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If x and y are elements in the group G, then we denote their commutator by
xoy =x"'y lxy = x~1x”; and xo G is the set of all commutators xo g with
g € G. A G-commutator sequence is a series of elements ¢;e G with ¢,,, e€c;0 G.
Slightly generalizing well known results one proves that the hypercenter $3G of
the group G is exactly the set of all elements h e G with the property:

every G-commutator sequence, containing h, contains 1 [Proposition 1.1].

It is clear that such a G-commutator sequence contains but a finite number of
distinct elements. Hence we term an element g € G a Q3-G-element, if every G-
commutator sequence, containing g, is finitely valued [contains but a finite
number of distinct elements]. The question arises whether the set of Q-G-elements
is a subgroup and if so how to describe this subgroup. With this in mind denote
by PG the product of all the finite normal subgroups of G and by QG the
uniquely determined subgroup of G with PG = QG and QG /PG = H3G. It is
easily seen that every element in QG is a Q-G-element [Corollary 1.2]. Terming
an element we G a weak Q-G-element, if to every G-commutator sequence c;
with w = ¢, there exist positive integers i # j with ¢; = ¢, it is clear that Q-G-
elements are likewisz weak {-G-elements. Somewhat deeper is our principal
result:

QG = set of Q-G-elements = set of weak Q-G-elements | Theorem 3.2].

If X is a group, then we denote by tX the product of all normal torsion
subgroups of X. This is a characteristic torsion subgroup of G which need not
contain all torsion elements of X. Then the normal subgroup N <1 G is part of
LG if, and only if,

N/(N nQG) = B[G/(N nQG)] and «y[(N n QG) /N n BG)] < QG

where ¢, Y is the centralizer of Y in X [Theorem 5.2]. In order to prove this and
35
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related results we derive in section 4 characterizations of the hypercenter which
may be of independent interest.

In contrast to the rule $H3[G/H3G] = 1 neither of the rules P[G/PG] = 1
nor Q[G/QG] = 1 is true in general. Thus the following criteria are of interest:

LQ[G/QG] = 1if, and only if, Q[G/1QG] = 1;
if PG is finite, then Q[G[PGCG] =1

[Proposition 6.8].

Groups G with G = QG may be termed LQ-groups. Products of finitely many
normal Q-subgroups need not be Q-groups [Example 7.1], this very much in
contrast to hypercentrality. But finitely generated Q-groups are noetherian
[Proposition 7.2]. This suggests the definition of locally Q-groups [ = £Q-
groups]: these are groups whose finitely generated subgroups are Q-groups. They
have the closure property: products of [finitely or infinitely many] normal Q-
subgroups are LLQ-groups [ Theorem 7.4].

Notations

A< B:=: Ais a normal subgroup of B

A = B :=: A is a proper subgroup of B

{---} = subgroup, generated by enclosed subset

xoy=x"1y lxy = x"x’

x0 Y = set of elements xo y with yeY

G-commutator sequence = sequence of elements ¢; with ¢;,,€¢,0 G
¢;X = centralizer of subset X in G

¢g(A/B)for B<aGand B A<1 G:=:setof all geG withgo A < B
3G = center of G

$H3G = hypercenter of G

3,G = o-th term of ascending central chain of G

G’ = {Go G} = commutator subgroup of G

PG = product of finite normal subgroups of G

QG /PG = $3(G/BG)

o(x) = order of [torsion] element x

tG. = product of all normal torsion subgroups of G

TG = set of torsion elements in G

Q-group :=: group X with X = QX

L2Q-group :=: group whose finitely generated subgroups are Q-groups

1. Basic facts and concepts

A G-COMMUTATOR SEQUENCE [or G-commutator series] is a sequence of
elements ¢; e G [with 0 < i] meeting the requirement:
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31 Finitely valued commutator sequences 37

¢+1€¢,0G for 0 < i.
Here as usual
xoy=x"ly-lxy = x~'x*
and
x0 G = set of elements xo g for geG.

ProPOSITION 1.1. The hypercenter $3G is the set of all elements he G with
the property:
every G-commutator sequence, containing h, contains also 1.

TERMINOLOGICAL REMINDERS. 3G = center of G; $3G = hypercenter of
G = intersection of all X <« G with 3(G/X) = 1.

This result is a slight generalization of Kuro§ [p. 219, Lemma].

PrOOF. Suppose that ¢; is a G-commutator sequence with ¢; # 1 for every i.
Then there exists a normal subgroup X <t G with ¢;¢ X forevery i ase.g. X = 1;
and among these there exists a maximal one, say M [Maximum Principle of Set
Theory]. Suppose that 3{G/M] # 1. This is equivalent to the existence of Z with

ZoGEMcZ<ad.

Because of the maximality of M there exists z with c,€Z. Then
c,+1€¢,0G < Zo G = M, contradicting our choice of M. Hence 1 =3[{G/M];
and thus it follows from the definition of the hypercenter that $3G < M. Since
c;¢ M for every i, we have a fortiori that c; ¢ $3G for every i; and we have shown:

(1) If ¢; is a G-commutator sequence with 1 # ¢; for every i, then ¢, ¢ 3G
for every i.

Consider next an element g ¢ $3G. Then we are going to construct a G-
commutator sequence ¢; with g = ¢, and ¢; ¢ 3G for every i. To do this we may
make the inductive hypothesis that we have already constructed elements ¢, -+, c,
with

g=2c¢;,¢H3Gfori <nande,ec,0Gfori <n.

Since in particular ¢, ¢ $3G, and since [as is easily verified] 1 = 3[G/$H3G], the
element ¢,93G does not belong to the center. Hence there exists an element in
G/93G which does not commute with ¢,$3G; and this implies the existence of
Cyr1 €C,0 G with ¢, , ¢93G. This completes our inductive argument; and we
have shown:

(2) If g ¢ H3G, then there exists a G-commutator sequence ¢; with g = ¢, and
c; ¢ 9H3G for every i.

Combination of (1) and (2) shows:

(3) The following properties of ge G are equivalent:

() g¢93G.
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(ii) There exists a G-commutator sequence which contains g, though none
of its terms belongs to $3G.

(iii) There exists a G-commutator sequence which contains g, but does not
contain 1.

Our proposition is equivalent with this statement.

BG = product of all finite normal subgroups of G.
QG = uniquely determined subgroup of G with PG < QG and
QG/PG = H3[G/PG].

It is clear that LG and QG are well determined characteristic subgroups of G.

FINITELY VALUED is the G-commutator sequence c;, if only finitely many
of the ¢, are distinct [if the set of the ¢, is a finite set].

COROLLARY 1.2. Every G-commutator sequence which contains an element
in QG is finitely valued.

PRrOOF. Assume that the G-commutator sequence c¢; contains an element in
LG. Then the elements ¢; PG form a G [PG-commutator sequence, containing an
element in QG /PG = H3[G/PG]. It is an immediate consequence of Proposition
1.1 that 1 = ¢,BG for some i [and hence for almost all i]. Thus some ¢; belongs
to BG; and this implies the existence of a finite normal subgroup E <1 G which
contains some ¢;. Then almost all ¢; belong to E; and we deduce from the finiteness
of E that the G-commutator sequence c; is finitely valued.

This corollary may also be stated in the following form:

if ge QG, then every G-commutator sequence which contains g is finitely
valued.

DEFINITION 1.3. (A) The element ge G is a Q2-G-element, if every G-com-
mutator sequence, containing g, is finitely valued.

(B) The element ge G is a weak Q-G-element, if every G-commutator
sequence g; with g = g, satisfies g; = g; for some i # j.

It is clear that every Q-G-clement is a weak LJ-G-element; and it is a con-
sequence of Corollary 1.2 that every element in QG is a Q-G-element. That

conversely every weak Q-G-element belongs to UG, wili be shown below in
Theorem 3.2.

LEMMA 1.4. (A) If o is an epimorphism of G upon H, if h; is an H-com-
mutator sequence, and if g € G with g° = hy, then there exists a G-commutator
sequence g, with g = g, and g{ = h; for every i.

(B) Every epimorphism of G upon H maps Q-G-elements upon Q-H-
elements and weak Q-G-elements upon weak Q-H-elements.

PROOF. Suppose that g € G, that ¢ is an epimorphism of G upon H and that
h; is an H-commutator sequence with g° = h;. We let g = g,; and we make the
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inductive hypothesis that 0 < n and that elements g,,---, g, have already been
constructed, meeting the following requirements:

g‘: = hi fo:' i = 1,-..’n;
gi+1€9;0Gfor0 < i < n.

Since h,,€h, o H, there exists ae H with h,,, = h,o a. Since H = G°, there
exists be G with b° = a. Let g,,; = ¢g,0 b. Then

gn+1€9,0 G and
g:+1 = (gno b)d = g:o bd = hno a= hn+l’

completing our inductive construction of the desired G-commutator sequence g;.
This proves (A); and (B) is a fairly immediate consequence of (A).

Subgroup inheritance is quite obvious: if ue U = G, and if u is a Q-G-
element [a weak Q-G-element], then u is a Q-U-element [a weak Q-U-element].

LemMAa 1.5. If g is a Q-G-element [a weak Q-G-element], then every
element in g o G is a Q-G-element [a weak Q-G-element).

PrOOF. Suppose that xe G and that ¢; is a G-commutator sequence with
g o x = ¢;. Then the sequence g = ¢, ¢y, €5, -+ is 2 G-commutator sequence too
If firstly g is a Q-G-element, then the sequence c, is finitely valued so that
go x=c, is likewise a Q-G-element. Assume next that ¢;#c; for 0<i<j. If then g
were equal to one of the ¢; with 0 < i, then g would certainly not be a weak
D-G-element; and if g # c; for 0 < i, then the elements in the sequence ¢; with
0 < i would likewise be pairwise different so that again g would not be a weak
-G-element. Hence go x is a weak Q-G-element whenever g is a weak Q-G-
element.

LEMMA 1.6. If N < G, if § is a finite set of normal subgroups of G with
X c N and N|X € $3(G|X) for every X e, then

N/ N ngf)g[G/ N X].
Xeg Xe §

Notk. The requirement that & be finite is indispensable, witness the non-
abelian free groups which are certainly not hypercentral, though they are, by a
Theorem of Magnus, residually nilpotent; see Specht [11, p. 211, Satz 21].—This
result is, presumably, well known; we add the simple proof for the reader’s
convenience.

ProOF. Consider a G-commutator sequence ¢; which contains elements in N.
If X e, then the X¢; form a G /X-commutator sequence, containing elements in
N /X < $3(G/X). Application of Proposition 1.1 shows that almost all X¢; = 1.
Hence almost all ¢;e X for every X € §. Since § is finite, almost all
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e N X.
X 3
Hence
¢, ) X =1 for almost all i;
Xe§
and now one deduces N/ () X < H3[G/ ﬂ X] from Proposition 1.1 [and
Lemma 1.4, (A)]. Xes

Lemma 1.7. If X, Y, Z are normal subgroups of G with XY< Z and
Z|X = P(G/X), then Y(Y N X) = P[G /(Y N X)].

ProoF. Clearly
YI(YNX)2YX/X cZ|X < B(G/X).
Thus YX /X is a product of finite normal subgroups of G /X. Since the isomorphism
YX/X =2 Y(Y NX) is a G-isomorphism, we deduce that Y/(Y N X) is a

product of finite normal subgroups of G/(Y N X); and this implies
Y/(Y NX) < B[GHYNX)]

2. Automorphisms of torsionfree abelian groups

We are going to discuss in this section torsion automorphisms of torsionfree
abelian groups which meet a requirement analogous to the Q-property of group
elements.

(2.1) The multiplicative order of the complex root of unity e is 6 if, and
only if, 1 — e is a root of unity.

PROOF. Let e = a + ib with real a,b and i = (— 1)*. Then e and 1— e have
both absolute value 1 if, and only if,

a?+b>=1and (1 —a)> +(~bP*=1.

