subgroup of G, and since U cz T, there exist normal subgroups X < G with
U ^ X <=• T; and among these X there exists a maximal one, say V [Maximum
Principle of Set Theory]. Because of U £ V <= T and TjU £ §3(G/L/) we have
77F £ §3(G/K). Because of the maximality of V we find that TjV is a minimal
normal subgroup of G/K Hence 77F£§3(G/F) implies T/F£3(G/F); and
this is equivalent with

ToG £ V
so that

{ToG} £ V c T.
Hence SmG.

LEMMA 4.5. JVtD G and H <a G, if £ N n $3G imp/y JV/JJ to G/ff.

PROOF. Denote by 2B the set of all X <i G with A" £ /f and N/A" m G/Z
From our hypothesis JV m G we deduce

(1) le2B.

Suppose next that 93 is a non vacuous subset of 2C with the tower property:

if X and Y belong to 93, then either X £ Y or Y <= X.
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The join / = U X is clearly a normal subgroup of G with J £ H. Consider

a principal subgroup A of G[J with A £ N[J and {Ao (G/J)} = /I. There
exis-s a principal subgroup B = {bu} of G with A = BJ/J. Cearly B £: N and

BJ/J = A = {Ao(G/J)} = {(BJ/J)o (G/J)} = J{Bo G}/J.

Hence B £ {Bo G}J and there exist elements ce{Bo G} and jeJ with b = cj.
From the definition of J we deduce the existence of Y e 23 with j e 7. Hence
b = cje{Bo G}Y so that

B = {fcG} s {Bo G}7.

Consequently BY/Y is a principal subgroup of G/7 with BY/Y ^ N/Y and

B7/y= {BoG}y/y= {(BY/Y)O(GIY)}.

Since Y"€ 33 belongs to 2B, it follows that N / Yro G / Y; and this implies B Y/ Y = 1.
Hence B £ y c j so that A = BJ [J = 1; and we have shown that N/7 m G/J.
Consequently JeW. Thus we have shown [by (1)] that the Maximum Principle
of Set Theory may be applied on SB. Hence

(2) there exists a maximal subgroup M in 2B.

Assume by way of contradiction that M # H. From our definition of 26 and
our choice of H it follows that

(3) M

This implies that 1 c H/M £ §3(G/M); and we deduce

(4.a) 1

from the basic properties of the hypercenter. Denote by Z the uniquely determined
subgroup of G with M £ Z and Z/M = (H/M) n 3(G/M). Because of (4.a) it
follows that

(4.b) ZoG z M c Z s H ̂  Nn §jG and Z <i G.

Since M is maximal in2B, it follows that N\ZxoG\Z. Hence there exists an element
s with the following properties:

(5) seN, s$ Z, Z{sG} = Z{{sG] o G}.

We let S = {sG}, a principal subgroup of G. Because of (5) there exist elements
zeZ and te{So G} with s = zt.

It is a consequence of (4.b) that z o G s Z o G s M . Hence

(6) so G = zto G £ (zo G) (to G; £ M(f o G).

Let D = {fG}. Then it follows from (6) that
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MD = M{tG} <= M{SoG} = M{{sG}oG}s M{{tG}oG}cM{DoC}s MD.

Hence MD / M is a principal subgroup of G / M with MD / M £ N / M and

ATD/M = M{£>oG}/M = {(MD/M) o (G/M)}.

But Me2B by (2) so that N/MmG/M. Consequently 1 =M/MD so that
teD c M . Hence

s = z* e ZM = Z,

contradicting (5). This contradiction shows that

(7) H = Me2B,

proving N / if to GjH.
For a convenient statement of our principal application of this lemma we

need the following concept.

NORMALLY DESCENDING SEQUENCES OF SUBGROUPS of G are sequences Nt of
subgroups of G with

Ni+1 £ {NiO G} £ N, for every i = 1,2, •••.

It follows in particular that such a sequence is a descending sequence of normal
subgroups of G, though this requirement is, in general, somewhat weaker than
that of normal descent.

COROLLARY 4.6. If NtoG, and if S is a principal subgroup of G /(NC\ %%G)
w.th l c S g NI(N n <03G), then
(A) l c { S o [ G / ( W n $3G)]} c S and
(B) f/iere exisfs a normally descending sequence of principal subgroups St

ofG/{Nn S3G) with S = St and SI+1 = SJor 0 < i.

PROOF. From N m G and Lemma 4.5 we deduce that

(1) JV/(NnS3G)ajG/(Nn$3G);

and this implies in particular that

(2) {So[G/(JVn§3G)]}cS.

If {So [G/(N n§3G)]} = 1, then

l e s s [*/(# n §3G)] n 3[G/(N n §3G)] = 1,

a contradiction proving that

(3) l c { S o [ G / ( W n ^ G ) ] } .

Our contention (A) is an immediate consequence of (2) + (3).
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To prove (B) let S = St and make the inductive hypothesis that 0 < n and
that S1; ••• , S n _ ! are principal subgroups of G/(JV n S3G) with

1 c Si+l <= S, and S l + 1 £ {S(o [G/(N n § 3 C ) ] } £ S,

for 0 < i < n — 1. Then SB_t is a principal subgroup of G/(N n § 3 G ) with
1 <= Sn_! £ N / ( N n $ 3 G ) . Application of (A) shows that

(4) 1 <z {S n _ l O

Consequently there exists an element

and it follows from (4) that Sn = {s
G/(;Vn*bG)} is a principal subgroup of

with

1 cr Sn £ {S n _ l O

completing the inductive construction of the normally descending sequence of
principal subgroups St of GI(N (~\§>$G) with S = Sx and Sf + 1 cz Sf for 0 < i.
This proves (B).

NOTATIONAL REMINDER. tX = product of all normal torsion subgroups of the
group X. This is a characteristic torsion subgroup of X with tX £ XX, though
equality will in general not be the case.

THEOREM 4.7. The following properties of N <i G are equivalent:

( i ) N £ 3
(ii) If N, is a normally descending sequence of principal subgroups of G

with N, £ N, then N, = 1 for almost all i.

r(a) Nm G.
.....J (b) If Ni is a normally descending sequence of principal subgroups
{U1)I of G/(N O §3G) wif/i N,. £ JV/(JV n S3G), </ien Nk = N t + 1 /or

*- some k.

(b) ctN(JV

(a) NI(N
(b)

(a)
(b) cNnyG(N n
(c) If S is a principal subgroup of G with

S = {So G} £ CtN(N n S3G), then every primary abelian
epimorphic image of S is finite.
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PROOF. Assume first that JV £ <?J3G; and consider a normally descending
sequence of principal subgroups S; of G with 1 <=. S( £ JV. Denote by SB the set
of all X o G with S, $ X for every i. From U S , for every i we deduce that
1 e$B; and from the principality of all the S( we deduce therefore the applicability
of the Maximum Principle of Set Theory to 2C. Consequently there exists a
maximal normal subgroup M in 2B. From St $ M and Sf £ JV for every i we
deduce that JV $ M. Hence

M c MJV £

so that

1 c MN/M £ §3(G/M).

