
TPLP: Page 1–25. c© The Author(s), 2025. Published by Cambridge University Press. This is an

Open Access article, distributed under the terms of the Creative Commons Attribution licence

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution

and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068425100343

1

Question Answering with LLMs and Learning from
Answer Sets

MANUEL ALEJANDRO BORROTO SANTANA
Department of Mathematics and Computer Science, University of Calabria, Arcavacata, Italy

(e-mail: manuel.borroto@unical.it)

KATIE GALLAGHER
The University of Chicago, Chicago, IL, USA

(e-mail: krgallagher@uchicago.edu)

ANTONIO IELO, IRFAN KAREEM andFRANCESCO RICCA
Department of Mathematics and Computer Science, University of Calabria, Arcavacata, Italy

(e-mails: antonio.ielo@unical.it, irfan.kareem@unical.it, francesco.ricca@unical.it)

ALESSANDRA RUSSO
Department of Computing, Imperial College London, London, UK

(e-mail: a.russo@imperial.ac.uk)

submitted 24 March 2025; revised 28 August 2025; accepted 30 September 2025

Abstract

Large language models (LLMs) excel at understanding natural language but struggle with
explicit commonsense reasoning. A recent trend of research suggests that the combination of
LLM with robust symbolic reasoning systems can overcome this problem on story-based question
answering (Q&A) tasks. In this setting, existing approaches typically depend on human exper-
tise to manually craft the symbolic component. We argue, however, that this component can also
be automatically learned from examples. In this work, we introduce LLM2LAS, a hybrid sys-
tem that effectively combines the natural language understanding capabilities of LLMs, the rule
induction power of the learning from answer sets (LAS) system ILASP, and the formal reason-
ing strengths of answer set programming (ASP). LLMs are used to extract semantic structures
from text, which ILASP then transforms into interpretable logic rules. These rules allow an ASP
solver to perform precise and consistent reasoning, enabling correct answers to previously unseen
questions. Empirical results outline the strengths and weaknesses of our automatic approach for
learning and reasoning in a story-based Q&A benchmark.

KEYWORDS: logic-based learning knowledge representation, question and answering (Q&A)

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343
https://orcid.org/0000-0002-9546-1998
mailto:manuel.borroto@unical.it
mailto:krgallagher@uchicago.edu
https://orcid.org/0009-0006-9644-7975
https://orcid.org/0000-0001-8218-3178
mailto:antonio.ielo@unical.it
mailto:irfan.kareem@unical.it
mailto:francesco.ricca@unical.it
mailto:a.russo@imperial.ac.uk
https://doi.org/10.1017/S1471068425100343

M. A. Borroto Santana et al.2

1 Introduction

One of the longstanding challenges in artificial intelligence (AI) is equipping machines

with the ability to perform commonsense reasoning and to learn such knowledge

autonomously from experience or text (Davis and Marcus 2015). This involves not

only understanding implicit knowledge about the world but also applying it flexibly

to novel situations, an ability that remains difficult for current AI systems. Nonetheless,

in machine comprehension and question answering (Q&A) tasks, AI models frequently

achieve high performance by exploiting statistical regularities and shallow text patterns

rather than through the acquisition of explicit commonsense knowledge or the execution

of systematic reasoning processes (Al-Negheimish et al . 2021).

Despite their impressive recent successes, LLMs are no exception to the broader

limitations of current AI systems. They have been shown to exhibit limited reason-

ing capabilities and often generate unfaithful or incorrect answers (Zheng et al . 2023),

leading to underperformance on benchmarks specifically designed to evaluate natural

language reasoning (Lake and Murphy 2020; Wei et al. 2022). While recent techniques,

such as chain-of-thought (CoT) prompting (Wei et al . 2022), problem decomposition,

and in-context learning (Zhao et al . 2023), suggest that these models can exhibit

some reasoning-like behavior, their capabilities remain limited, often relying on implicit

pattern matching rather than robust, generalizable reasoning mechanisms (Lake and

Murphy 2020; Wei et al . 2022). Moreover, the lack of transparency and explainabil-

ity in LLMs makes it challenging to determine whether they truly acquire and apply

commonsense reasoning (Sap et al . 2020).

On the other hand, LLMs have demonstrated strong capabilities in processing and

generating natural language text. Notably, they have proven effective in semantic pars-

ing, the task of translating natural language sentences into formal representations

(Drozdov et al. 2023). This ability positions LLMs as valuable components for bridg-

ing the gap between unstructured language and structured, machine-interpretable logic.