This implies a = 4 and b? = #; and (2.1) is a fairly immediate consequence of
this.

It will be convenient to denote the composition of the abelian groups under
consideration in this section 2 as addition a + b; and the effect of the endomor-
phism B on the element a will be designated by ap.

(2.2) If B is a torsion automorphism of the free abelian group F of finite
rank, if F |U is finite for every B-admissible subgroup U # 0 of F, if the order
o(f) # 6, and if there exists 0 # aeF and integers i, j with 0 £ i < j and
a(l — By = a(1 — By, then B = 1.

ProoF. Denote by 8 the ring of endomorphisms of F which is spanned by f.
Naturally 8 is commutative. If 0 # o €0, then Fo is an infinite free abelian group
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so that the kernel of ¢ is not of finite index in F. But the kernel of ¢ is f-admissible
because of the commutativity of 6 [and 8,0 e 6]. 1t follows therefore from our
hypothesis that the kernel of ¢ is 0; and we have shown:

(1) If fe F and 60 with fo = 0, then f =0 oro = 0.

Application of Baer [3; p. 143, Folgerung 1] shows furthermore:

(2) 6is a domain of integrity and 6. is torsionfree of finite rank so that fis a
subring of a finite algebraic number field.

[This could also be directly deduced from (1).]

Assume by way of contradiction that § # 1. There exist by hypothesis
0 # a eF and integers i, j with 0 < i < j and

a(l — B)' = a(1 — Y.
Because of (1) and a # 0 it follows that
0=(1-p-(1-p;
and from 1 — B # 0 and (2) together with 0 < j — i we deduce
1=(1-py-"

Thus g and 1 — B are [by (2)] complex roots of unity; and this implies o (f) = 6
because of (2.1), a contradiction proving the desired § = 1.

REMARK 2.3. Denote by e a primitive [complex | 6-th root of unity and let R
be the ring of complex numbers, spanned by e. Then R is a domain of integrity
and F = R, is a free abelian group of finite rank. It is a consequence of (2.1) that

1 — e too is a root of unity.
If B is the automorphism of F, effected by multiplication by e, then all the

hypotheses of (2.2) are satisfied by F and f with the exception of o(f) # 6. This
shows the indispensability of this hypothesis.

(2.4) If B is a torsion automorphism of the torsionfree abelian group
F # 0, if o(B) is not a multiple of 6, and if for every 0 # a € F there exist integers
i,j with 0 < i <j and a(l — B) = a(l — BY, then there exists 0 # fe F with
f=r8B.

PROOF. If fe F, then the setf, fB, ---, fB°® ! is B-invariant so that the finitely
generated subgroup {f,fB,---.ff°#’ ™'} is p-admissible. This subgroup is free
abelian of finite rank, since F is torsionfree. Hence

(1) every element in F is contained in a S-admissible subgroup of F which is
free abelian of finite rank.

From F # 0 and (1) it follows that there exist f-admissible subgroups of F
which are free abelian of positive rank; and among these there exists one, say A4,
of minimal rank. Then A # 0 is free abelian of finite rank, A = ApB.
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0 = B= BB = A,then A and B have the same rank because of the minimality of
the rank of A;and this is equivalent with the finiteness of A /B. We have shown:

(2) there exists a f-admissible free abelian subgroup A # 0 of finite rank of F
such that 0 € B = Bf < A implies the finiteness of A4 /B.

Denote by f the automorphism, induced by B in A. Then o(f) is a divisor of
o(B); and o(f) # 6, since o(B) is by hypothesis not a multiple of 6. If a € 4, then
a(l — B) = a(1 — B)*; and it follows from our hypothesis that there exist integers
i, jwith 0 < i < jand

a(l— By = a(l = B = a(l = B = a(1 - By’.
Consequently we may apply (2.2) on the torsion automorphism § of A. Hence

B = 1, proving that every element in A # 0 is a fixed element of B.

(2.5) If B is a torsion automorphism of the torsionfree abelian group F, if
o(p) is not a multiple of 6, and if to every 0 # a € F there exist integers i, j with
0<i<jand a(l —B) = a(l — Y, then f = 1.

ProoF. Denote by V the set of all ve F with v = v. This is a f-admissible
subgroup of F. Assume by way of contradiction that V < F. Then F* = F|V # 0
and f induces in F* a torsion automorphism f*. Since o(f) is a multiple of o(f*),
and since o(f) is not a multiple of 6, o(f*) is not a multiple of 6.

If ac F, then a* = a + Ve F* and

a*(1 — %' = a(1 — By + V.
If a # 0, then there exist by hypothesis integers i,j with 0 <i <j and
a(1 — By’ = a(1 — By. It follows that
a*(1— B% = a(l — B + V = a(l — By + V = a*(1 - p*Y.

Consequently we may apply (2.4) on F*: there exists an element w* # 0 in F*
with w* = w*g*,

Naturally there exists an element we F with w* = w + V; and this element
we F has the following properties:

wéV and w(f—1DeV.

In particular w(B — 1) # 0, since otherwise w would be a fixed element of 8 and
would as such belong to V. From

wB=w+ wB—1)

and w(f — 1) = w(f — 1) because of w(f —1)ecV, we deduce by complete
induction

\

whi = w + iw(B — 1) for every positive integer i.

This implies in particular that
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w=wp"®=w + o(BW(B — 1).

Hence o(f)w(B — 1) = 0; and this implies the contradiction w(f — 1) = 0, since
F is torsionfree. From this contradiction we deduce that F = V'; and this implies

=1

LeEMMA 2.6. If 0 is a finite group of automorphisms of the torsionfree
abelian group F, then the element ac F is a fixed element of 0, if (and only if)
there exist to every pe0 integers i, j with 0 £ i < j and a(l — p)' = a(1 — p)’.

PrOOF. 4 = {a0} is a finitely generated subgroup of F, since 8 is finite; and
hence A is free abelian of finite rank. Naturally A4 is f-admissible so that 8 induces
in A a finite group A of automorphisms, If A # 1, then A contains an auto-
morphism 1 of A with o(2) a prime p. Then 1 # 1, so that theie exists w e § with
awl # aw. Then o induces in 4 an automorphism @and @€ A sothat GAd~' = B
is an automorphism in A with o(8) = p and af # a. We have shown:

(1) If A # 1, then there exists fe A with o(f) = p, a prime, and af # a.

Let B = {a,apB,ap? ---,ap?"'}. This is a p-admissible subgroup of 4 and F
and as such B is a free abelian group of finite rank. Note that a # 0 because of
a # af. There exists p € 0, inducing # in 4. By hypothesis, there exist integers i, j
with 0 £ i < j and a(1 — p)' = a(1l — p)’. Since a(l — p)* = a(1 — B)", we have
shown:

(2) There exist integers i,j with 0 < i <j and a(l — B)' = a(1 — B)’.

If0 < k < p, then

[a1(1 ~ )’ = [a(1 — BY]* = [a(1 — B)']B* = [aB*1(1 — BY’.

If ¢, is for k = 0,..-,p — 1 an integer, then

[2 capt| (L~ py

=0

p—1
Z cfapl - B)]
k=0

p—1 i p—1 .
= k§0 afap1 - pyY] = LE}O cxap ] (1 - py.

Thus it follows from (2) that

(3) there exist integers i,j with 0 £ i <j and b(1 — B)' = b(1 —)p’ for
every beB.

Since B is f-admissible, an automorphism g* is induced by f in B. Since
af # a, B* # 1 and since o(f) = p a prime, it follows that o(f*) = p. Since
o(B*) is a prime, o(f*) is not a multiple of 6. By (3) we may apply (2.5) to show
that f* = 1, the desired contradiction.

We have shown that A = 1 and that therefore 0 fixes every element in A.
Thus in particular a = af, as we wanted to show.
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COROLLARY 2.7. Suppose that @ is a group of automorphisms of the torsionfree
abelian group F and that F is generated by its elements f with the following two
properties:

(a) f0 is finite; ‘
(b) to every p € 0 there exist integers i,j with0 < i <jand f(1—p)'=f(1—p).

Then 6 = 1.

This is an immediate consequence of Lemma 2.6.

3. The main theorem

TERMINOLOGICAL REMINDER. TX =set of torsion elements in the group X.
Note that TX need not be a subgroup of X; if TX happens to be a subgroup
of X, then it is a characteristic torsion subgroup of X.

(3.0) (A) If X is a hypercentral group, then TX is a locally finite charac-
teristic subgroup of X.
(B) IRX is always a locally finite characteristic subgroup of X with
TRXPX = I[HI(X/PX)].

ProoF. (A) is a well known fact; see Baer [1; p. 207, Corollary].

Since $H3X is always hypercentral, it follows that TH3X is always a locally
finite characteristic subgroup. Likewise PX is always a locally finite characteristic
subgroup. Finally extensions of locally finite groups by locally finite groups are
locally finite; see e.g. Specht [p. 141, Satz 40*]. Combine these three facts to
obtain (B).

TERMINOLOGICAL REMINDER. If x and y are elements in G, the elements
xo™y are inductively defined by the rules:

x0Py = x, xo"*Vy = (x 0"p)oy.

This series of elements is clearly a G-commutator sequence, beginning with x.

LEMMA 3.1. If ec G and the set e° of elements, conjugate to e in G, is
finite, then the normal subgroup E = {°} <« G has the following properties:

(@) G/cxE and E [3E are finite.
(A) (b) E’ and XE are finite normal subgroups of G.

(c) E/IE is free abelian of finite rank.

(B) If to every xeG there exist integers i,j with 0<i<j and eoPx=eoPx,
then Eo G = IE.

(C) If e is a weak Q-G-element, then Eo G < XE.
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ProoFr. It is clear that an element in G centralizes E if, and only if, it centralizes
every element in ¢¢. Furthermore every element in G induces a permutation of the
set e, It follows that G [¢gE is essentially the same as the group of permutations,
induced by G in the set €. Since ¢“ is finite by hypothesis, G /¢;E is finite. Hence

ERE = E[EN¢E) = EcGE/cGE < G/c¢gE

is likewise finite: we have verified (A.a).

From the finiteness of E /3E and a Theorem of 1. Schur we deduce the finiteness
of E’; see Huppert |p. 417, 2.3 Satz]. Since E is finitely generated, so is the
abelian group E /E’. Hence I(E /E’) is a finite group and (E /E') /T(E/E’) is a free
abelian group of finite rank. Consequently

YE/E'Y=TFE|E' and (EJE")|I(E|E") = E/XE,
since E’ is finite, completing the proof of (A.b + c).

Assume now that ¢ meets the following requirement:

(0) To every xeG .here exist integers i, j with 0 < i < j and
eolx = eoy,

Let X* = XIE/IE for every subset X of G. Then E* = {e**"} < G* is free
abelian of finite rank by (A.c).

Since G [¢gE is finite by (A.a), and since ¢;E TE/TE < ¢5-E¥, it follows that
G* [cg-E* is finite. But this latter group is essentially the same as the group 6 of
automorphisms, induced in E* by G*; and thus we have shown:

(1) E* < G*;E* is free abelian of finite rank; the group 6 of automorphisms
induced in E* by G*, is finite.
If Be0, then B is induced in E* by an element b e G*. If x € E*, then
(2.a) xob=x"!x"=x"1x% = xf71,
From (2.a) one deduces by complete induction that
2.b) x0Wp = x®= V' for i = 0,1,2,--.
Hence it follows from our hypothesis (0) that
(2.¢) there exist integers i,j wi.h 0 < i < jand ex#~1'= g* -1V

Since e*, e*?, e*#-! belong to the abelian group E*, it follows that
s group
=B kB=1M _ k(B-1Y _ k(1-B)2

Thus we have shown that
(2) to every pef there exist integers h,k with 0 < h < k and

e*¥(1 700 — x(1-p)e
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Because of (1) and (2) we may apply Lemma 2.6 on e* € E* and the finite
group 8 of automorphisms of E*:

e* is a fixed element of 6.
But this is equivalent with e*o G* = 1; and this is in turn equivalent with
3 eo G c IE.
If g € G, then we deduce from (3) that
oG c IE,

since TE <a G. From E = {e°} it follows therefore that Eo G < IE, proving (B).