Application of the basic properties of the hypercenter shows

1 <= [MJV/M]O3[G/M].

If Z is the uniquely determined subgroup of G with M £ Z and
Z/M = [MJV/M] n 3[G/M], then

ZoG c M c Z ^ MN and Z<G.

Hence Z $2B, since M is maximal in 2B; and this implies the existence of a positive
integer k with Sk £ Z. Consequently

Sk+l £ {Sto G} £ {Zo G} £ Me2B,

contradicting our definition of 2B. This contradiction shows that every normally
descending sequence of principal subgroups S, of G with Sf £ JV contains 1.
But Sj = 1 implies SJ+t = 1 for every positive integer i, proving that (ii) is a
consequence of (i).

Assume next the validity of (ii). If K is a principal subgroup of G with
K = {K o G} £ N, then the sequence Sf = K for every i is a normally descending
sequence of principal subgroups of G with St £ N. Hence K = Sf = 1 for some i
[by (ii)]; and this proves JV to G.—Next we deduce from (ii) that every normally
descending sequence of principal subgroups S( of G with S,, £ N terminates after
finitely many steps; and this implies the corresponding statement for
N/(N O §3G) <] G/(JV n <F)3G). It follows that not only (iii.a), but also (iii.b) is a
consequence of (ii): we have derived (iii) from (ii).

If (iii) is satisfied by JV, and if N $ <?J3G, then JV n §3G c JV so that
1 # JV /(JV O $3G). This implies the existence of a principal subgroup S of
G/(JV n $3G) with 1 <= S £ JV/(JV n £>3G). Because of (iii.a) we may apply
Corollary 4.6,(B) to obtain a contradiction to our condition (iii.b). This con-
tradiction shows that JV £ §3G. Thus (i) is a consequence of (iii), completing the
proof of the equivalence of conditions (i)-(iii).
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If (i) is satisfied by G, then N /(N n §>%G) = 1, implying the validity of
(iv.a); and (iv.b) is true, since every subgroup of JV £ &5G is part of the
hypercenter of G. Hence (iv) is a consequence of (i).

Assume conversely the validity of (iv). Let G* = G/tJV and JV* = JV/tJV.
Then JV* *a G* and we deduce

(1) JV* / (JV* n £3G*) s «p[G* / (TV* n £3G*)]

from (iv.a) and §fiGtN/tN z §3G*. Next we note that JV* n ^3G* is a normal
torsion subgroup of G*. Since extensions of torsion groups by torsion groups are
torsion groups, we conclude that

(2) JV* n tyG* = 1.

Thus Proposition 4.0 may be applied upon JV* •< G* so that JV* [is torsionfree
and]

(3) JV/tJV = JV* s S3G* = $3(G, tJV).

Denote by T the group of automorphism, induced by G in JV O §3G. Then
T s G/cG(JV n S3G); and T stabilizes the factors

where the 3ffG [with <r ranging over finite and transfinite ordinals] are the terms of
the ascending central chain of G. Hence we may apply Hall-Hartley [p. 5, Theorem
A.I] to show that T and hence

(4) G/cc(JV D §3G) possesses a descending hypercentral series

as defined by Hall and Hartley [pp. 1-2]. It is a consequence of (4) that
the normal subgroup JVco(JV n §3G) / cG(JV n §3G) is a co-hypercentrally imbedded
subgroup of G/cc(JV n §3G); and this implies by Lemma 4.4 that

iVcG(JV n S3G) / cG(JV n §3G) to G / cG(JV n §3G).

Since the canonical isomorphism

JVcG(JV n $3G)/cc(JV n $3G) s JV/[JV n cG(JV n g3G)] = JV / cN(N n §3G)

is a G-isomorphism, we conclude that

(5) JV/cN(JVn§3G)roG/cJV(JVn§3G).

Let G = G/c,v(JV n §3G) and iV' = JV/CJV(JV n S3G). Then we deduce

(5) JV m ^

from (5). From §3Gcw(JV n $>%G)lcN(N n §3G) £ §3<? and condition (iv.a) we
deduce that
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(6) #/(# n &G) s sp[<7/(iV n $3G)].

Thus every principal subgroup of (37(Jv* n$ftG) which is part of ft/(ft n §3G)
is finite. Combine this remark with (5) to show that our condition (iii) is satisfied
by ft «=] (?. Since we have already verified the equivalence of (i) and (iii), it follows
that

(7) NlcN(N n £3G) = # S £ 3 G = MG/Cjv(iV n

Combination of (3), (7) and Lemma 1.6 shows the valid ty of

n §3G) = N/[tJV n cN(N n

Now we apply condition (iv.b) for the first time. Recalling that
= 1 we deduce from (8) and (iv.b) that N £ §3G: we have derived

(i) from (iv), proving the equivalence of (i)-(iv).
It is clear that (v) is a consequence of (iv) and Lemma 4.4. If conversely (v)

is satisfied by N <i G, then we deduce from (v.a) and Lemma 1.7 the validity of

c^N n toW^N n £3G) n $3G] s ^[G/^^iV n §3G) n §3G)].

It follows that every principal subgroup of G/[ctJV(iV O§3G) n §3G] which is
part of ctN(N n §3G) / [Cĵ (N n §3G) n §3G] is finite. Thus condition (iii.b) is
satisfied by C^N n §3G) <i G; and that condition (iii.a) is satisfied, is the content
of our present condition (v.b). Hence we may apply the equivalence of conditions
(i) and (.iii) to show that ctN(N n §3G) £ <r>3G: we have derived condition (iv)
from (v), proving the equivalence of conditions (i)-(v).

It is quite obvious that (vi) is a consequence of the equivalent properties
(i)-(v). We assume conversely the validity of condition (vi) and consider a principal
subgroup S of G with S = (So G} £ ctN(N O §3G). Then

(9) So(Sn §3G) s ĉ tfV n £3G)o (tw n

so that

(lO.a) S n $3G £ 3S.

Next we note that

S/(S n §3G) s S§3G/§3G £ iV$3G/§3G s N/(N n
and it follows from condition (vi.a) and the fact that these isomorphisms are
G-isomorphisms that S/(S n §3G) is a product of finite normal subgroups of
G/(S n $3G). From the principality of S we deduce therefore that

(lO.b) S/(SD§3G) is finite.
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Combine (lO.a) and (lO.b) to see that S/3S is finite. Thus we may apply a
Theorem of I. Schur to show that

(lO.c) S' is finite;

see Huppert [p. 417, 2.3 Satz].
Since S is a principal torsion group, the abelian group SIS' is generated by a

set of torsion elements of equal order. It follows that S/S' is a direct product of
cyclic groups of bounded order; see Specht [p. 279, Satz 4]. Application of
condition (vi.c) shows that every primary elementary abelian epimorphic image of
S/S' is finite. Consequently

(lO.d) S/S' is finite.

Combine (lO.c) and (lO.d) to see that

(lO.e) S is finite.

Hence it follows from condition (vi.b) that

S s Cu/AT n £3G) n^G = cNnVG(N n

Thus it follows from Lemma 4.4 that SxoG. Since S - {So G}, it follows that
S = 1; and thus we have shown that

(10) ctiV(iVn$3G)n>G.