Recent neuro-symbolic approaches integrate LLMs into formal reasoning frameworks

(Kautz 2022), exploiting their effectiveness in translating natural language into struc-

tured representation. This line of research demonstrates that such combinations can

address some of the inherent limitations of LLMs, particularly their lack of explicit rea-

soning and factual reliability, while retaining their strengths in language generation and

semantic interpretation. For instance, it has been shown that the coherence and con-

sistency of LLMs in story completion tasks can be significantly enhanced by combining

LLM-based semantic parsing (to translate text into formal representations) with sym-

bolic reasoning systems that evaluate the correctness of the LLM-generated sentences

(Nye et al. 2021). Moreover, Ishay et al ., combine LLMs with answer set programming

(ASP) (Lifschitz 2008; Brewka et al . 2011) to solve logic puzzles (Ishay et al . 2023).

Yang et al ., combine GPT-3-based semantic parsing with an ASP knowledge module to

perform reasoning, showing state-of-the-art performance on several benchmarks (Yang

et al. 2023). These approaches also demonstrated that ASP, due to its expressive and

robust declarative semantics, is a particularly well-suited symbolic formalism for sup-

porting reasoning in neuro-symbolic systems. However, despite yielding more robust and

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

Question answering with LLMs and learning from answer sets 3

interpretable reasoning over textual inputs, they typically depend on manually crafted

symbolic knowledge for the reasoning component. This manual intervention is time con-

suming, requires substantial domain expertise, and results in an explicit limitation to

scalability and generalization across diverse tasks or domains.

We claim that the symbolic component need not be manually specified, but can instead

be automatically learned from examples. Through our proposed approach, the feasibility

of this direction is demonstrated, showing that meaningful and generalizable symbolic

knowledge can be induced from limited supervision. More in detail, we develop the ideas

of combining ASP with LLMs (Ishay et al . 2023) for robust reasoning, and introduce

LLM2LAS, a hybrid system that effectively combines the natural language understanding

capabilities of LLMs, the rule induction power of the learning from answer sets (LAS)

system ILASP (Law et al . 2020), and the formal reasoning strengths of ASP (Brewka

et al . 2011).

LLM2LAS integrates an LLM-based semantic parser with ILASP, a system for induc-

tive learning of knowledge in ASP specifications. The semantic parser extracts symbolic

representations from natural language stories and questions, which are then used to auto-

matically construct ILASP learning tasks. Given a story, along with associated questions

and answers, LLM2LAS iteratively learns from narratives the underlying commonsense

logic rules required to solve the task. The induced knowledge is general and transferable,

enabling an ASP system to correctly answer questions about previously unseen texts.

The key components of LLM2LAS include:

• An open-source LLM-based few-shot semantic parser for generating from natural

language both

(i) ASP representations of the input stories, and

(ii) mode bias declarations to drive LAS systems1

• A learning module built upon ILASP, designed to induce commonsense knowledge

required for answering questions about narrative texts.

• A reasoning module for answering questions about a story using the learned

commonsense knowledge, which is based on the clingo ASP solver (Gebser

et al . 2019).

We evaluated our approach on the bAbI Q&A dataset (Weston et al . 2016), a

widely used benchmark comprising several tasks designed to test various forms of rea-

soning, including deduction, induction, coreference resolution, and temporal reasoning.

The empirical evaluation highlights both the strengths and current limitations of our

automated approach to learning and reasoning in story-based Q&A tasks. LLM2LAS

represents a promising step toward the development of more autonomous, interpretable,

and robust systems capable of reasoning over natural language inputs.

1 Mode bias (Law et al . 2020) is a form of syntactic constraint that defines the set of logic rules that the
system is allowed to consider when learning, see Section 3.3.

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

M. A. Borroto Santana et al.4

2 Related work

Mitra et al ., developed a three-layer Q&A system that combines statistical methods

with inductive rule learning and reasoning (Mitra and Baral 2016). The system includes a

statistical inference layer, which uses an abstract meaning representation (AMR) parser, a

translation layer, which converts the AMR parser output into Event Calculus (EC) syntax

using a naive deterministic algorithm, and the reasoner layer, which uses a modified

version of the inductive logic programming (ILP) Cropper and Dumancic 2022) algorithm

XHAIL (Ray 2009) to learn the knowledge required for reasoning. The system achieves

on the bAbI dataset an accuracy of 99.68%, but requires users to manually specify mode

declarations and task-dependent background knowledge.