That (C) is a consequence of (B), is an immediate consequence of the fact
that the elements e o x form for every x € G a G-commutator sequence, beginning
with e.

THEOREM 3.2. QG = set of all Q-G-elements = set of all weak Q-G-
elements.

PrOOF. It is a consequence of Corollary 1.2 that every element in QG is a
£-G-element; and it is obvious—see Definition 1.3—that every Q-G-element is a
weak Q-G-element. Hence all we have to prove is the fact that every weak Q-G-

element belongs to QG.
Consider an element ge G such that go G is a subset of fG. Then

(gBG) o (G/PG) is a subset of LG [PG = H3(G/PG). Hence
[9PBGI1H3(G/PBG) €3[(G/PG)/H3G/PBG)] = 1.

Thus we have shown that gG e H3(G/PG) = QG /PG; and this proves:
(1) If geG and go G is a subset of QG, then g e QG.

Consider a weak Q-G-element e with finite e’. Let E = {€°}. Then E < G
and it follows from Lemma 3.1, (A.b) + (C) that

TE is a finite normal subgroup of G and
eoG<c EoG < IE < PG € QG.
Application of (1) shows that e € QG, proving:

(2) If eis a weak Q-G-element with finite €%, then e e QG.

Assume that e is a weak QQ-G-element with the property that almost all elements
in eo G belong to QG and that e¢ QG. If eo G were a subset of QG, then we
would deduce e e QG from (1), contradicting our assumptions. Hence

(3.a) there exists we G with eo w ¢ QG.

If ¢ were finite, then we would deduce ee QG from (2), contradicting our
hypothesis. Hence
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@3.b) % is infinite.

Because of eo x = e~!e” the set eo G is, by (3.b), infinite. Since almost all the
elements in eo G belong to QG, it follows from the infinity of eo G that an infinity
of elements in eo G belongs to G. In other words:

(3.c) (eo G) N QG is an infinite set.

Since QG is a characteristic subgroup, (eo G)* N QG is likewise an infinite
subset of LG ; and hence it follows from (3.a) that

(3.d) (eow)[(eo G)* N QG] is an infinite set of elements none of which
belongs to QG.

Next we note that by Huppert [p. 253, 1.2 Hilfssatz b)]

(eow)(eo x)” = eoc xweeo G for every xeG.

Thus
(eo w) [(eo G)Y N QG] is a subset of eo G;

and it follows from (3.d) that this is an infinite subset of eo G none of whose
elements belongs to QG. This contradicts our assumption that almost all elements
in eo G belong to QG; and this contradiction shows:

(3) If eis a weak Q-G-element and if almost all elements in eo G belong to
G, then e QG.

Consider a weak Q-G-element e and assume by way of contradiction that
e¢0G. We let e = ¢,; and we assume that 0 < n and that we have already
constructed elements c,,---,¢, with the following properties:

(4.a) ¢;¢QGfori=1,---,n;
(4.b) c#ciforli<j=n;
(4.0 civ1€60Gfor0 <i<n.

Since ¢, = e is a weak Q-G-element, so is, by Lemma 1.5, every ¢;. In particular
¢, is a weak Q-G-element which by (4.a) does not belong to QG. It is therefore a
consequence of (3) that infinitely many elements in ¢,0 G do not belong to
L2G. Consequently there exists ¢,,;€¢,0 G with ¢,,; ¢G and ¢, #* ¢; for
i = 1,---,n. This completes the inductive construction of a G-commutator series c,
with e = ¢, [¢;¢ QG for every i] and ¢; # c; for i # j. This contradicts the fact
that e is a weak Q-G-element; and this contradiction shows that e e QG. Hence

every weak Q2-G-e.ement belongs to QG,

as we intended to prove.
COROLLARY 3.3. If N < G, then
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(@ [N/NNPGO]NHLGHN NPG)] = (N NQG) (N N PG);

® [N/(NOBGT/IN/N ABG)] A S[G /N N BG)D = NN 0 QG);

(© [GINNPBOTININNPG]INH[GCHN NPG)]) = G N N QG).

Proor. Consider an element x € N. Then it follows from Proposition 1.1 that
(N N BG)x belongs to HI[G /(N N PG)] if, and only if, every G (N N PG)-
commutator sequence, containing (N N PG)x, likewise contains 1; and this is
by Lemma 1.4, (A) equivalent with the fact that every G-commutator sequence,
containing x, contains elements in N N PG. Note that every element in PG is
contained in a finite normal subgroup of G. Hence our last property is equivalent
with the property that every G-commutator sequence, containing x, is finitely
valued; and this is, by definition, the same as saying that x is a Q-element. Apply
Theorem 3.2 to see that this is equiva.ent with x € QG. Thus we have shown:

xe NN QG if, and only if, (N N PG)x belongs to
[N/NAPBGO]NH3[G/IN N PG)].

This fact is essentially the same as our equation (a); and the isomorphisms
(b) and (c) are readily deduced from (a).

4. The hypercentrally imbedded normal subgroups

The criteria for a normal subgroup to be part of the hypercenter which we
are going to derive in this section will be fundamental for the derivation of criteria
for a normal subgroup to be contained in the Q-subgroup which will be the
object of section 5.

PrOPOSITION 4.0. The following properties of N <1 G are equivalent:

(1) N is torsionfree and N < $3G.
(i) NOPG =1and NN O $36) = B[G/(N N $36)].

We precede the proof proper of this result by the derivation of various
properties some of which are not contained in this proposition.

Lemma 4.1. If N < G with N 0BG = 1 and finite N /(N N 3G), then N
is torsionfree with N < 3G.

ProOF. Every torsion element in N N 3G generates a finite normal subgroup
of G and belongs therefore to N N PG = 1. Hence

) N N3G is torsionfree.

Since N /(N N 3G) is finite, N [3N is finite too. Application of a Theorem of 1.
Schur shows therefore the finiteness of N’'; see Huppert [p. 4.17, 2.3 Satz].
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From N < G it follows that N’ is a finite normal subgroup of G. Hence
N’ € NN PG = 1, proving the commutativity of N. li follows that TN is
a characteristic torsion subgroup of N, implying TN <1 G and, by (1),

IN NN N 36) = 1.

From the finiteness of N /(N N 3G) we deduce now the finiteness of TN. Hence
IN = NNPG = 1; and we have shown that

2 N is a torsionfree abelian group.

If x € N, then we deduce from the finiteness of N /(N N 3G) the existence of a
positive integer n with x"e N N 3G. If g€ G, then x, x? and x o g belong to the
torsionfree abelian normal subgroup N <1 G. Hence

(x0g)" = (x7'x9)" = x""x#" = X7 = x~"¥" = 1,
since x" €3G; and this implies xo g = 1, since N is, by (2), torsionfree. Thus we
have shown No G = 1, implying
A3) N < 3G.
The statements (2) and (3) show the validity of our lemma.

LeMMA 4.2. If N is a torsionfree normal subgroup of G with N < $3G,
and if g € G induces a torsion automorphism in N, then go N = 1.

Proor. If this were false, then there would exist y e N with yo g # 1. Define
inductively the commutator sequence y o ‘g by the rules:

(i+1)

g = [yo¥g]og.

Then yo'"g # 1; and yo')g =1 for almost all i by Proposition 1.1, since
yeN < £3G. Consequently there exists an integer k with

yo'@ =y, yo

yo* =Ny £ 1 = yoWy;

and clearly 2 £ k. Thus z = yo*~?

the following properties:

g is a well determined element in N with

zog # 1, (zoglog = 1;
and this implies (zo0 g)? = zo ¢. Since
29 = z(z0 g),
one may prove by complete induction that
2%' = z(zo gY for every positive integer i.

Since g induces a torsion automorphism in N, there exists a positive integer n
such that
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z =z" = z(zo g)".

Hence 1 = (zo g)", though zo g # 1. This contradicts the fact that zo g is an
element in the torsionfree group N, a contradiction proving our claim.

Lemma 4.3. If N < G with finite N[(N N $H3G) and N N PG = 1, then
tn(N N H3G) is an abelian normal subgroup of G and N is torsionfree with
N = $93G.

ProoF. Since the hypercenter is always a hypercentral group, the set IH3G
is a characteristic subgroup; cp. Baer [1; p. 207, Corollary]. Consequently

I[N N $36] = N N T$H3G < G.

If this normal subgroup of G which is part of $3G were not 1, then
3GNIT[N NH3G] # 1. But every torsion element in the center generates a
finite normal subgroup so that

1c3GNIINNHG] S NN PG =1

by hypothesis; and this contradiction shows that I[N N $3G] = 1. Thus we
have shown that

(€8] N N $H3G is torsionfree.

It is clear tha.
(2.2) A =cy(N N $H3G) = N Nn¢g(NN H3G) < G.
Furthermore

ANH3G = (NN HI6) N (N N H36) = 3(N N H306) < 34,

implying
(2.b) A NH3G < 34.
Finally
A[(AN$36) = A[[AN(NN$36)] = AN N $3G) (N N H3G) < N /(NN $36)
is finite by hypothesis. Combine this with (2.b) to see that
(2.¢) A 34 is finite.

Thus we may apply a Theorem of L. Schur to see that 4’ is finite; see Huppert
[p.417,2.3 Satz]. Since A’ <a G is a consequence of A <1 G [by (2.a)], it follows
that

A csNNPG =1

by hypothesis proving that
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) cn(N N $H3G) = A is an abelian normal subgroup of G.

Consequently T4 is a characteristic subgroup of 4 and as such T4 <1 G.It is
a consequence of (1, that T4 N (N N $H3G) = 1. Hence

TA=TFATANNNH3G)] = (N N HIG)TA/N N H3G) = N [(N N H36)
is finite by hypothesis. Hence
FASNNnPG=1
by hypothesis, proving that
3) A is torsionfree.

If g is a torsion element in N, then g induces a torsion automor-
phism in N N $H3G. Because of (1) we may apply Lemma 4.2 to show that
go (N NnH3G) = 1. Hence

geN N ¢g(NNH36) = 4;
and we deduce g = 1 from (3). Thus we have shown that
@ N is torsionfree.

For future application we state this as an intermediate result:
(D If N< G with finite N /(N N H3G) and N N PG =1, then N is torsionfree.

Denote by & the set of all X <u G with X = N N $H3G and torsionfree N /X.
It is a consequence of (4) that 1 € S. Consider a non vacuous subset J§ of & with
the tower property:

if X and Y belong to J, then either X € Yor Y c X.

The join T ={Jx.qX is then a normal subgroup of G with T = N N H3G.
If g e N and g" e T for some positive integer n, then there exists Y € § with g"e Y.
But YeJ implies Ye S so that ge Y = T. Hence N /T is torsionfree so that
TeS. We have shown that the Maximum Principle of Set Theory may be applied
on &. Consequently there exists a maximal element in S, say M. We let G* = G/M
and N* = N/M. Since M = N N $H3G, we have H3G* = (H3G)/M; and ths
implies in particular the finiteness of

N*[(N* N $3G*) = [N/M]/[(N N H3G) | M] = N [(N N $3G).

From M e S we deduce finally that N* = N /M is torsionfree.