Since (10) = (iv.b) and (vi.a) = (iv.a), we have deduced condition (iv) from (vi),
proving the equivalence of conditions (i)-(vi).

DISCUSSION 4.8. A. It is readily seen that every non-abelian free group F
satisfies §3F = 1; and it is a consequence of a Theorem of Magnus—see Specht
[p. 211, Satz 21] — that Fro F. This shows the indispensability of conditions
(iii.b) and (v.a) of Theorem 4.7.

B. Every finite group and more generally every group with minimum condi-
tion for normal subgroups satisfies condition (iii.b) of Theorem 4.7, though such
groups will, in general, not be hypercentral. This shows the indispensability of
condition (iii.a) of Theorem 4.7.

C. Denote by p an odd prime and by A a countably infinite elementary
abelian p-group. Then A = B x {a} is the direct product of a cyclic subgroup {a}
of order p and a subgroup B ^ A.

Denote by A the set of all automorphisms a of A with

B"-1 = 1 and aa~leB.

It is readily seen that A is a group isomorphic to B and hence a countably infinite,
elementary abelian p-group.
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Denote by X the uniquely determined automorphisms of A with

B1'1 = 1 and ak = a'1.

Then o(A) = 2 and XaX = a~l for every aeA. Thus A is a normal subgroup of
T = {A, A} = A{X} with [T : A] = 2; and r is a torsion group the orders of
whose elements are 1,2, p.

Finally we form the product G = AT in the holomorph of A. Then one
verifies easily that

B = iG = <f>3G, /I <i G and A / £ = A \ (A n §3G) is cyclic of order p.

Thus condition (iv.a) of Theorem 4.7 is satisfied by A~zi G, proving the
indispensability of condition (iv.b) of Theorem 4.7.

It is easily verified that A is the only normal subgroup of G which is part of A,
but not part B. Consequently

B = $G = £>G <= A.

D. The indispensability of condition (iv.a) = (v.a) = (vi.a) is shown by
every infinite torsionfree group G with §jG = 1.

E. The indispensability of condition (vi.b) is shown by every normal subgroup
of a finite group G which is not part of

F. The indispensability of condition (vi.c) may be seen by consideration of
the example, constructed ad C.

5. The G-imbedded normal subgroups

We shall need a slightly weaker relation than the relation ro, discussed in
section 4. Accordingly we define S vo^ G if, and only if,S*=i G and { IoG} d
whenever X is an infinite principal subgroup of G with X £ S.

One may say that vox is the restriction of xo to infinite principal subgroups X
[instead of principal subgroups, not 1].

LEMMA 5.1.: IfNo G, then N rrj^ G is necessary and sufficient for

N/(N n <)3G) m GI(N n

PROOF. Assume first that N/(N n tyG) it) G/(Nn tyG); and consider an
infinite principal normal subgroup S of G with S s JV. Every element in *$G is,
by definition, contained in a finite normal subgroup of G. Thus a principal subgroup
of G is part of ^G if, and only if, it is finite. Consequently S $ tyG. Hence
S(N n tyG)l(N n tyG) is a principal subgroup, not 1, of Gj{N n S$G) which is
part of N/(N n tyG)w Gj(N n $G). This implies
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{SoG}(JVn tyG)l(N ntyG) =

( n S$G)I(N n <PG)]o [G/(N O

O

Hence { S o G } c S, proving JV m^G.
Assume conversely the validity of NvaxG; and consider the set SB of all

pairs A,B with the following properties:
(0) A is a finite normal subgroup of G and B is an infinite principal subgroup
of G with A{B o G} = B £ N.

If 2C were not vacuous, then there would exist among the pairs A, B in 20
one with first coordinate of minimal order, say £, F. From our hypothesis Nxo^ G
and from E, .FeSB we deduce

(1) {FoG} cz F.

Since F = E{Fo G} is principal,
(2) there exist elements ee£and de{FoG} with F — {{edf}
and furthermore it follows that
(3) {FoG} = {EoG} {{FoG}oG};

(4) F = E{Fo G} = £{£o G} {{Fo G}o G} = E{{Fo G}o G),

[since £ < C ] .
Assume by way of contradiction that £ = {E o G}. Then we deduce from (3)

and (4) that
F = E{{Fo G}oG} = {Eo G} {{Fo G}o G} = {Fo G},

contradicting (1). Hence
(5) {£oC}c£,

From (2) we deduce that

F = {{edf} £ {ea} {dG} £ E{d°} £ £{Fo G} = F.
Hence

(6) F = {ec} {dc} = E{d°} = £{Fo G}.

From (2) and (6) it follows that

{{dG}o G} £ {dc} £ {Fo G} = {£o G} {{dc}o G}.

Application of Dedekind's Modular Law shows therefore

(7) {rfG} = {{dG}oG}[{£oG}n{rfG}].

It is a consequence of (5) that

{£o G} O {dG} £ {£o G} <= £;
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and thus it follows from the minimality of the pair E, F in 9B that the pair
{E o G} n {da}, {dc} does not belong to 2C. Since {d°} £ {F o G] £ F £ iV [by
(0)], comparison of (0) and (7) shows that {dG} is finite. Since E is finite, we deduce
from (6) the finiteness of F, a contradiction proving that

(8) the set 2B is empty.

Suppose now that V is a principal subgroup of G/(N n ^3G) with

1 <= F £ JV/(N n $G) and V = {Vo [G/(JV O

There exists a principal subgroup S of G with F = S(N n tyG)/(Nn
Clearly

(9.a) S c N,S

and this implies in particular that

(9.b) S is infinite.

From V= {Vo [G/(JV n ipG)]} we deduce furthermore

(9.c) S(iVO «PG) = { S o G } ( N O

Since S is principal, we deduce from (9.c) the existence of elements se{S o G},
teN ntyG with S = {{stf}. It follows that

{S o G} £ S £ {sG} {fG} £ {S o G) {t°};

and application of Dedekind's Modular Law shows therefore that

(9.d) S = {SoG}[Sr> {fG}].

But (e ^3G so that {t°} and a fortiori S n {tG} is a finite normal subgroup of G.
Since S is by (9.a + b) an infinite principal subgroup of G which is part of N, we
deduce from (9.d) and the finiteness of S n {t°} that the pair S n {tG}, S belongs
to SB; see (0). But SB is, by (8), vacuous. Thus we have arrived at a contradiction
proving that NI(N n >$G)XD G/(N O tyG), as we wanted to show.

THEOREM 5.2. The following properties of N o G are equivalent:

(i) JV £

(ii) / / S, is a normally descending sequence of principal subgroups of
G with S, £ N, then almost all S( are finite.

r(a) N ro^ G.
(iii) < (b) If S, is a normally descending sequence of principal subgroups

I o/ G wif/i Sx £ JV, f/ien S, = Si+1for some i.
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-(a) Every normally descending sequence of principal subgroups
St of G with Sj £ N terminates after finitely many steps.

(iv) -̂  (b) / / A is a principal subgroup of G with A = {A o G} £ N,
and if A = {xG} for every xeA with x^CiG, then there exists
an element a with finite a° and A = {aG}.