Nye et al ., proposed a neuro-symbolic approach to improve the coherence and consis-

tency of text generation in a story completion task (Nye et al . 2021). The approach uses

GPT-3 to generate candidate completion sentences and an LLM-based parser to derive

logical representations of a given story and generated sentences. The latter are compared

to symbolic candidates inferred using a minimal world model to check consistency. Only

consistent candidates are considered for the final generation. The system performs well on

different benchmarks (Weston et al . 2016; Sinha et al . 2019; Ruis et al . 2020). However,

the main limitation is the manual design of the world model, which is task specific.

Ishay et al ., combined LLM and ASP to solve logical puzzles in a step-by-step manner

(Ishay et al . 2023). The method uses GPT-3 with prompt engineering to extract relevant

objects, their categories and typed predicates from text descriptions of the puzzles. It then

generates an ASP program that captures the rules of the given puzzle, using a Generate-

Define-Test approach. The outcomes are computed symbolically using the generated ASP

program. The method is interpretable but requires human intervention to resolve errors

in the generation process.

Yang et al ., demonstrated GPT-3 to be effective in few-shot semantic parsing of natural

language into ASP representation (Yang et al . 2023). Their approach handles Q&A tasks

but with task-specific manually handcrafted background knowledge, achieving promising

results on different NLP benchmarks, included the bAbI dataset. The authors also con-

ducted additional experiments to evaluate the capacity of LLMs themselves to handle

reasoning tasks. They used a generation-only approach based on GPT-3.5 and various

prompting techniques (i.e., Few-shot and CoT). The results demonstrated that, while

LLMs can achieve decent results on some tasks, their overall performance is significantly

lower compared to the proposed neuro-symbolic approach. Our approach differs from this

work in that we learn the relevant knowledge needed to solve a task .

Alviano et al . in their first (Alviano and Grillo 2024) and second report (Alviano

et al . 2024), introduced the LLM2ASP framework, which integrates the reasoning capa-

bilities of ASP with the natural language processing capabilities of LLMs. They proposed

a YAML-based format for specifying prompts and encoding domain-specific background

knowledge. In this framework, LLMs process the input prompt to generate relational

facts or ground truth, which are reasoned upon using an ASP program. The resulting

output from the ASP program is converted back into natural language using LLMs to

provide a better user experience. Kim et al. (2024) addressed the reasoning capabilities of

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

Question answering with LLMs and learning from answer sets 5

black-box LLMs. They proposed a novel approach called correct for improving QA rea-

soning of black-box (COBB) LLMs. The approach utilizes a trained adaptation model to

map the often-imperfect reasoning of an initial black-box LLM to the correct reasoning.

The adaptation model is based on an open-source LLM model and trained over a set of

representative pairs of correct and incorrect reasoning. The proposed approach’s effec-

tiveness depends on the quality of training pairs and the capability of open-source LLM.

In addition, it requires ground-truth human labels to judge the correctness of reasoning,

which is a time-consuming task.

Wu et al . (2024) proposed MindMap, a fully LLM-based approach to enhance the

multi-step reasoning in LLMs by constructing evidence chains of facts associated with a

common subject. The approach puts the related facts together to prevent missing crucial

information. The chains created by MindMap can be combined with CoT and selection-

inference (SI) to improve the performance in logical reasoning tasks. The framework

consists of three main modules, that is (i) evidence chain construction, (ii) chain sum-

marization, and (iii) chain utilization for reasoning. The approach was evaluated on a

subset of the bAbI dataset (tasks 1–3) and the ProofWriter (Tafjord et al . 2021) dataset,

demonstrating that integrating MindMap with CoT and SI leads to significant improve-

ments. Despite these clear improvements, the overall performance remains below that of

neuro-symbolic approaches, with hallucinations during inference representing a signifi-

cant contributing factor. These results highlights that, despite recent progress, obtaining

accurate and consistent reasoning from LLMs remains a challenge.

In addition to the approaches discussed above, there are other neuro-symbolic methods

that address similar problems while relying on symbolic formalisms other than ASP,

such as Prolog (Colmerauer and Roussel 1993) and constraint programming (Apt 2003).

Recent surveys (Luo et al . 2023; Cheng et al . 2025) provide an up-do-date overview of

these neuro-symbolic approaches.