Assume by way of contradiction that N* & $3G*. Then N* [((N N H3G*) is
a finite group, not 1; and since N* is torsionfree, it follows that N* N $3G* # 1.
Application of the basic properties of the hypercenter shows that

) N* N3G* # L.
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Consider W <a G* with N* N 3G* = W < N* and finite W/(N* N 3G*). Since N*
is torsionfree, we may apply Lemma 4.1 to show that W < 3G*. Hence

N* N3G* < W = N* n3G*,
proving that W/(N* n3G*) = 1. Consequently

©6) 1= [N*[(N* N 3G*)] 0 PLG*J(N* 1 3G%)].
We let G** = G* [(N* N 3G*) and N** = N* [(N* N 3G*). Then (6) amounts to
(7.a) 1 = N** N PG

Since the center is part of the hypercenter, it follows that
H3G** = H3G* [(N* N 3G*);
and this implies '
N*¥ N HIG** = (N* N H3G*) J(N* N 3G*).
Consequently
(7.b) N**|(N** N H3G**) = N* [(N* N $3G*) = N /(N N H3G) is finite.

Because of (7.a+b) we may apply the intermediate result (I) onto N** to
show that

U} N* /(N *A 3G*) = N** is torsionfree.

But from (5) and the maximality of M we deduce that N* [(N* N 3G*) is not
torsionfree, a contradiction proving that

®) N* = §3G*.
Hence
1 = N*[(N* N $3G*) @ N /(N N $H3G)
so that
) o N = $3G.

It is a consequence of (2), (4) and (9) that Lemma 4.3 is true.

PROOF OF PROPOSITION 4.0. It is quite obvious that (ii) is a consequence of
(i). Assume conversely the validity of condition (ii). Consider K <1 G with
NN $H3G = K = N and finite K/(N N $3G). Then KN H3G = NN H3G so
that K /(K N $H3G) is finite; and clearly K NG = N N BG = 1. Thus we may
apply Lemma 4.3 to show that K < $3G. But N [(N N $H3G) is, by condition (ii),
the product of finite normal subgroups of G (N N $3G), contained in
N /(N N $3G); and their triviality has just been shown. Hence N (N N $3G) =1
so that N = $3G. Because of N N PG =1 and N/(N N H3G) = 1 we may
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apply Lemma 4.3 a second time to show that N is torsionfree: we have derived (i)
from (ii) and shown the equivalence of conditions (i) and (ii).

CO-HYPERCENTRALLY IMBEDDED is the subgroup S of G, if S <« G and if there
existstoevery X < Gwithlc X = Sa Y< GwithYc Xand X/Y = H3(G/Y).

This concept will prove too restrictive for most of our needs. To formulate a
less restrictive concept we need the following definition.

A PRINCIPAL SUBGROUP of G is every subgroup of the form {g“}. These are
the normal subgroups, spanned by one element; and our notation should remind
the reader of principal ideals.

WEAKLY CO-HYPERCENTRALLY IMBEDDED is the subgroup S of G, if S < G
and {X o G} < X for every principal subgroup X of G with 1 « X = S. For con-
venience’ sake we shall write S w G whenever S is weakly co-hypercentrally
imbedded in G. To justify this notation and in view of some applications we prove
the

LeMMA 4.4. Co-hypercentrally imbedded subgroups are weakly co-
hypercentrally imbedded.

PRrOOF. Assume that S is a co-hypercentrally imbedded subgroup of G. Then
S <a G.Consider a principal subgroup T of G with 1 « T = S. Then there exists
a subgroup U<« Gwith U « Tand 1 « T/U < $3(G/U). Since T is a principal
subgroup of G, and since U < T, there exist normal subgroups X <1 G with
U c X < T; and among these X there exists a maximal one, say ¥V [Maximum
Principle of Set Theory]. Because of U = V < T and T/U < $3(G/U) we have
T/V = $3(G/V). Because of the maximality of ¥ we find that T/V is a minimal
normal subgroup of G/V. Hence T/V < $H3(G/V) implies T/V < 3(G/V); and
this is equivalent with

ToGeV

so that . ;
, {ToG}csVeT
Hence SwG.

LEMMA 4.5. NwG and H <1 G, H= NN $H3G imply N/H w G/H.

 ProOF. Denote by 8 the set of all X < G with X < H and N/X w G /X
From our hypothesis N w G we deduce

) 1eIm.
Suppose next that B is a non vacuous subset of IB with the tower property:

if X and Y belong to B, then either X < Yor Y < X.
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The join J = U X is clearly a normal subgroup of G with J < H. Consider

Xeu
a principal subgroup A of G/J with A € N/J and {40 (G/J)} = A. There
exis.s a principal subgroup B = {b°} of G with A = BJ/J. C.early B < N and

BJ|J = A = {do(G|))} = {(BJ|J)o (G|])} = J{Bo G} |J.

Hence B < {Bo G}J and there exist elements ce {Bo G} and jeJ with b = ¢j.
From the definition of J we deduce the existence of Y eB with je Y. Hence
b = cje{Bo G}Y so that

B = {b%} ¢ {Bo G}Y.
Consequently BY/Y is a principal subgroup of G/Y with BY/Y < N /Y and
BY|Y = {Bo G}Y/Y = {(BY|Y )o (G/Y)}.

Since Ye B belongs to W, it follows that N /Yw G /Y ; and this implies BY/Y = 1.
Hence B € Y < J so that A = BJ[J = 1; and we have shown that N [J w G /J.
Consequently J € 8. Thus we have shown [by (1)] that the Maximum Principle
of Set Theory may be applied on IB. Hence

) there exists a maximal subgroup M in 8.

Assume by way of contradiction that M # H. From our definition of I and
our choice of H it follows that

3 M c H = NN $H3G.
This implies that 1 <« H/M < $H3(G/M); and we deduce

(4.2) 1 # (H/M)N3(G/M)

from the basic properties of the hypercenter. Denote by Z the uniquely determined
subgroup of G with M < Z and Z/M = (H /M) n 3(G/M). Because of (4.a) it
follows that

(4.b) ZoGEMcZcHcSNNHG and Z < G.

Since M is maximal in B, it follows that N /Z w G /Z. Hence there exists an element
s with the following properties:

) seN, s¢Z, Z{s%} = Z{{s°}o G}.

We let S = {s°}, a principal subgroup of G. Because of (5) there exist elements
zeZ and te{So G} with s = zt.
It is a consequence of (4.b) that zo G € Zo G = M. Hence

(6) 50 G = 2t0 G < (z0 G) (to G. < M(t0 G).
Let D = {t°}. Then it follows from (6) that

https://doi.org/10.1017/51446788700015937 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700015937

[21] Finitely valued commutator sequences 55
MD = M{t°} = M{So G} = M{{s°}o G} =€ M{{t°}0 G} = M{Do G} = MD.
Hence MD | M is a principal subgroup of G/M with MD/M < N/M and
MD|M = M{Do G} /M = {(MD|M)o (G| M)}.
But Me by (2) so that N/M wG/M. Consequently 1 = M /MD so that
te D = M. Hence
s=zteZM = Z,
contradicting (5). This contradiction shows that
0 H=MeW,

proving N/H w G/H.
For a convenient statement of our principal application of this lemma we
need the following concept.

NORMALLY DESCENDING SEQUENCES OF SUBGROUPS of G are sequences N; of
subgroups of G with

Niys € {N;,oG} = N, foreveryi =1,2,---.

It follows in particular that such a sequence is a descending sequence of normal
subgroups of G, though this requirement is, in general, somewhat weaker than
that of normal descent.

CoROLLARY 4.6. If N w G, and if S is a principal subgroup of G [(NN$H3G)
w.thl c S = N/(N N 93G), then
A) 1< {So[G/(NN$H3G)]} < S and
(B) there exists a normally descending sequence of principal subgroups S,
of GI(NNH3G) with S = S, and S;, = S, for 0 < i.

PRrROOF. From N w G and Lemma 4.5 we deduce that

M N/(N N $36) 0 G /(N N $H36);
and this implies in particular that
) {So[G/(N N $3G)]} < S.

If {So [G/(N n$3G)]} = 1, then

1S < [N/(NNnHG)] N3[G/(N N HRG)] =1,
a contradiction proving that
3) 1= {So[G/(N N H3G)]}

Our contention (A) is an immediate consequence of (2) + (3).

https://doi.org/10.1017/51446788700015937 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700015937

56 Reinhold Baer ’ 221
. To prove (B) let S =S, and make the inductive hypothesis that 0 < n and
that Sy, -+, S, are principal subgroups of G /(N N $H3G) with
1 =S4y = S;and Siyy € {S;0 [G/(N NG} = S,

for 0 <i<n-—1. Then S,_, is a principal subgroup of G/(N N H3G) with
1<S,.; € N/(N N $H3G). Application of (A) shows that

@ 1 {S,-10[G/(NNHG)]} = S,y
Consequently there exists an element
L #5e{S,-10 [G/(N N $36)]};
and it follows from (4) that S, = {s¥"°9¥9} is a principal subgroup of
G /(N n $3G) with
1S, < {S-10[G/(N N 36T} < Sa-r,
completing the inductive construction of the normally descending sequence of

principal subgroups S; of G/(N N $H3G) with § = S, and S;,; < S; for 0 < i.
This proves (B).

NOTATIONAL REMINDER. tX = product of all normal torsion subgroups of the
group X. This is a characteristic torsion subgroup of X with tX < I X, though
equality will in general not be the case.

THEOREM 4.7. The following properties of N <1 G are equivalent:

(i) N < $3G.
(ii) If N; is a normally descending sequence of principal subgroups of G
with N; < N, then N, = 1 for almost all i.

of G/(N N $H3G) wzth N, € N/(N N $3G), then N, = Ny, for

(@ Nw G. '
(m){(b) If N, is a normally descending sequence of principal subgroups
some k.

(@ N/(N N $36) = B[G/(N N H36)].
(b) an(N N H36) = H6.

(@ N/(N Nn$H3G) < P[G/(N N $H36)].
(b) NN H36) w G.

(@) N/(NN$H36) = P[G/(N N H36)].
Jr(b) tnpa(N N $H36) = H36.
(c) If S is a principal subgroup of G with
L S = {So G} < (N N H36), then every primary abelian
epimorphic image of S is finite.
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ProoF. Assume first that N < $3G; and consider a normally descending
sequence of principal subgroups S; of G with 1 = S; = N. Denote by IB the set
of all X <« G with S, & X for every i. From 1 < §; for every i we deduce that
1 e¥B; and from the principality of all the S; we deduce therefore the applicability
of the Maximum Principle of Set Theory to IB. Consequently there exists a
maximal normal subgroup M in M. From S; £ M and S; = N for every i we
deduce that N & M. Hence

M < MN < M$H3G
so that
1 c MN|M < $H3(G|M).
Application of the basic properties of the hypercenter shows
1 <« [MN/M]Nn3[G/M].

If Z is the uniquely determined subgroup of G with M < Z and
Z/M =[MN|M] N 3[G/M], then

ZoGc McZ< MN and Z <« G.

Hence Z ¢, since M is maximal in ¥B3; and this implies the existence of a positive
integer k with S, < Z. Consequently

Si+1 €S {Si0 G} € {Zo G} = Me,

contradicting our definition of 9B. This contradiction shows that every normally
descending sequence of principal subgroups S; of G with S; = N contains 1.
But S; = 1 implies S;,; = 1 for every positive integer i, proving that (ii) is a
consequence of (i).

Assume next the validity of (ii). If K is a principal subgroup of G with
K = {Ko G} < N, then the sequence S; = K for every i is a normally descending
sequence of principal subgroups of G with S; = N. Hence K = S, = 1 for some i
[by (ii)]; and this proves N mw G.—Next we deduce from (ii) that every normally
descending sequence of principal subgroups S; of G with S, = N terminates after
finitely many stéps; and this implies the corresponding statement for
N/(N N $3G) < G[(N N $H3G). It follows that not only (iii.a), but also (iii.b) is a
consequence of (ii): we have derived (iii) from (ii).