-(a) NmxG.
(b) If St is a normally descending sequence of principal subgroups

of G/(JV n&G) with Sj £ NI(N n QG), then Sk= Sk+1 for
some k.

[ (a) ctN[(N n£lG)l(tN ntyG)]
^yi) \ (b) N/(N n&G) £ ty[GI(N n

M n / (a) cw[(iVnQG)/(tJVn
K } 1 (b) NI(N n QG) £ ^J[G/(N n

PROOF. From £}G/<PG = §3(G/^G) and Corollary 3.3, (a) one deduces
readily the equivalence of N £ QG with

(i*) N/(N n <PG) s §3[G/(N n

Next we note that N n tyG is a normal torsion subgroup of N. Hence
JV n 5̂G £ tJV. Since extensions of torsion groups by torsion groups are torsion
groups, we conclude that

(0) N n gJG £ tN and tN/(JV n 3̂G) = t[N/(iV n ^

Assume now the validity of (i ; and consider a normally descending sequence
of principal subgroups S, of G with Sx £ N. Then Tf = Sj(N n ^3G)/(N n <PG)
is a normally descending sequence of principal subgroups of G/(iV n *pG) with

T, £ N/(N n

by (i*). Application of Theorem 4.7 shows that 7] = 1 for almost all i; and this
is equivalent with S, £ tyG for almost all i. Since every element in $G belongs
to a finite normal subgroup of G, and since every St is principal, it follows that S,-
is finite for almost all i: we have deduced (ii) from (i).

Assume next the validity of (ii) and consider a prin ipal subgroup S of G
withS = {So G} £ JV.Then the sequence St = S for all i is a normally descending
sequence of principal subgroups of G with Sx = S £ Â ; and we deduce from (ii)
that almost all Sf are finite. Hence S is finite; and we have deduced NwxG from
(ii). Furth rmore it is clear that the following property is a consequence of (ii):

(iii.b*) Every normally descending sequence of principal subgroups St of G
with Sj £ JV terminates after finitely many steps.

Since (iii.b) is just a weak form of (iii.b*), we have deduced (iii) from (ii).
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Assume next the validity of (iii) and consider a normally descending sequence
of principal subgroups T, of G/(JV n $G) with 7\ £ N/(N n ^G) . One con-
structs by complete induction a normally descending sequence of principal sub-
groups S, of G with

T( = St(N n ^3G)/(iV n tyG) for every j .

It is clear that Sx £ N. Application of condition (iii.b) shows therefore the
existence of an integer k with Sk = Sk+l. Hence

Sk = Sk+1 £ {SkoG} sSk

so that Sk = {Sko G} £ N. Application of condition (iii.a) shows that Sk is
finite. Hence Sk £ N n tyG so that Tk = 1: we have shown that NI(N n
satisfies condition (ii) of Theorem 4.7. Henc; JV/(iV O $G) £ <r>3[G/(N n ip
we have deduced (i*) from (iii). Thus (i) is a consequence of (iii), proving the
equivalence of conditions (i)-(iii).

If the equivalent conditions (i)-(iii) are satisfied by N <J G, then condition
(iii.b*) = (iv.a) is likewise satisfied. If furthermore S is a principal subgroup of G
with S = {So G} £ N, then we deduce the finiteness of S from (iii.a); and this
implies the validity of (iv.b): we have deduced condition (IV) from the equivalent
conditions (i)-(iii).

Assume the validity of condition (iv). Denote by SPf the set of all principal
subgroups S of G with the property:

(1) S = {S o G} £ N.

Then we may apply condition (iv.a) onto every descending sequence of
subgroups in 9ft, since such a sequence is a normally descending sequence of
principal subgroups of G, contained in JV. Thus all such sequences terminate
after finitely many steps. This is equivalent with the following property:

(2) The minimum condition is satisfied by the principal subgroups in 2R.

Consider an element ee G with ea a finite class of conjugate elements and the
further property that {xa} <= {e°} implies x e&G. This last condition is equivalent
with the property:

(3.a) X <iG and X <= {eG} imply X £ QG.

Let E = {eG}. Then we deduce from the finiteness of eG and Lemma 3.1, (A.b + c)
that

(3.b) %E is a finite normal subgroup of G and that £ = E/XE is free abelian of
finite rank.

If firstly £=1, then E = %E £ £G £ Q.G.
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If secondly E i= 1, then E" <= E for every integer n with 1 < n. Denote by
£„ the uniquely determined subgroup of G with %E £ £„ and EJ%E = .£". Since
js" is a characteristic subgroup of Eo G/XE,it follows that £ , < G and £„ c £.
Thus it follows from (3.a) that £„ <= £>G. Application of (3.b) shows that
E =Y[i<n£"- Hence E = [ ] 1 < n £ B £ :QG. Thus we have shown the following
fact:
(3) If eeG with finite eG, and if {xG} <= {eG} implies xeOG, then eeQG.

Denote by 9JI* the set of all XeSJl with X $ QG. Consider a principal
subgroup Wof G with W £ iV and W $ QG. Then there exists w with W = {wG};
and clearly w^ClG. Consequently there exists by Theorem 3.2 a G-commutator
sequence ct with w = ct and c( # c; for i i= j . If one of the c, were in QG,
then a second application of Theorem 3.2 would show that the G-commutator
sequence cn is finitely valued, an impossibility. Hence

(4.a) Ci$QG for every i.

Since ct = w e JV -=a G, and since the cf form a G-commutator sequence, it
follows th t
(4.b) cteN for every i.

Let C; = {cf}. Then we deduce from c( + 1 e c; o G that the C, form a normally
descending sequence of principal subgroups of G with C( c JV by (4.b). Application
of (iv.a) shows that this sequence terminates after finitely many steps. Hence there
exists a positive integer k with

Ck = CK+l s { C , o C } = Ct.

Thus Cfr = {Cto G} £ Ct = PK; and Q $ QG by (4.a). Thus we have shown:

(4) If W is a principal subgroup of G with W £ AT and W $ QG, then there

exists VeWl* with F £ W.

Assume now by way of contradiction that

(5) N $ SLG.

Then there exists an element weN with w4&G; and we deduce from (4) the
existence of Ve9Jl* with V S {w°}. This implies in particular that

(6) $01* is not vacuous.

Since9JI* is part of 501 [by definition], we deduce from (2) and (6) the existence
of a minimal subgroup L in 2R*. If x e L, but x £QG, then xeN; and we deduce
from (4) the existence of X e^R* with X £ {xu}. Then X £ L and we deduce

L = X £ {xG} £ L

from the minimality of L so that L = {xG} for every x e L, x££lG. Thus we may
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apply condition (iv.b) on L. Consequently there exists e with finite e° and
L = {e°}. We may apply (3) on L showing that L £ £}G, contradicting Le 2R*.
This contradiction shows the absurdity of our assumption (5); and we have shown
that N £ £}G is a consequence of condition (iv), proving the equivalence of
conditions (i)-(iv)-

If conditions (i)-(iv) are satisfied by N, then we note that (v.a) = (iii.a) and
that N /(N n QG) = 1 [by (i)], showing the validity of (v). If conversely condition
(v) is satisfied by N, then we deduce

(7) JV/(Nn^3G)iDG/(iVn^G)

from (v.a) and Lemma 5.1. Combine condition (v.b) with Corollary 3.3 to show
the validity of the following property:

(8) If S( is a normally descending sequence of principal subgroups of
[G/(Nn *PG)] / ([NI (N n ^G)] n §3[G / (N n ^G)]) with

n ^G)]/([iV/(N n ^SG)] n M C / ( N n

then SA = Sk+i for some fc.
The properties (7) and (8) show that condition (iii) of Theorem 4.7 is satisfied

by NI(N n ^G) <C/(W n $G). It follows that

JV/(N n «PG) £ $3[G/(iV n <P

Hence condition (i*) is a consequence of (v), proving the equivalence of conditions
v).