We adopt LAS to learn the knowledge needed to solve a Q&A task, thus reducing

human intervention, and exploit LLM-based semantic parsing capability to automatically

generate LAS learning tasks from the given natural language dataset. This combination

of LLM and LAS is novel and offers promising performance.

This paper is an extended and revised version of the conference paper by Kareem

et al . (2024). In particular, this paper streamlines the ideas of Kareem et al ., by adopting

a simpler workflow, that replaces classic NLP techniques with LLM-based techniques,

replacing parts-of-speech algorithms with few-shot prompting to define the learning bias

for the tasks. Furthermore, several extensions were introduced in the implementation,

ranging from more up-to-date LLMs (LLama 3.3 70B in place of the smaller model

Falcon 7B) to smarter caching strategies for LLM outputs and learning tasks’ hypothesis

space. This extension makes the approach more flexible and expands its applicability. As

a result, we are able to solve more tasks from the bAbI dataset, that were unfeasible in

Kareem et al . (2024) due to the complexity of fact extraction.

3 Preliminaries

This section consists of a brief recap on ASP (Section 3.1), the EC formalism to reason

about actions (Section 3.2), the inductive logic programming under the LAS framework

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

M. A. Borroto Santana et al.6

(Section 3.3), and large language models (LLMs) (Section 3.4), providing relevant notions

that will be referred to throughout the paper.

3.1 Answer set programming

ASP is a well-known paradigm for specifying real-world problems, commonsense knowl-

edge and solving combinatorial optimization problems (Gelfond and Lifschitz 1988;

Brewka et al. 2011). We provide here a brief recap of the ASP syntax relevant to this

paper, referring the reader to (Gelfond and Lifschitz 1988; Brewka et al . 2011; Calimeri

et al. 2020) for a formal account on ASP syntax and semantics.

Syntax

Given atoms h, b1, . . . , bn, c1, . . . , cm, a normal rule is of the form

h:−b1, . . . , bn,not c1, . . . , not cm, where h is the head , b1, . . . , bn, not c1, . . . , not cm
(collectively) is the body of the rule, and “not” represents negation as failure. Rules

:−b1, . . . , bn, not c1, . . . , not cm are called hard constraints . ASP programs include also

choice rules . A choice rule is a special type of rule of the form l{h1, . . . , hk}u:−b1, . . . , bn,
not c1, . . . , not cm, where l and u are integers. A variable in a rule is said to be safe

if it occurs in at least one positive literal (i.e., the bi’s in the above rule) in the body

of the rule. In this paper, we assume an ASP program to be a set of normal rules,

hard constraints, and choice rules. The semantics of ASP programs is in terms of stable

models (or answer sets) (Gelfond and Lifschitz 1988).

ASP solvers are capable of constructing solutions to real-world problems from a given

ASP program specification of the problem and, where needed, ranking solutions according

to optimization criteria.

Semantics.

The Herbrand Base of a program P , denoted HBP , is the set of variable free (ground)

atoms that can be formed from predicates and constants in P . The subsets of HBP are

called the (Herbrand) interpretations of P . A ground aggregate l{h1, . . . , hk}u is satisfied

by an interpretation I iff l≤ |I ∩ {h1, . . . , hk}| ≤ u.

As we restrict our ASP programs to sets of normal rules, constraints, and choice rules,

we can use the simplified definitions of the reduct for choice rules presented in Law

et al. (2015). Given a program P and an Herbrand interpretation I ⊆HBP , the reduct

P I is constructed from the grounding of P in 4 steps. Firstly, removing rules whose

bodies contain the negation of an atom in I; secondly, removing all negative literals

from the remaining rules; thirdly, replacing the head of any constraint, or any choice

rule whose head is not satisfied by I with ⊥ (where ⊥ /∈HBP); finally, replacing any

remaining choice rule l{h1, . . . , hm}u:−b1, . . . , bn with the set of rules {hi:−b1, . . . , bn |
hi ∈ I ∩ {h1, . . . , hm}}. Any I ⊆HBP is an answer set of P if it is the minimal model of

the reduct P I . We denote with AS(P) the set of answer sets of a program P . A program

P is said to be satisfiable (resp. unsatisfiable) if AS(P) is non-empty (resp. empty).

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

Question answering with LLMs and learning from answer sets 7

Table 1. Predicates to model Event Calculus as a
normal logic program

Predicate Meaning

holdsAt(f, t) The fluent f is true at t
happensAt(f, t) The fluent f is observed at t
initiatedAt(f, t) The fluent f initiates at t
terminatedAt(f, t) The fluent f ceases at t

holdsAt(F,T+1) : -initiatedAt(F,T),time(T).

holdsAt(F,T+1) : -holdsAt(F,T),not terminatedAt(F,T),time(T).