If (iii) is satisfied by N, and if N & $3G, then N N $3G = N so that
1 # N/(N n $H3G). This implies the existence of a principal subgroup S of
G/(N N H3G) with 1 =« S = N/(N N H3G). Because of (iii.a) we may apply
Corollary 4.6,(B) to obtain a contradiction to our condition (iii.b). This con-
tradiction shows that N = $3G. Thus (i) is a consequence of (iii), completing the
proof of the equivalence of conditions (i)—(iii).
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If (i) is satisfied by G, then N/(N N $H3G) = 1, implying the validity of
(iv.a); and (iv.b) is true, since every subgroup of N = $3G is part of the
hypercenter of G. Hence (iv) is a consequence of (i).

Assume conversely the validity of (iv). Let G* = G/tN and N* = N/{N.
Then N* <« G* and we deduce

) N*[(N* 0 $3G*) = PLG*[(N* N H36%)]

from (iv.a) and HIGIN /[tN < H3G*. Next we note that N* N PG* is a normal
torsion subgroup of G*. Since extensions of torsion groups by torsion groups are
torsion groups, we conclude that

)] " N*N PG* = 1.

Thus Proposition 4.0 may be applied upon N* <« G* so that N* [is torsionfree
and]

3 N/tN = N* c $3G* = H3(G tN).

Denote by I' the group of automorphism, induced by G in N N $3G. Then
I 2 G/cg(N N 9H3G); and T stabilizes the factors

(NN 3,46 /(N N 3,G6)

where the 3,G [with ¢ ranging over finite and transfinite ordinals] are the terms of
the ascending central chain of G. Hence we may apply Hall-Hartley [p. 5, Theorem
A.1] to show that I" and hence

) G [ce(N N $H3G) possesses a descending hypercentral series

as defined by Hall and Hartley [pp. 1-2]. It is a consequence of (4) that
the normal subgroup Neg(N N H3G)/ ¢o(N N $H3G) is a co-hypercentrally imbedded
subgroup of G/¢z(N N H3G); and this implies by Lemma 4.4 that

Neg(N 0 H36) [ ¢(N N H3G) w G/ ce(N N H3G).
Since the canonical isomorphism
Neg(N N H36) [ (N N $36) = N[N N (N N $36)] = N/en(N N $H36)

is a G-isomorphism, we conclude that

(%) - N/ew(N N H36) w G ep(N N $36).
Let G = G/cy(N N $H3G) and N = N/cy(N N $H3G). Then we deduce
©) Fwé

from (5). From $3Gey(N N $H3G) [ ex(N N $H3G) < H3G and condition (iv.a) we
deduce that
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(6) NI 0 $36) = BIG /(N n $36)].

Thus every principal subgroup of G /(N N $3G) which is part of N/ (N N $36)
is finite. Combine this remark with (5) to show that our condition (iii) is satisfied
by N <1 G. Since we have already verified the equivalence of (i) and (iii), it follows
that

Q) N/ey(N N $36) = N = 536 = H3[G [en(N N $36)].
Combination of (3), (7) and Lemma 1.6 shows the valid ty of
Nen(N N H36) = N[N N cy(N N $H36)]
® s $3[G/AN N ea[N N H3G])]
S 9LG/ew(N N H36)].

Now we apply condition (iv.b) for the first time. Recalling that
H3[X /$H3X] = 1 we deduce from (8) and (iv.b) that N = $3G: we have derived
(i) from (iv), proving the equivalence of (i)-(iv).

It is clear that (v) is a consequence of (iv) and Lemma 4.4. If conversely (v)
is satisfied by N <a G, then we deduce from (v.a) and Lemma 1.7 the validity of

(N N HR6) [ [en(N N H36) N H3G] < PLG/ (N N H3G) N H36)].

It follows that every principal subgroup of G/[¢, (N N $H3G) N H3G] which is
part of ¢,n(N N H3G) [ [en(N N H3G) N H3G] is finite. Thus condition (iii.b) is
satisfied by ¢,n(N N H3G) <« G; and that condition (iii.a) is satisfied, is the content
of our present condition (v.b). Hence we may apply the equivalence of conditions
(i) and (iii) to show that ¢, (N N H3G) = H3G: we have derived condition (iv)
from (v), proving the equivalence of conditions (i)~(v).

It is quite obvious that (vi) is a consequence of the equivalent properties
(i)v). We assume conversely the validity of condition (vi) and consider a principal
subgroup S of G with S = {So G} < ¢x(N N H3G). Then

) So (SN HIG) € (N N H3G)o AN N H3G) = 1
so that
(10.a) S N $H3G < 3S.

Next we note that

S/(S N $36) = SHIG/H3G = NH3G/H3G = N /(N N H36);

and it follows from condition (vi.a) and the fact that these isomorphisms are
G-isomorphisms that S/(S N $H3G) is a product of finite normal subgroups of
G /(S N £3G). From the principality of S we deduce therefore that

(10.b) SKS N $3G) is finite.
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Combine (10.2) and (10.b) to see that S/3S is finite. Thus we may apply a
Theorem of 1. Schur to show that

(10.c) S’ is finite;

see Huppert [p. 417, 2.3 Satz].

Since S is a principal torsion group, the abelian group S/S’ is generated by a
set of torsion elements of equal order. It follows that S/ S’ is a direct product of
cyclic groups of bounded order; see Specht [p. 279, Satz 4]. Application of
condition (vi.c) shows that every primary elementary abelian epimorphic image of
S /S’ is finite. Consequently

(10d) S /S’ is finite.
Combine (10.c) and (10.d) to see that
(10.e) S is finite.
Hence it follows from condition (vi.b) that
S = an(N N H36) N PG = cy (N N H36) = HIG.

Thus it follows from Lemma 4.4 that Sw G. Since S = {So G}, it follows that
S = 1; and thus we have shown that

(10) ¢en(N N $36)w G.

Since (10) = (iv.b) and (vi.a) = (iv.a), we have deduced condition (iv) from (vi),
proving the equivalence of conditions (i)-(vi).

DiscussioN 4.8. A. It is readily seen that every non-abelian free group F
satisfies H3F = 1; and it is a consequence of a Theorem of Magnus —see Specht
[p. 211, Satz 21]—that Fw F. This shows the indispensability of conditions
(iii.b) and (v.a) of Theorem 4.7.

B. Every finite group and more generally every group with minimum condi-
tion for normal subgroups satisfies condition (iii.b) of Theorem-4.7, though such
groups will, in general, not be hypercentral. This shows the indispensability of
condition (iii.a) of Theorem 4.7. :

C. Denote by p an odd prime and by 4 a countably infinite elementary
abelian p-group. Then A = B x {a} is the direct product of a cyclic subgroup {a}
of order p and a subgroup B = A.

Denote by A the set of all automorphisms ¢ of 4 with

B°~! =1 and a°~'€eB.

It is readily seen that A is a group isomorphic to B and hence a countably infinite,
elementary abelian p-group.
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Denote by A the uniquely determined automorphisms of 4 with
B*'=1and a*=a"L

Then o(A) = 2 and A6d = o~ ! for every o€ A. Thus A is a normal subgroup of
= {A,A} =A{A} with [T :A]=2; and I is a torsion group the orders of
whose elements are 1,2, p.

Finally we form the product G = AT in the holomorph of A. Then one
verifies easily that

B =3G =9H3G, A< Gand A/ B = A/(4 N H3G) is cyclic of order p.
Thus condition (iv.a) of Theorem 4.7 is satisfied by 4 < G, proving the

indispensability of condition (iv.b) of Theorem 4.7,

It is easily verified that A is the only normal subgroup of G which is part of 4,
but not part B. Consequently

B =36 =26G c 4.

D. The indispensability of condition (iv.a) = (v.a) = (vi.a) is shown by
every infinite torsionfree group G with §3G = 1.

E. The indispensability of condition (vi.b) is shown by every normal subgroup
of a finite group G which is not part of £3G.

F. The indispensability of condition (vi.c) may be seen by consideration of
the example, constructed ad C.

5. The Q-imbedded normal subgroups

We shall need a slightly weaker relation than the relation w, discussed in
section 4. Accordingly we define S w,, G if, and only if, S< G and {Xo G} = X
whenever X is an infinite principal subgroup of G with X < S.

One may Say that w,, is the restriction of w to infinite principal subgroups X
[instead of principal subgroups, not 1].

Lemma 5.1.: If N < G, then N w,, G is necessary and sufficient for
N/(N N PG) w G/(N N PG).

PROOF. Assume first that N/(N N PG) w G/(N N PG); and consider an
infinite principal normal subgroup S of G with S = N. Every element in BG is,
by definition, contained in a finite normal subgroup of G. Thus a principal subgroup
of G is part of ‘BG if, and only if, it is finite. Consequently S ¢ PBG. Hence
S(N N BG) /(N N PG) is a principal subgroup, not 1, of G/(N N PG) which is
part of N/(N N PG)w G/(N N BG). This implies
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{SoGI (NN PG |/INNPG) =
= {[SN N PG) /(N N PG)]o [G/(N N BG)]}
c S(N N PG) (N N PG).
Hence {S o G} < S, proving N w,G.
A\‘ssume conversely the validity of Nw_G; and consider the set I of all
pairs A, B with the following properties:
(0) A4 is a finite normal subgroup of G and B is an infinite principal subgroup
of G with A{Bo G} = B = N.
If 9B were not vacuous, then there would exist among the pairs A, B in IB

one with first coordinate of minimal order, say E, F. From our hypothesis Nw_, G
and from E, F e 3 we deduce

6 {FoG} cF.

Since F = E{Fo G} is principal,
(2) there exist elements ecEand de{Fo G} with F = {(ed)‘}
and furthermore it follows that

3) {Fo G} = {Eo G} {{Fo G}o G};
@ F = E{Fo G} = E{Eo G} {{Fo G}o G} = E{{Fo G}o G},
[since E < G].
Assume by way of contradiction that E = {E o G}. Then we deduce from (3)
and (4) that
F = E{{Fo G}o G} = {Eo G} {{Fo G}o G} = {Fo G},
contradicting (1). Hence
5) {Eo G} < E.
From (2) we deduce that
F = {(ed)®} < {¢°} {d°} < E{d°} = E{Fo G} = F.
Hence
6) F = {%} {d%} = E{d°} = E{Fo G}.
From (2) and (6) it follows that
{{d°}o G} = {d°} = {Fo G} = {Eo G} {{d°}o G}.
Application of Dedekind’s Modular Law shows therefore
M {d°} = {{d°}o G} [{Eo G} N {d°}].
It is a consequence of (5) that

{EoG} N {d°} = {Eo G} c E;
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and thus it follows from the minimality of the pair E, F in W that the pair
{E o G} n {d°}, {d°} does not belong to . Since {d°} < {F o G} = F = N [by
(0)], comparison of (0) and (7) shows that {d®} is finite. Since E is finite, we deduce
from (6) the finiteness of F, a contradiction proving that

®) the set W is empty.
Suppose now that V is a principal subgroup of G /(N N PG) with
1cVEN/(NNPG) and V = {Vo [G/(N N PG)]}.

There exists a principal subgroup S of G with ¥V = S(N N BG)/(N N PG).
Clearly

(9.2) S<S N, S ¢ BG;

and this implies in particular that

©.b) S is infinite.

From V= {Vo [G/(N N PG)]} we deduce furthermore
(9.0) S(N N PG) = {So G} (N N PG).

Since S is principal, we deduce from (9.c) the existence of elements se {S o G},
te NN PG with S = {(s1)°}. It follows that

{So G} = § = {s° {°} = {So G} {t};
and application of Dedekind’s Modular Law shows therefore that
©.d) S ={SoG}[Sn {r}].

But & PG so that {t®} and a fortiori S N {t°} is a finite normal subgroup of G.
Since S is by (9.a + b) an infinite principal subgroup of G which is part of N, we
deduce from (9.d) and the finiteness of S N {¢*} that the pair S N {t}, S belongs
to IB; see (0). But W is, by (8), vacuous. Thus we have arrived at a contradiction
proving that N (N N PG)w G /(N N PG), as we wanted to show.