If condition (i) is satisfied by N o G, then

cti¥[(N n QG)/(tiV n <PG)] £ AT £ £}G and

n
Hence (vi) is a consequence of (i).—Assume conversely the validity of condition
(vi). Let G* = G/(Nn tyG) and N* = JV/(N n SpG). Then we deduce from (0)
that

iJV* = tN/(N n «PG) and JV

and it follows from Corollary 3.3, (a) that

N* n §3G* = (Nn QG)/(tN n
( 9 ) \ tN* n $3G* = itN n &G) / (tiV n

It follows from (9) and (vi.a) that

f ctAN* n §3G*) = CtmiNn9ail(N n QC)/(tW nf
(10) ^ =

L n k$G) == tN* n
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Likewise we derive from Corollary 3.3, (b + c) that

JV*/(iV* n S3G*) s NI(N n QG), G* I(N* n ^G*) s G /(N n QG)

Since JV/(N nQC) s P̂[G/(AT nQG)] by (vi.b), we conclude that

(11) N*/(N* n §3G*) S $[G*/(W* n S3G*)].

Because of (10) and (11) condition (v) of Theorem 4.7 is satisfied by JV*<n G*
Hence N* £ §3G* so that by (9)

JV/(tiV n ^G) = N* = N* n ^G* = (N n QG)/(tN n

Consequently

We have derived (i) from (vi), proving the equivalence of conditions (i)—(vi

(vii) is a consequence of (vi), since (i) implies (iii.a).

ssume next the validity of (vii); and let

W = ctJV[(iV n QG)/(tiV n<$G)l

Clearly

(12.a) W<i G and tN n 5̂G s W s tJV.

It is a consequence of (vii.a) that

(12.b) W wx G.

Furthermore we deduce from (vii.b) that

W/(W nQG) ^ W&GI&G) £ NQG/CLG S Nj(NnQG) s <p[G/(JVnQG)].

Since both these isomorphisms are G-isomorphisms, we conclude that WI(Wn£lG)
is;a product of finite normal subgroups of G j(Wn dG). Consequently

(12.c) »y/(W n CG) £ -^[G /(W n QG)].

If S is a principal subgroup of G j(W n Q.G) which is part of W/(W n £}G), then
we deduce from (12.c) and the principality of S the finiteness of S; and this
implies in particular:

(12.d) If S, is a normally descending sequence of principal subgroups of
GKWnQG) with St £ W/(W n&G), then Sfc = Sk+1 for some fc.

It is the content of (12.b + d) that condition (v) is satisfied by W<\ G. Hence
W s £}G. Thus we have deduced condition (vi) from (vii), proving the equivalence
of conditions (i)-(vii).
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DISCUSSION 5.3: A. The example constructed in Discussion 4.8, C satisfies
conditions (iii.b), (iv.a), (v.b), (vi.b), (vii.b), though the normal subgroup A is not
part of &G. Thus conditions (iii.a), (iv.b), (v.a), (vi.a), (vii.a) are indispensable;
and it is of interest to note that condition (iv.b) cannot be weakened by requiring
the finiteness of A I(A n GG), instead of requiring that A be generated by a finite
class of conjugate elements.

B. There exist many groups G with the properties:

is finite, not 1, and 3[G/^G] = 1;

every wreath product of an abelian group of Priifer's type p°° by a finite, simple,
non-abelian group provides an example. If G is such a group, then tyG = QG.
Letting N = G, we have G = tiV and ciN(N n £>G) s QG. Furthermore

N/(N n QG) E $[G/(JV n QG)].

This shows that in conditions (vi.a) and (vii.a) we cannot substitute (tN(N n :QG)
for Cw[(JV n £>G)/(tiV n #G)].

COROLLARY 5.4. The following properties of the element geG are equivalent:

(i) geCLG.

(ii) / / Sj is a sequence of elements in G with g = st and si+1 e {sto G] for
every i, then the sequence st is finitely valued.

(iii) 7/Sj is a sequence of elements in G with g = st and si+le{sto G] for
every i, then sh = sk for some h < k.

PROOF. Assume first that g e£lG and consider a sequence of elements s, in G
with g = Si and si+1e{s,o G}. Let S, = {sf}. Then the Sf form a normally
descending sequence of principal subgroups of G with Sj = {gG} S QG. Ap-
plication of Theorem 5.2 shows that almost all the St are finite. Hence the sequence
of the elements st is finitely valued: we have derived (ii) from (i).

It is clear that (iii) is a consequence [just a weak form] of (ii). If finally
condition (iii) is satisfied by g, then g is in particular a weak Q-G-element; and
this implies g ef iG by Theorem 3.2: we have verified the equivalence of conditions
(i)-(iii).

COROLLARY 5.5. If N <i G and 5 is a finite set of normal subgroups of G
with X ^ N and N/X £ Q(G [X or every Z e g , then

n XSQIGI r\x
L J

PROOF. We assume without loss in generality that 1 = f)Xe^- Consider a
normally descending sequence of principal subgroups S,- of G with S t £ N. If
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X e $, then the XSt \X form a normally descending sequence of prncipal subgroups
of G\X with

XSJX s NXIX = N/X £ Q(G/X).

Application of Theorem 5.2, (ii) shows that almost all XSj/X are finite. From
ATS,- /X s Sj I(X n S,) and the finiteness of 2f w e deduce now that

(1) there exists i such that SJiX n S,) is finite for every

Combine (1) with the finiteness of 2f and Poincare's Theorem to see that

(2) S.I fl (X n Sf) is finite for some i.

But for every i we have

fl (XnSt)= S,n PI X = 1

so that the finiteness of S, is a consequence of (2). Thus we have shown that con-
dition (ii) of Theorem 5.2 is satisfied by N <s G. Hence N £ £}G, proving our
result.

REMARK. The Note to Lemma 1.6 shows the impossibility of omitting the
requirement that the set 5 be finite.

6. The general properties of the group theoretical functions ^3 and £}

If 3f is one of the group theoretical functions 3, §3, ^3, Q, then

(6.1) (%G)a £ g(Gff) for every homomorphism a of G;

(6.2) U n gG £ gC7 for every subgroup U £ G.

Furthermore it is a much used basic property of the hypercenter that

(6-3) $3[G/§3G] = 3[G/<rJ3G] = 1.