THEOREM 5.2. The following properties of N <1 G are equivalent:
@) N c QG.

(ii) If S; is a normally descending sequence of principal subgroups of
G with S. < N, then almost all S; are finite.

(a) Nw, G.
(iii) {(b) If S, is a normally descending sequence of principal subgroups
of G with S; € N, then S; = S, , for some i.
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(a) Every normally descending sequence of principal subgroups

S; of G with S; = N terminates after finitely many steps.
(@iv) (b) If A is a principal subgroup of G with A= {40 G} < N,
and if A= {x°} for every x € A with x ¢ QG, then there exists
an element a with finite a° and A = {a°}.
(a) Nw,G.
) (b) IfS,;isanormally descending sequence of principal subgroups
v of G|/(N NQG) with S; € N/(N N QG), then S,= S,,, for
some k.
i) (@ oa[(N N QG)/AN N PG)] = QG.
(b) N/(N nQG) = P[G/(N N QG)].
(b) N/(N N QG) = B[G/(N N QG)].

Proor. From QG /PG = H3(G/PG) and Corollary 3.3,(a) one deduces
readily the equivalence of N € QG with

(i*) NI(N N BG) = H3[G /(N N PBG)].

Next we note that N N PG is a normal torsion subgroup of N. Hence
N N PG < tN. Since extensions of torsion groups by torsion groups are torsion
groups, we conclude that

) N N PG = tN and tN /(N 0 BG) = t[N /(N N BG)].

Assume now the validity of (i ; and consider a normally descending sequence
of principal subgroups S; of G with §; = N. Then T; = S(N N BG) /(N N PG)
is a normally descending sequence of principal subgroups of G /(N N PG) with

T; = N/(N 0 PBG) = H3[G/(N N PG)]

by (i*). Application of Theorem 4.7 shows that T; = 1 for almost all i; and this
is equivalent with S; < PG for almost all i. Since every element in BG belongs
to a finite normal subgroup of G, and since every S; is principal, it follows that S,
is finite for almost all i: we have deduced (ii) from (i).

Assume next the validity of (ii) and consider a prin ipal subgroup S of G
with S = {So G} = N.Then the sequence S; = Sforall i isa normally descending
sequence of principal subgroups of G with §; = § = N; and we deduce from (ii)
that almost all S; are finite, Hence S is finite; and we have deduced N w_, G from
(ii). Furth rmore it is clear that the following property is a consequence of (ii):

(iii.b*) Every normally descending sequence of principal subgroups S; of G
with S; € N terminates after finitely many steps.

Since (iii.b) is just a weak form of (iii.b¥*), we have deduced (iii) from (ii).
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~ ‘Assume next the validity of (iii) and consider a normally descending sequence
of principal subgroups T; of G/(N N PG) with T; < N /(N N PG). One con-
structs by complete induction a normally descending sequznce of principal sub-
groups S, of G with

T; = SN N PG/ (N N PG) for every i,

It is clear that S; & N. Application of condition (iii.b) shows therefore the
existence of an integer k with S, = S, ;. Hence

Se = Sie1 S {St0 G} = S,

so that S, = {S,0 G} = N. Application of condition (iii.a) shows that S, is
finite. Hence S, = N N PG so that T, = 1: we have shown that N /(N N BG)
satisfies condition (ii) of Theorem 4.7. Henc: N /(N N BG) < H3[G/(N N PG)]:
we have deduced (i*) from (iii). Thus (i) is a consequence of (iii), proving the
equivalence of conditions (i)—(uii).

If the equivalent conditions (i)—(iii) are satisfied by N <a G, then condition
(iii.b*) = (iv.a) is likewise satisfied. If furthermore S is a principal subgroup of G
with S = {So G} = N, then we deduce the finiteness of S from (iii.a); and this
implies the validity of (iv.b): we have deduced condition (1v) from the equivalent
conditions (i)-(iii).

Assume the validity of condition (iv). Denote by IN the set of all principal
subgroups S of G with the property:

0y S ={SoG}<N.

Then we may apply condition (iv.a) onto every descending sequence of
subgroups in YN, since such a sequence is a normally descending sequence of
principal subgroups of G, contained in N. Thus all such sequences terminate
after finitely many steps. This is equivalent with the following property:

(2) The minimum condition is satisfied by the principal subgroups in IR.

Consider an element e € G with ¢ a finite class of conjugate elements and the
further property that {x¢} = {e“} implies x € QG. This last cond.tion is equivalent
with the property:

(3.a) X< Gand X < {¢°} imply X < QG.

Let E = {¢°}. Then we deduce from the finiteness of ¢ and Lemma 3.1, (A.b + ¢)
that

(3.b) IE is a finite normal subgroup of G and that £ = E/XE is free abelian of
finite rank.

If firstly £ =1, then E = IE < PG < QG.
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If secondly E # 1, then E" < E for every integer n with 1 < n. Denote by
E, the uniquely determined subgroup of G with TE < E, and E,[IE = E™. Since
E" is a characteristic subgroup of £<1 G/IE, it follows that E, <1 G and E, < E.
Thus it follows from (3.a) that E, ¢ QG. Application of (3.b) shows that
E =T],<nE" Hence E =]];<.E, < QG. Thus we have shown the following
fact:
(3) If ee G with finite e, and if {x°} < {¢°} implies x e QG, then e QG.

Denote by Mi* the set of all Xe I with X ¢ QG. Consider a principal
subgroup W of G with W < N and W ¢ QG. Then there exists w with W = {w°};
and clearly w ¢ Q G. Consequently there exists by Theorem 3.2 a G-commutator
sequence ¢; with w = ¢, and ¢; # ¢; for i # j. If one of the ¢; were in G,
then a second application of Theorem 3.2 would show that the G-commutator
sequence c, is finitely valued, an impossibility. Hence

(4.2) c; ¢ QG for every i.

Since ¢, = we N <1 G, and since the ¢; form a G-commutator sequence, it
follows th t
4.b) c;e N for every i.

" Let C, = {c}. Then we deduce from c;,, € ¢;0 G that the C;form a normally
descending sequence of principal subgroups of G with C; & N by (4.b). Application
of (iv.a) shows that this sequence terminates after finitely many steps. Hence there
exists a positive integer k with

C, = Cpsy < {C,0 G} < C..
Thus C, = {C,0 G} € C, = W; and C, ¢ 3G by (4.2). Thus we have shown:

(4) If W is a principal subgroup of G with W = N and W ¢ QG, then there
exists ¥V eM* with V = W.

Assume now by way of contradiction that
®) N ¢ 2G.

Then there exists an element we N with w¢QG; and we deduce from (4) the
existence of V e* with V = {w"}. This implies in particular that

(6) IMM* is not vacuous.

Since M* is part of M [by definition], we deduce from (2) and (6) the existence
of a minimal subgroup L in Jt*. If x € L, but x ¢ QG, then x € N; and we deduce
from (4) the existence of X eIM* with X < {x"}. Then X < L and we deduce

L=Xc{x% <L

from the minimality of L so that L = {x} for every xe L, x ¢ QG. Thus we may

https://doi.org/10.1017/51446788700015937 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700015937

[33] Finitely valued commutator sequences 67

apply condition (iv.b) on L. Consequently there exists ¢ with finite ¢ and
L = {¢“}. We may apply (3) on L showing that L < QG, contradicting L € Mt*.
This contradiction shows the absurdity of our assumption (5); and we have shown
that N € QG is a consequence of condition (iv), proving the equivalence of
conditions (i)—(iv).

If conditions (i)~(iv) are satisfied by N, then we note that (v.a) = (iii.a) and
that N /(N n QG) = 1 [by (i)], showing the validity of (v). If conversely condition
(v) is satisfied by N, then we deduce

0 N/(NanBGOG/(NnPG)
from (v.a) and Lemma 5.1, Combine condition (v.b) with Corollary 3.3 to show
the validity of the following property:
(® If S; is a normally descending sequence of principal subgroups of
[G/(N A BG]/([N/(N A PBG)] N H3[G/(N nBG)]) with

S, € [NI(NaBGO]/([N/(N nPG)] 0 H3LG/(N n PG,
then S, = S,;,, for some k.

The properties (7) and (8) show that condition (iii) of Theorem 4.7 is satisfied
by N/(N n BG) <1 G/ (N n PG). It follows that

N/(N nBG) < H3[G/(N nPG)].

Hence condition (i*) is a consequence of (v), proving the equivalence of conditions

)-(v).
If condition (i) is satisfied by N <1 G, then

an[(N n QG)/ (AN n PG)] = N = QG and
N/(N nQG) =1 = P[G/(N n QG)].

Hence (vi) is a consequence of (i).—Assume conversely the validity of condition
(vi). Let G* = G/(N n BG) and N* = N/(N n PBG). Then we deduce from (0)

that
tIN* = tN/(N 0 PG) and N n PG = tN n PG;

and it follows from Corollary 3.3, (a) that

© { N* A $3G* = (N n QG)/(tN ~ BG),
tN* A $3G* = N A QG)/ (N n PG).

It follows from (9) and (vi.a) that

v (N* N 93G*) = ctwutnnge [(N 0 QG)/(IN A PG)]
(10) { = y[(N n QC)/(AN n PG)]/ (AN n PG)
S (N nQG)/(N N PG) = tIN* n H3IG* = H3IG*.
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Likewise we derive .rom Corollary 3.3, (b + ¢) that

N*[(N* n $3G*) = N /(N n QG), G*[(N* n H3G*) = G /(N n QG)
Since N /(N n QG) < B[G /(N n QG)] by (vi.b), we conclude that
11) N*[(N* 0 $3G*) = P[G* [(N* 0 H3G™)].

Because of (10) and (11) condition (v) of Theorem 4.7 is satisfied by N*< G*
Hence N* © $3G* so that by (9)

N /(N n PG) = N* = N* n $36* = (N n QG) [(IN N BG).

Consequently
N =NnQG < Q6.

We have derived (i) from (vi), proving the equivalence of conditions (i)-(vi"
(vii) is a consequence of (vi), since (i) implies (iii.a).
ssume next the validity of (vii); and let
W = aa[(N n QG) /AN n PBG)].
Clearly
(12.a) W< G and tNn PG c W < {N.
It is a consequence of (vii.a) that
(12.b) W w, G.

Furthermore we deduce from (vii.b) that
WIW nQG) = WQG/QG) = NQG/QG = N|(NnQG) < P[G/(N nQG)]

Since both these isomorphisms are G-isomorphisms, we conclude that W/(Wn QG)
is'a product of finite normal subgroups of G /(W n £2G). Consequently

(12.c) W/(W n 8G) < B[G (W n QG)].

If S is a principal subgroup of G /(W n QG) which is part of W/(W n QG), then
we deduce from (12.c) and the principality of S the finiteness of S; and this
implies in particular:

(12.d) If S, is a normally descending sequence of principal subgroups of
G /(W QG) with S; € W/(W n QQG), then S, = S, for some k.

It is the content of (12.b + d) that condition (v) is satisfied by W< G. Hence
W < QG. Thus we have deduced condition (vi) from (vii), proving the equivalence
of conditions (i)—(vii).
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DiscussioN 5.3: A. The example constructed in Discussion 4.8, C satisfies
conditions (iii.b), (iv.a), (v.b), (vi.b), (vii.b), though the normal subgroup A is not
part of QG. Thus conditions (iii.a), (iv.b), (v.a), (vi.a), (vii.a) are indispensable;
and it is of interest to note that condition (iv.b) cannot be weakened by requiring
the finiteness of 4 /(4 n QG), instead of requiring that 4 be generated by a finite
class of conjugate elements.

B. There exist many groups G with the properties:
G /PG is finite, not 1, and 3[G/PG] = 1;

every wreath product of an abelian group of Priifer’s type p® by a finite, simple,
non-abelian group provides an example. If G is such a group, then PG = QG.
Letting N = G, we have G = tN and ¢n(N n QG) = QG. Furthermore

N/(N n QG) < P[G/(N nQ0)].

This shows that in conditions (vi.a) and (vii.a) we cannot substitute czy(N N QG)
for ¢x[(N n QG) /AN n BG)].

COROLLARY 5.4. The following properties of the element ge G are equivalent:

(i) gefG.

(i) If s; is a sequence of elements in G with g = s, and s;,, € {s;0 G} for
every i, then the sequence s; is finitely valued.

(iii) If s; is a sequence of elements in G with g = s, and s;, € {s;0 G} for
every i, then s, = s, for some h < k.

PROOF. Assume first that g € QG and consider a sequence of elements s; in G
with g = s; and s;,;€{s;0 G}. Let S; = {s7}. Then the S; form a normally
descending sequence of principal subgroups of G with S, = {g¢} = QG. Ap-
plication of Theorem 5.2 shows that almost all the S; are finite. Hence the sequence
of the elements s, is finitely valued: we have derived (ii) from (i).

It is clear that (iii) is a consequence [just a weak form] of (ii). If finally
condition (iii) is satisfied by g, then g is in particular a weak Q-G-element; and
this implies g € QG by Theorem 3.2: we have verified the equivalence of conditions
(1)-(iii).

COROLLARY 5.5. If N<a G and § is a finite set of normal subgroups of G
with X = N and N|X c (G [X or every X e, then

N/ N ng[c/ nx].

Xe§ Xegy

PROOF. We assume without loss in generality that 1 = {1y 5X. Consider a
normally descending sequence of principal subgroups S; of G with S§; = N. If
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X e §, then the XS, /X form a normally descending sequence of pr ncipal subgroups
of G/X with

XS,/X = NX/X = N/X < Q(G/X).

Application of Theorem 5.2, (ii) shows that almost all XS;/X are finite. From
XS;/X = S, /(X nS;) and the finiteness of § we deduce now that

(1) there exists i such that S; /(X n S)) is finite for every X e §§.
Combine (1) with the finiteness of § and Poincaré’s Theorem to see that

)] S./ N (X n S)) is finite for some i.
Xe§

But for every i we have

N Xas)=S5n N X=1
X-g

Xc§

so that the finiteness of S; is a consequence of (2). Thus we have shown that con-
dition (ii) of Theorem 5.2 is satisfied by N <« G. Hence N < QG, proving our
result.

ReMARK. The Note to Lemma 1.6 shows the impossibility of omitting the
requirement that the set § be finite.

6. The general properties of the group theoretical functions p and Q

If & is one of the group theoretical functions 3, $3, B, Q, then
(6.1) (FG)” = F(G) for every homomorphism o of G;
(6.2) U n §G = FU for every subgroup U = G.
Furthermore it is a much used basic property of the hypercenter that
(6.3) M[G/936] = 3[G/93G] = 1.
Finally Corollary 5.5 expresses the [limited] residuality of Q.

6.4: Consider next an abelian group R of Priifer’s type p” and a finite group
F with 3F = 1 < F; and form the wreath product G = R  F. Then

BG = QG = basis subgroup of this wreath product so that
G/BG=G/QG = F is ﬁnite, not 1.

This shows the impossibility of proving that P[G /PG] or PLG/QG] or QLG /QG]
equal 1.

6.5: Consider furthermore the example constructed in Discussion 4.8, C. Here
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3G = H3G = PG = QG = B, P[G/B] = A /B is finite of order the prime p.
This shows the impossibility of proving that P[G/H3G] = 1.

THEOREM 6.6. The following properties of N<a G are equivalent:

0 [N/(N nQG)]~Q[G/(N nQG)] =1.
(i) [N/N A Q6)] nPB[G/(N nQG)] = 1.
(iii) [N/(tN 0 QG)] ~ B[G/EN A QG)] = 1.
(iv) [tN [N A QG)] n P[G/EN A QG)] = 1.

™ 1 =[N n QG [N N QG) /AN A PG)] /AN nQG)] n B[G /KN nQG)].

Proor. It is clear that (i) implies (ii). Assume conversely the validity of (ii);
and consider xe N with x(N n QG)eQ[G /(N n QG)]. If the G-commutator
sequence ¢; contains x, then the G /(N n QG)-commutator sequence c¢(N n QG)
contains x(N n QG). From Q/P = H3 and Proposition 1.1 we deduce that
almost all ¢(N n QG) belong to P[G /(N n QG)]. Because of xe N almost
all ¢(N n QG) belong to N /(N n QG). Application of our condition (ii) shows
that almost all c(N n QG) = 1 so that almost all ¢; belong to N n QG. Ap-
plication of Theorem 3.2 shows that the G-commutator sequence c; is finitely
valued; and a second application of Theorem 3.2 shows that x € QG. Hence

[N/N n RG] n Q[G /(N n QG)] = QG /(N n NG);
and this clearly implies (i). Thus we have shown that
4] the conditions (i) and (ii) are equivalent.
It is clear that ‘PX is always a torsion group and that
[N /iN n QG)] = tN /AN n QG6).
Consequently
[N/AN n QG)] n BP[G/AN n QG)] =
= PL[G /AN n QG)] n [IN /N n QG)).

It is an immediate consequence of (2) that

@

3 the conditions (iv) and (iii) are equivalent.
Denote by 4 and B respectively the uniquely determined subgroups with
NnQG < 4 and 4/(N nQG) = [N/(N n QG)] n B[G/(N n QG)],
tN n QG < B and B[N n QG) = [N [N n QG)] n B[G /AN n QG)].
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We note that
A<G NnQG=2QGnAc AS N, A/(4AnQG) = B[G/(4 nQG)],
B<1G,tNnQG =2QGn B < BctN, B/(BnQG) = P[G/(BnQAG)].

Consider W <a G with BN QG = W < B and finite W/(B n QG). Then W is
a torsion group so that

INAQG=0GnB=WnNnRGNnB=WnitN nQG=WnNnQG;
and this implies that

W(N n QG) /(N NRQG) = WI(Wn N nQG) = W/(BnRQQG) is finite.
It follows that |
| W(N A QG) /(N n QG) = [N (N n QG)] n B[G /(N n QG)].

Hence W < A; and since W is a normal torsion subgroup of G, it follows that
W < tA. Recalling that B is by its very definition the product of such normal
subgroups W, we have shown that

4.2) B < tA.
We note next that

14 /(1A n Q6)

tA/[tA A (4 A Q6)]
tA(A A QG4 A QG) = P[G /(4 N G)].

Thus t4/(t4A ~ QG) is a product of finite normal subgroups of G/(t4 N QG
Consider therefore V<1 G with

tA N QG = V = tA and finite V/(14 n QG).
Then tA N QG =V ntAn QG = V niIN n QG so that
VAN n QG)/(IN n QG) = VI(V ~tN n QG) is finite

IR

as an epimorphic image of V/(t4A n QG). Furthermore
tN n QG = V{EN n QG) < tAAIN n QG) = tN;

and this proves that V = B. From these considerations it follows that

(4.b) tA < B.
Combining (4.a) and (4.b) we see that
@ ‘ tA = B.

From A4 /(A n QG) < P[G /(4 N 2G)] we see that 4 <1 G satisfies condition
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(vi.b) of Theorem 5.2. Consequently 4 = QG and t4 < QG are equivalent prop-
erties of 4 <« G. Combine this with (4) to see that

&) A < QG if, and only if, B < QG.

It is an immediate consequence of the definitions of A and B that 4 < QG
is equivalent with condition (ii); and that B < QG is equivalent with condition
(iv). Thus it follows from (5) that

(6) conditions (ii) and (iv) are equivalent.
Combination of (1), (3) and (6) shows that
) conditions (i)-(iv) are equivalent.

We recall that in the course of proving (7) we have shown that the condi-
tions (i)—(iv) are equivalent with B = QQG. We note next that because of
B/(BnRQG) € P[G/(N n QG)] condition (vi.b) of Theorem 5.2 is satisfied
by B<t G. It follows that the conditions

®) ()—iv), B = QG and ¢,3[(B n QG) /(B n PG)] = QG

are equivalent.
Since B is by (4) a torsion group, B = tB and

1B A QG = Bn QG =1iN n QG, tBrnEBG = Bn PG = tN n PG.
Hence it follows frém (8) that the conditions (i)~(iv) are equivalent with
1 = (B A QG)[(B ~ QG6) /(B ~ BG)] /B ~ QG)
= [N n QG) [N n QG) /AN n PG)] /AN n QG)] n [B/EN n QG)]
[EN A QG)x[AN N QG) /N N PG)]/EN N QG)] n P[G/(IN N QG)]
[N n QG)n[(IN n QG) [(IN n PG /(IN n QG)] n QLG /N nQG)]

and this completes the proof of the equivalence of conditions (i)-(iv) and (v).

1

- CoroLLARY 6.7. If N <t Gand N n PG is finite, then tN n QG is finite and
[N/NnQG)] nQ[G/(N nQG)] = 1.

PrOOF. Assume by way of contradiction that N n3BG # tN n QG. Since
N n BG 15 a torsion group, it follows that

N PG =1N n PG c tN n QG.
From Q/P = H3 we deduce that
1 1 « [N A Q6) [N  BG)] n 3[G/EN A BG)].

“Since every torsion element in the center generates a finite normal subgroup, it

https://doi.org/10.1017/51446788700015937 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700015937

74 Reinhold Baer [40]
follows that
2 [AN nQG)/AN n PG)] Nn3[G/EN n QG)] = PL[G /AN nPG)].
But IN n PG = PG N N is finite by hypothesis; and this implies
3) BLG (N A BG)] = BG/(tN  BG,.
Combining (1)-(3) we see that
1 < [N N QG)/AN nPG)] n3[G/(IN nPG)]
< [(tN A QG) [N ~ PBG)] A [BG /N A BG)] = 1,
a contradiction proving that
€)] N n PG = tN n QG is finite.
From (3), (4) one deduces readily that
&) BLG /N N QG)] = PG/(EN N QG);
and combining (4) and (5) we find that
[AN /AN n QG)] n P[G/UN n QG)] < [N/(N n BG)] n [PG /(N nPG)] = 1.
Hence condition (iv) of Theorem 6.6 is satisfied by N so that
~ [N/N Q6] nQ[G/(N AnQG)] = 1.

PROPOSITION 6.8. (A) Thefollowing properties of the group G are equivalent:

0 Q[G/QG] = 1.
(ii) PIG/QG] = 1.
(iif) PG tQG] = 1.
(iv) [tQG QG /BGAQG] n PG QG] = 1.

(B) If PG is finite, then tG is finite and Q[G/QG] = 1.
This result is obtained by letting N = G in Theorem 6.6 and Corollary 6.7.

7. Q-groups and locally Q-groups

A Q-Group is a group G with G = QG. It is, by Theorem 3.2, a group all of
whose elements are Q-G-elements [weak Q-G-elements]. It is readily seen that
subgroups and epimorphic images of Q-groups are Q-groups. That extensions
of Q-groups by Q-groups need not be Q-groups, has already been pointed out in
section 4. The following example shows the absence of a further closure property.

ExamrLE 7.1. Denote by p an odd prime and by N a group, generated by
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elements a;, b
relations:

j» ¢;; Where i and j range over all the integers subject to the following

A = {a,c,; for all i and j} is an elementary abelian p-group;
B = {b;,c; for all i and j}is an elementary abelian p-group;
a;0 b; = ¢;; for every i and j.

One checks easily that 3N = N’ = {¢;; for all i and j}, that A <« N and B <t N and
N = AB. In particular N is a nilpotent p-group of class 2.