Finally Corollary 5.5 expresses the [limited] residuality of Q.

6.4: Consider next an abelian group R of Priifer's type p00 and a finite group
F with 3F = 1 c F; and form the wreath product G = R I F. Then

ĴG = £}G = basis subgroup of this wreath product so that

GffiG = GI&G s F i s finite, not 1.

This shows the impossibility of proving that <P[G/̂ 3G] or ^3[G/QG] or Q[G/QG]
equal 1.

6.5: Consider furthermore the example constructed in Discussion 4.8, C. Here
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3G = $3G = $G = QG = B, <P[G/B] = A jB is finite of order the prime p.

This shows the impossibility of proving that ^S[G/§3G] = 1.

THEOREM 6.6. The following properties of N<\ G are equivalent:

(i) \_Nj(N n &G)] n Q[G/(JV n &G)] = 1.

(ii) [N/(N n £}G)] n <P[G /(tf n QG)] = 1.

(iii) [N /(tN n QG)] n <P[G /(tiV n £>G)] = 1.

(iv) [tNl(tN n QG)] n <P[G/(tiV n QG)] = 1.

(v) 1 = [(tN n QG)cw[(tN n QG) /(tiV n q3G)] /(tiV nQG)] n $[G /(tAT nQG)].

PROOF. It is clear that (i) implies (ii). Assume conversely the validity of (ii);
and consider xeN with x(NnQG)eQ[G/(JVnQG)]. If the G-commutator
sequence cf contains x, then the G /(N n QG)-commutator sequence ct{N n QG)
contains x(AfndG). From Q/^3 = § 3 and Proposition 1.1 we deduce that
almost all c,(JV r\&G) belong to $[G/(iV nQG)]. Because of xeiV almost
all c,(N nQG) belong to N /(N nQG). Application of our condition (ii) shows
that almost all c,{N n QG) = 1 so that almost all c, belong to JV n QG. Ap-
plication of Theorem 3.2 shows that the G-commutator sequence ct is finitely
valued; and a second application of Theorem 3.2 shows that xeQG. Hence

n QG)] n Q[G/(N n QG)] c QG/(iV n QG);

and this clearly implies (i). Thus we have shown that

(1) the conditions (i) and (ii) are equivalent.

It is clear that tyX is always a torsion group and that

t[N/(tiV n Q O ] = tNRtN n QG).

Consequently

[^KtN n QG)] n ^S[G /(tN n QG)] =
( 2 )

= 5p [G KtN n QG)] n [tJV /(tJV n

It is an immediate consequence of (2) that

(3) the conditions (iv) and (iii) are equivalent.

Denote by A and B respectively the uniquely determined subgroups with

N n QG s A and A/(N n £>G) *= [iV/(N n QG)] n 3̂[G/(AT n QG)],

tJV n QG' s B and B/(tAT n QG) = [tN/(W n £>G)] n

https://doi.org/10.1017/S1446788700015937 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015937


72 Reinhold Baer 138]

We note that

A *a G, N nSG = Q.G n A s A £ N, A/(A n QG) s $[G/(A nQG)],

B <a G, tN n £>G = &G n B £ B £ tN, B/(B n £}G) s P[G/(B n QG)].

Consider W ~<i G with B n &G £ W £ B and finite WftB n £>G). Then W is
a torsion group so that

= JQGnB = ^ n Q G n B = JF n tN nQG = WnNnQG;

and this implies that

W(AT n QG)/(N n QG) s I f / t ^n JV n QG) = W/(B n QG) is finite.

It follows that

W(N n QG) /(JV n QG) £ [JV/(N n QG)] n <]8[G /(N n £>G)].

Hence W ^ A; and since JF is a normal torsion subgroup of G, it follows that
W £ iA. Recalling that B is by its very definition the product of such normal
subgroups W, we have shown that

(4.a) B £ iA.

We note next that

L4/(t4nQG) = t4/[Un(-4nQG)]

n QG)/U n QG) £ ^S[G/(/l n QG)].

Thus tX/(W oQG) is a product of finite normal subgroups of G/(t4 nQG
Consider therefore F < G with

s F c M and finite F/(t4 n QG).

Then t4 n QG = F n U n Q G s F n t N n Q G so that

F(tiV n QG)/(tN n QG) s F/(F n tJV n QG) is finite

as an epimorphic image of VfctA n dG). Furthermore

tiV n QG £ F(tN n QG) £ U(tiV n QG) £ tN;

and this proves that V £ B. From these considerations it follows that

(4.b) iA £ B.

Combining (4.a) and (4.b) we see that

(4) iA = B.

From ^ /G4 n QG) £ $[G/(/l n QG)] we see that A <i G satisfies condition

https://doi.org/10.1017/S1446788700015937 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015937


[39] Finitely valued commutator sequences '73

(vi.b) of Theorem 5.2. Consequently A £ QG and t 4 £ QG are equivalent prop-
erties of A <i G. Combine this with (4) to see that

(5) A £ QG if, and only if, B £ QG.

It is an immediate consequence of the definitions of A and B that A £ QG
is equivalent with condition (ii); and that B £ &G is equivalent with condition
(iv). Thus it follows from (5) that

(6) conditions (ii) and (iv) are equivalent.

Combination of (1), (3) and (6) shows that

(7) conditions (i)—(iv) are equivalent.

We recall that in the course of proving (7) we have shown that the condi-
tions (i)-(iv) are equivalent with B £ Q G . We note next that because of
B / ( B n Q G ) £ ^ [ G / ( N n Q G ) ] condition (vi.b) of Theorem 5.2 is satisfied
by B<\ G. It follows that the conditions

(8) C)-(iv), Bc=&G and ctB[(B n &G) /(tB n ^3G)] £ QG

are equivalent.
Since B is by (4) a torsion group, B = tB and

tB n QG = B n QG = tN n QG, tB n tyG = B n <J3G = tJV n

Hence it follows from (8) that the conditions (i)-(iv) are equivalent with

1 = (tB n QG)ctB[(B n QG) /(tB n <pGf)] /(tB n QG)

= [(tN n QG)cG[(tiV n QG)/(tiV n <PG)] /(tiV n QG)] n [B/(tN n QG)]

= [(tN n QG)ctlv[(tiV n QG) /(tN n «PG)] /(tN n QG)] n «P[G /(tN n QG)]

= [(tN n QG)ctN[(tN n JQG) /(tN n $ G ) ] /(tN n QG)] n Q[G /(tN n QG)]

and this completes the proof of the equivalence of conditions (i)-(iy) a f ld (v).

COROLLARY 6.7. 7 / J V < G and N n ^JG is finite, then tN n QG is finite and
{NI(N n QG)] n &[G I(N n QG)] = 1.

PROOF. Assume by way of contradiction that N n 'ipG # tN n QG. Since
N n 'ipG is a torsion group, it follows that

N n ^ G = tN n <PG c tN n QG.

From Q/^P = §3 we deduce that

(1) 1 c [(tN n QG)/(tN n ^ G ) ] n 3[G/(tN n

Since every torsion element in the center generates a finite normal subgroup, it
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follows that

(2) [(tiV n £G)/(tJV n $G)] n j[G /(tiV n QG)] £ <P[G /(tJV n <J3G)].

But tJV n )̂3G = ^JG n iV is finite by hypothesis; and this implies

(3) <P[C/(tJV n <PG)] = <£G/(tiV n

Combining (l)-(3) we see that

1 c [(tN n QG)/(tJV n <PG)] n j[G/(tiV n

E [(ttf n &G)/(ttf n <pG)] n PPG/(tW n «pG)] = 1,

a contradiction proving that

(4) N n S 8̂G = tJV n QG is finite.

From (3), (4) one deduces readily that

(5) $ [ G /(tW n QG)] = ^8G /(tN n QG);

and combining (4) and (5) we find that

[tN/(tN n QG)] n ? [G/( tN n QG)] £ [JV/(JV n ^3G)] n [^G/(AT n

Hence condition (iv) of Theorem 6.6 is satisfied by N so that

[N I(N n QG)] n Q [ G /(W n QG)] = 1.

PROPOSITION 6.8. (A) The following properties of the group G are equivalent:

(i) a[G/JQG] = 1.

(ii) $[GAQG] = 1.

(iii) «P[G/tDG] = 1.

(iv) [tQGctG(tQG/<PG)/tQG] n <P[G/tQG] = 1.

(B) / / $ G is finite, then tQG is finite and D.[GIQG~\ = 1.

This result is obtained by letting N = G in Theorem 6.6 and Corollary 6.7.

7. Q-groups and locally ©-groups

A Q-Group is a group G with G = QG. It is, by Theorem 3.2, a group all of
whose elements are Q-G-elements [weak Q-G-elements]. It is readily seen that
subgroups and epimorphic images of Q-groups are Q-groups. That extensions
of Q-groups by Q-groups need not be jQ-groups, has already been pointed out in
section 4. The following example shows the absence of a further closure property.

EXAMPLE 7.1. Denote by p an odd prime and by N a group, generated by
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elements ah b}, ctj where i and j range over all the integers subject to the following
relations:

A = {a,,c,j for all i and j} is an elementary abelian p-group;

B = {bpCfj for all j and j} is an elementary abelian p-group;

ato bj — ctj for every i and j .

One checks easily that %N = N' = {ctj for all i and;}, that A <i N and B -=a N and
N = AB. In particular N is a nilpotent p-group of class 2.

There exist uniquely determined automorphisms a' and a" of JV, defined by
the following rules:

a"' = a~l for aeA, b"/ = bj for every 7;

bff" = b~x for 6 E B , a"" = a, for every i.

Both these automorphisms of N have order 2; they commute; and the group 6 of
automorphisms of N, generated by <r' and <r", is elementary abelian of order 4.

Let G = N9 be the product of N and 0, formed in the holomorph of JV.
Then G' = N and hence G" = 1 and QG = tyG = 3JV. Let A* = {^.c?'} and
B* = {B,a"}. These are normal Q-subgroups of G With G = A*B*.

Denote by S the normal subgroup of G, spanned by a'a". One verifies succes-
sivily that S contains every a, and every b} and hence every c{J. Consequently
S = {N,a'a"}. Then

showing that a'a" is not contained in a normal Q-subgroup of G, though a' as
well as a" is contained in a normal Q-subgroup of G: the set of elements in G,
contained in normal Q-subgroups of G, is not a subgroup of G.

Basic for our discussion of locally Q-groups is the following description of
the noetherian Q-groups.

PROPOSITION 7.2. The following properties of the group G are equivalent:

(i) G is noetherian,ZG = tyG is finite and G/ZG is nilpotent.
(ii) G is a finitely generated !&-group.
(iii) G is a d-group and the maximum condition is satisfied by the normal

subgroups of G.
(iv) G is a Q.-group whose abelian subgroups are finitely generated.

PROOF. It is clear that (i) implies each of the conditions (ii)-(iv).

If G is a finitely generated Q-group, then G/tyG is a finitely generated hyper-
central group; and such a group is noetherian and hence nilpotent; see Baer
[1 ; p. 203, Theorem]. Since GjtyG is noetherian and nilpotent, G/^3G is finitely
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presentable. Since G is finitely generated, tyG is spanned by finitely many classes
of conjugate elements; see Baer [4; p. 270, Folgerung 1]. Since tyG is the product
of all finite normal subgroups of G, it follows that tyG is finite. Hence G is
noetherian. Since G/̂ BG is nilpotent and noetherian, X[G/tyG~\ is a finite
characteristic subgroup; see Baer [1; p. 207, Corollary]. Since 3̂G is finite, it
follows that 2[G/«PG] = 1 and tyG = XG:v/e have derived (i) from (ii).

If G meets requirement (iii), then the hypercentral group G/'ipG is nilpotent
and hence noetherian; see Baer [2; p. 322, Satz 1]. The product 3̂G of finite
normal subgroups is a product of finitely many finite normal subgroups. Hence
tyG is finite and G is noetherian: (ii) is a consequence of (iii).

Assume the validity of (iv). Then every abelian subgroup of the locally finite
group tyG is finitely generated and hence finite. Application of the Theorem of
P. Hall-C.R. Kuiatilaka shows that <$G is finite. Since Gj^G is hypercentral,

CG<PG/3<PG s ^GCG^G fflG is hypercentral; and G/cG^G is finite.

It follows that Cc'ipG is a hypercen'ral group all of whose abelian subgroups are
finitely generated. Hence cĜ 3G is noetherian; see Baer [3; p. 173, Hauptsatz 4].
But then G is noetherian; and we have deduced (ii) from (iv), completing the proof.

COROLLARY 7.3. If N is a noetherian normal subgroup of G with N s
then there exists a positive integer k such that every G-commutator sequence,
beginning in N, contains at most k distinct elements.

PROOF. From N £ QG we deduce that N is a noetherian Q-group. Applica-
tion of Proposition 7.2 shows that XN is a finite characteristic subgroup of N.
Hence XN <i G. From N s QG it follows that N/XN £ £3(G/3JV); and this
implies the existence of a positive integer c such that

N/XN = UGIXN)

where the 3,- are the terms of the ascending central series [since N is noetherian].
If C; is a G-commutator sequence with Cj eN, then it follows that c1+ceXN; and
consequently c; e XN for c < i. If t is the order of the finite group XN, then it
follows that the sequence of the ct cannot contain more than 1 + c + t distinct
elements.

REMARK. We have just completed an investigation of normal subgroups N <i G
with the property that G-commutator sequences, beginning in N, contain a
bounded number of distinct elements.

fiQ-Group = Locally-Q-Group = group all of whose finitely generated
subgroups are Q-groups.

Since subgroups and epimorphic images of finitely generated O-groups are,
by Proposition 7.2, finitely generated Q-groups, subgroups and epimorphic
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images of £Q-groups are likewise £Q-groups. If G is an fiQ-group, then every
finite subset of %G generates a finite subgroup [by Proposition 7.2] so that %G
is a locally finite group. Every finitely generated subgroup of G j%G is an epimorphic
image of a finitely generated subgroup of G; and as such it is a torsionfree finitely
generated Q-group and hence a torsionfree nilpotent group by Proposition 7.2
so that G I%G is torsionfree and locally nilpotent.