There exist uniquely determined automorphisms ¢’ and ¢” of N, defined by
the following rules:

a” =a-'foraecA, b = b; for every j;

b" = b-!for beB, a” = a, for every i.

Both these automorphisms of N have order 2; they commute; and the group 6 of
automorphisms of N, generated by ¢’ and ¢”, is elementary abelian of order 4.

Let G = NO be the product of N and 0, formed in the holomorph of N.
Then G’ = N and hence G” =1 and QG = PG = 3N. Let A* = {4,¢'} and
B* = {B,c"}. These are normal Q-subgroups of G with G = A*B*.

Denote by S the normal subgroup of G, spanned by ¢’'¢”. One verifies succes-
sivily that S contains every a; and every b; and hence every ¢;;. Consequently
S = {N,c'c"}. Then

QS =PS=3S=3N=N',

showing that ¢'¢” is not contained in a normal Q-subgroup of G, though ¢’ as
well as ¢” is contained in a normal Q-subgroup of G: the set of elements in G,
contained in normal Q-subgroups of G, is not a subgroup of G.

Basic for our discussion of locally Q-groups is the following description of
the noetherian Q-groups.

PROPOSITION 7.2. The following properties of the group G are equivalent:

@) G is noetherian, TG = BG is finite and G |TG is nilpotent.

(ii) G is a finitely generated Q-group.

(iii) G is a Q-group and the maximum condition is satisfied by the normal
subgroups of G.

@iv) G is a Q-group whose abelian subgroups are finitely generated.

PROOF. It is clear that (i) implies each of the conditions (ii)-{(iv).

If G is a finitely generated Q-group, then G /'BG is a finitely generated hyper-
central group; and such a group is noetherian and hence nilpotent; see Baer
[1; p. 203, Theorem]. Since G /[*BG is noetherian and nilpotent, G /PG is finitely
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presentable. Since G is finitely generated, BG is spanned by finitely many classes
of conjugate elements; see Baer [4; p. 270, Folgerung 1]. Since PG is the product
of all finite normal subgroups of G, it follows that PG is finite. Hence G is
noetherian. Since G /BG is nilpotent and noetherian, I[G/PG] is a finite
characteristic' subgroup; see Baer [1; p. 207, Corollary]. Since G is finite, it
follows that T[G/PG] = 1 and PG = TG: we have derived (i) from (ii).

If G meets requirement (iii), then the hypercentral group G /{BG is nilpotent
and hence noetherian; see Baer [2; p. 322, Satz 1]. The product PG of finite
normal subgroups is a product of finitely many finite normal subgroups. Hence
PG is finite and G is noetherian: (ii) is a consequence of (iii).

Assume the validity of (iv). Then every abelian subgroup of the locally finite
group BG is finitely generated and hence finite. Application of the Theorem of
P. Hall-C.R. Ku.atilaka shows that PG is finite. Since G /PG is hypercentral,

6 PBG3PG = PG PG /PG is hypercentral; and G /¢ PG is finite.

It follows that ¢;PBG is a hypercen‘ral group all of whose abelian subgroups are
finitely generated. Hence ¢;BG is noetherian; see Baer [3; p. 173, Hauptsatz 4].
But then G is noetherian; and we have deduced (ii) from (iv), completing the proof.

COROLLARY 7.3. If N is a noetherian normal subgroup of G with N < QG,
then there exists a positive integer k such that every G-commutator sequence,
beginning in N, contains at most k distinct elements.

ProoF. From N € 2G we deduce that N is a noetherian Q-group. Applica-
tion of Proposition 7.2 shows that TN is a finite characteristic subgroup of N.
Hence IN <1 G. From N < QG it follows that N/IN < $H3(G/IN); and this
implies the existence of a positive integer ¢ such that

N/IN =3/(G/IN)

where the 3; are the terms of the ascending central series [since N is noetherian].
If ¢; is a G-commutator sequence with ¢; € N, then it follows that ¢, .. TN; and
consequently ¢; e TN for ¢ < i. If t is the order of the finite group IN, then it
follows that the sequence of the ¢; cannot contain more than 1 + ¢ + ¢ distinct
elements.

REMARK. We have just completed an investigation of normal subgroups N <1 G
with the property that G-commutator sequences, beginning in N, contain a
bounded number of distinct elements.

LLQ-Group = Locally-Q-Group = group all of whose finitely generated
subgroups are L-groups.

Since subgroups and epimorphic images of finitely generated Q-groups are,
by Proposition 7.2, finitely generated LQ-groups, subgroups and epimorphic
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images of £Q-groups are likewise LQ-groups. If G is an LN-group, then every
finite subset of TG generates a finite subgroup [by Proposition 7.2] so that TG
is a locally finite group. Every finitely generated subgroup of G /TG is an epimorphic
image of a finitely generated subgroup of G; and as such it is a torsionfree finitely
generated Q-group and hence a torsionfree nilpotent group by Proposition 7.2
so that G /TG is torsionfree and locally nilpotent.

THEOREM 7.4. The product LG of all normal 2Q-subgroups of Gisa
characteristic LLR-subgroup of G.

ProofF. Consider first two normal 2Q-subgroups 4 and B of G. It is a con-
sequence of Proposition 7.2 that 4 and B are locally noetherian normal subgroups
of G; and this implies by Baer [5; p. 353, Folgerung 1] that AB is a locally noe-
therian normal subgroup of G. If S is a finite subset of 4B, then there exist finite
subsets 4 and B of 4 and B respectively such that S is contained in U = {4, B}.
Naturally U is finitely generated and hence noetherian. Consequently U n 4 is a
noetherian normal subgroup of U which contains 4; and U N B is a noetherian
normal subgroup of U which contains B. Hence

) U=(UnAd (UnB)

is the product of its normal subgroups U A4 and Un B. Since Un A is a
noetherian subgroup of the 2Q-group 4, it tollows from Proposit.on 7.2 that

(2) T(U n A) is a finite characteristic subgroup of U n 4 with nilpotent
(UnATU N A);
and likewise we see that
(3 T(U n B) is a finite characteristic subgroup of U n B with nilpotent
(U n B)/I(U n B).

From U n A<a U we deduce that I(U n A) < U; and likewise we see that
YU n By<a U. Consequently

4 T =I(U n A)I(U n B)is a finite normal subgroup of U.

Application of (1)-(4) shows that U /T is the product of its nilpotent normal
subgroups T(U n A)/T and T(U n B)[T; and it is well known that this implies
the nilpotency of U /T. Since T is finite, U is a noetherian Q-group; and this
implies that its subgroup {S} is likewise a noetherian Q-group. Hence AB is a
normal £Q-subgroup of G.

Since the product of any two normal £Q-subgroups is a normal 2Q-sub-
groups, it follows by complete induction that

(5) every product of finitely many normal £Q-subgroups is a normal
L£0Q-subgroup.

Consider a finitely generated subgroup V of LQG. Then it follows from the
definition of LG that V is contained in a product W of finitely many normal
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£Q-subgroups of G. It is a consequence of (5) that W is a normal 2Q-subgroup
of G so that V is a Q-subgroup. Hence QG is a characteristic £Q-subgroup of G.

REMARK 7.5. One proves by the customary arguments that every subnormal
and every accessible 2L-subgroup of G is contained in LQG.

ARTINIAN £)-GROUPS. Without much trouble it is possible to prove the
following characterization of this class of groups.

A. The following properties of the group G are equivalent:

(i) G is an artinian Q-group.

(ii) G is a Q-group and the minimum condition is satisfied by the normal
subgroups of G.

(iii) G is a Q-group and every abelian subgroup of G is artinian.

(iv) G/BG is finite and nilpotent; and there exists an artinian, abelian
subgroup A of PG with finite [ PG: A].

We omit the proof; its principal tools are the following results:

every locally finite artinian group contains an abelian subgroup of finite
index;

every locally finite group whose abelian subgroups are artinian is artinian;

see Kegel-Wehrfritz [p. 172, 5.8 Theorem].

B. Denote by A an abelian group of Priifer’s type 2° and let
G = {4,b; (ab)* = 1 for every a e A}.

Then G is hypercentral so that G is certainly a Q-group; and G is cleariy artinian.
If a 1s an element of order 2", then the commutator sequence c;, defined inductively
by the rules:

¢, =4a, ¢y =¢0b
is readily seen to contain n + 1 distinct elements; and this shows that the G-
commutator sequences in art.nian L-groups need not be bounded.

8. Finitely valued N-G-commutator sequences

AN N-G-COMMUTATOR SEQUENCE is for N<1 G a sequence of elements ¢;e G
with ¢;,; ec;0 N for every i. :

The terms of an N-G-commutator sequence belong, with the possible ex-
ception of the first term, all to N. Thus the terms c,, ¢3,-+, ¢, +- of an N-G-
commutator sequence form an N-commutator sequence.

If N<a G, then QN is a characteristic subgroup of N and hence a normal
subgroup of G; and this implies that ¢;(N/QN) is likewise a well determined
normal subgroup of G.
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From 3(G/93G) = 1 and QG /PG = H3(G /PG) we deduce that 3(G/QG) =1;
and this implies

8.1) QN = N n ¢g(N/QN).

DEFINITION 8.2. (A) The element g€ G is a Q-N-G-element, if every N-G-
commutator sequence, containing g, is finitely valued.

(B) The element ge G is a weak L3-N-G-element, if no N-G-commutator

sequence with pairwise different elements contains g.

All these concepts are generalizations of the concepts, previously discussed
by us. For let G = N: The G-G-commutator sequences are just the G-commutator
sequences; the Q-G-G-elements are the Q-G-elements; the weak 3-G-G-elements
are the weak Q-G-elements; and

LG = G N ¢x(G/QG) = ¢x(G/QG)
by (8.1).
THEOREM 8.3. If N < G, then
t(N/QN) = set of L2-N-G-elements = set of weak Q-N-G-elements.

PRrOOF. Assume first that g € ¢;(N /QN); and consider an N-G-commutator
sequence ¢; with ¢; = g. Then

c;e€c;0 N =goN c¢g(N/QN)o N € QN

so that the elements c,, ¢y, - form an N-commutator sequence whose elements
belong to QN. Application of Theorem 3.2 shows that the sequence c,, cj, -+ is
finitely valued. Thus we have shown:
(1) Every element in ¢g(N/QN) is a Q-N-G-element.

It is clear that
(2) every Q-N-G-element is a weak Q-N-G-element.

Consider now a weak Q-N-G-element w. If x e N, then wo x e N. Consider
some N-commutator sequence ¢; with ¢; = wo x. Then

Co = W, Cl = WO X, 02, 03,"'

is an N-G-commutator sequence, beginning with the weak £Q-N-G-element w.
Assume by way of contradiction that

(+) c;#c;for 0 <i<j.
Since w is a weak Q-N-G-element, it follows that

¢o = ¢, for some positive k.
Then

W = Co = Cp Cyy1> Ch+2>°""
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i§ an N-G-commutator sequence, beginning with the weak Q-N-G-element w.
Hence there exist integers i,j with

0<k§i<jandc,«=cj.

This contradicts (+); and thus we have shown that
no N-commutator sequence with pairwise different elements contains wo x.
This is equivalent to saying that wo x is a weak Q2-N-element; and it follows
from Theorem 3.2 that wo x e QN. We have shown therefore that wo N < QN;
and this is equivalent with w € ¢g(IN /QQAN). Hence

(3) every weak Q-N-G-element belongs to ¢;(N/QN).
Our theorem is obtained by combination of (1), (2), (3).

A GENERALIZATION. Let S; be for every positive integer i a subset of the group
G. Then we may consider sequences of elements ¢; in G with ¢;,,ec;0 S; for
i=1,2,---. One may now consider elements with the property that every such
sequence is finitely valued if it contains the given element. We have no idea how
to characterize these elements, whether they form a subgroup etc. nor do we know
what kind of conditions to impose upon the sequence S;.
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