THEOREM 7.4. The product 2D.G of all normal QS&subgroups of G is a
characteristic QQ-subgroup of G.

PROOF. Consider first two normal ££}-subgroups A and B of G. It is a con-
sequence of Proposition 7.2 that A and B are locally noetherian normal subgroups
of G; and this implies by Baer [5; p. 353, Folgerung 1] that AB is a locally noe-
therian normal subgroup of G. If S is a finite subset of AB, then there exist finite
subsets A and B of A and B respectively such that S is contained in U = {A, B}.
Naturally U is finitely generated and hence noetherian. Consequently U n A is a
noetherian normal subgroup of U which contains A; and U n B is a noetherian
normal subgroup of U which contains B. Hence

(1) U = {U n A) (17 n B)

is the product of its normal subgroups U n A and U n B. Since U n A is a
noetherian subgroup of the fiQ-group A, it lollows from Proposition 7.2 that

(2) 2([/ n 4̂) is a finite characteristic subgroup of U n A with nilpotent
(U n A)IX(U n A);

and likewise we see that
(3) 3Xt/ n B) is a finite characteristic subgroup of U n B with nilpotent

From ( J n i < C/ we deduce that %{U n i4)<a 17; and likewise we see that
n B)« 17. Consequently

(4) T = 3XC7 n A) Z(U n B) is a finite normal subgroup of U.
Application of (l)-(4) shows that U /T is the product of its nilpotent normal

subgroups T(U n A)/T and T(U n B)/T; and it is well known that this implies
the nilpotency of V jT. Since T is finite, V is a noetherian Q-group; and this
implies that its subgroup {S} is likewise a noetherian Q-group. Hence AB is a
normal ££}-subgroup of G.

Since the product of any two normal ££}-subgroups is a normal ££l-sub-
groups, it follows by complete induction that

(5) every product of finitely many normal fiQ-subgroups is a normal
£Q-subgroup.

Consider a finitely generated subgroup V of 2D.G. Then it follows from the
definition of S.Q.G that V is contained in a product W of finitely many normal
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fijQ-subgroups of G. It is a consequence of (5) that W is a normal £Q-subgroup
of G so that V is a jQ-subgroup. Hence fiJDG is a characteristic £Q-subgroup of G.

REMARK 7.5. One proves by the customary arguments that every subnormal
and every accessible £Q-subgroup of G is contained in fljQG.

ARTINIAN Q-GROUPS. Without much trouble it is possible to prove the
following characterization of this class of groups.

A. The following properties of the group G are equivalent:

(i) G is an artinian S2-group.
(ii) G is a SOl-group and the minimum condition is satisfied by the normal

subgroups of G.
(iii) G is a £i-group and every abelian subgroup of G is artinian.
(iv) G/tyG is finite and nilpotent; and there exists an artinian, abelian

subgroup A of tyG with finite [ $ G : A].

We omit the proof; its principal tools are the following results:
every locally finite artinian group contains an abelian subgroup of finite

index;
every locally finite group whose abelian subgroups are artinian is artinian;
see Kegel-Wehrfritz [p. 172, 5.8 TheoremJ.

B. Denote by A an abelian group of Priifer's type 2°° and let

G = {A, b; (ab)2 = 1 for every as A).

Then G is hypercentral so that G is certainly a Q-group; and G is clearly artinian.
If a is an element of order 2", then the commutator sequence ch defined inductively
by the rules:

c i = a, ci+1 = ctob

is readily seen to contain n + 1 distinct elements; and this shows that the G-
commutator sequences in arknian Q-groups need not be bounded.

8. Finitely valued iV-G-commutator sequences

AN JV-G-COMMUTATOR SEQUENCE is for N<3 G a sequence of elements c, e G

with c £ + 1 ec ( o JV for every i.
The terms of an N-G-commutator sequence belong, with the possible ex-

ception of the first term, all to N. Thus the terms c2, c3, •••, <:„••• of an N-G-
commutator sequence form an JV-commutator sequence.

If N <i G, then D.N is a characteristic subgroup of N and hence a normal
subgroup of G; and this implies that cG(N if&N) is likewise a well determined
normal subgroup of G.
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From3(G/§3G) = 1 a n d Q G / ^ G = §3(G/$G) we deduce that s(G/QG) = 1 ;
and this implies

(8.1) Q N = N n cG(N[&N).

DEFINITION 8.2. (A) The element geG is a Q.-N-G-element, if every N-G-
commutator sequence, containing g, is finitely valued.

(B) The element geG is a weak Q-N-G-element, if no N-G-commutator
sequence with pairwise different elements contains g.

All these concepts are generalizations of the concepts, previously discussed
by us. For let G = JV: The G-G-commutator sequences are just the G-commutator
sequences; the Q-G-G-elements are the Q-G-elements; the weak Q-G-G-elements
are the weak Q-G-elements; and

= G n cG(G/&G) = CC(G/QG)
by (8.1).

THEOREM 8.3. If N <i G, then

= set of Q-N-G-elements — set of weak Q-N-G-elements.

PROOF. Assume first that g ecG(N/£UV); and consider an N-G-commutator
sequence ct with Cj = g. Then

c2ec1oN = goN £ cc(JV/£L/V)o N £ &N

so that the elements c2, c3, ••• form an iV-commutator sequence whose elements
belong to £iN. Application of Theorem 3.2 shows that the sequence c2, c3, ••• is
finitely valued. Thus we have shown:
(1) Every element in cG(N /Q.N) is a Q-JV-G-element.

It is clear that
(2) every Q-JV-G-element is a weak :Q-N-G-element.

Consider now a weak Q-N-G-element w. If xe JV, then wo xeN. Consider
some N-commutator sequence ct with c t = w o x . Then

cQ = w,cl = wox, c2, c3, —

is an N-G-commutator sequence, beginning with the weak Q-N-G-element w.
Assume by way of contradiction that

(+) c, # cj for 0< i <j.

Since w i s a weak Q-N-G-element, it follows that

c0 = ck for some positive k.
Then

w = c0 = ck>
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is an iV-G-commutator sequence, beginning with the weak Q-N-G-elemeiit w.
Hence there exist integers i,j with

0 < k ^ j < j and ct = c}.

This contradicts ( + ) ; and thus we have shown that
no JV-commutator sequence with pairwise different elements contains ivox.
This is equivalent to saying that wo x is a weak Q-iV-element; and it follows

from Theorem 3.2 that wo XG!QLN. We have shown therefore that wo N £ QN;
and this is equivalent with w e cG(N /QN). Hence

(3) every weak Q-JV-G-element belongs to cG(N /£lN).

Our theorem is obtained by combination of (1), (2), (3).

A GENERALIZATION. Let S( be for every positive integer i a subset of the group
G. Then we may consider sequences of elements ct in G with c i + 1 e c ( o St for
i = 1,2, •••. One may now consider elements with the property that every such
sequence is finitely valued if it contains the given element. We have no idea how
to characterize these elements, whether they form a subgroup etc. nor do we know
what kind of conditions to impose upon the sequence St.
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