Fig 1. Simple discrete event calculus axioms as ASP rules.

3.2 Simplified Discrete Event Calculus

EC (Kowalski and Sergot 1986) is a logic-based formalism to reason about actions and

their effects. The EC formalization of a subject domain consists of a set of first-order

rules that define properties of interest in the domain (“fluents”), and domain-independent

rules (“axioms”) that describe general principles about how such properties evolve, that

is when, how they become true or false in a given point in time (Shanahan 1999). There

exist multiple flavors of EC. In this paper, we are interested in the simplified discrete

event calculus (SDEC) (Katzouris et al. 2015a).

SDEC can be elegantly implemented in ASP by means of a normal logic program,

using predicates holdsAt/2, initiatedAt/2, and terminatedAt/2. Intuitively, SDEC

consists of rules that enable to track (and infer) the truth value of fluents over a finite,

discrete, linear representation of time.

The axioms of SDEC can be rendered in ASP according to the rules in Figure 1,

and Table 1 reports the informal meaning of such predicates. The initiatedAt/2 and

terminatedAt/2 predicates are used to define the point in times where an event initi-

ates and terminates. Indeed, different fluents have different initiating and termination

conditions. The predicate holdsAt/2 tracks true fluents at any given time point, with

holdsAt(f, t) modeling that fluent f is true at time t.

holdsAt(F, T+ 1):−initiatedAt(F, T), time(T). (1)

holdsAt(F, T+ 1):−holdsAt(F, T), not terminatedAt(F, T), time(T). (2)

3.2.1 Modeling narratives with event calculus

We provide an example of such ASP-based formalization of narratives by means of SDEC.

A narrative is an ordered sequence of (natural language) statements that describes an

event.

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

M. A. Borroto Santana et al.8

Example 1.

Consider the following narrative, similar to those in Task 8 of the bAbI dataset. Each line

consists of a sentence, and we assume that actions that take place in the i-th sentence

happen at time i.

1. John is carrying the football.
2. John went to the kitchen.
3. John got an apple there.
4. John went to the park.
5. John got the baseball there.
6. John dropped the football.

> What is John carrying?

The narrative involves the agent John, and its action involves interacting with items

– picking them up, dropping them – as well as the moving through several locations.

The narrative provides explicit, point-wise, information about how John interacts with

items and moves in space; however, the concept of “what is John carrying at any given

point in time” is not explicitly provided in the narrative, but is implicit in what it has

been picked up, but not dropped yet . The first step to model such a narrative in SDEC

would be to appropriately choose fluents, and then to provide definitions for its initiating

and terminating conditions.

In particular, a possible way to model such scenario is to use the fluent got(john, obj)

to state that john picks up a given object, and drop(john, obj) to state he drops an

object. Furthermore, the fluent carries(john, obj) states that John is carrying a specific

item. Indeed, for completeness, one may also wish to include the fluent go to(john, loc)

to state that John is moving to a specific location loc, however notice that in this par-

ticular case, it is not necessary to keep track of John’s location to answer the narrative’s

question. Thus, we can reify the narrative by means of the following ASP facts:

initiatedAt(carry(john,football),1).

happensAt(go_to(john,kitchen),2).

happensAt(got(john,apple),3).

happensAt(go_to(john,park),4).

happensAt(got(john,baseball),5).

happensAt(drop(john,football),6).

The next step is to provide a definition for the fluent carry/2, that is “the meaning”

of carrying an object, what determines that John is carrying something with itself and

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

Question answering with LLMs and learning from answer sets 9

terminatedAt

initiatesAt

holdsAt

carry(john,football)

carry(john,football) carry(john,football)

carry(john,apple)

carry(john,football)

carry(john,apple)

carry(john,football)

carry(john,apple)

happensAt

carry(john,baseball)
carry(john,football)
carry(john,apple)

carry(john,football)
carry(john,apple)

drop(john,baseball)

carry(john,baseball)

got(john,apple)

carry(john,baseball)

got(john,baseball)

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Fig 2. Fluents carry/2 evolving over time, according to SDEC axioms. Narrative’s
observations – in terms of got/2, drop/2 fluents – trigger the carry/2 start/stop (blue

arrows), which triggers carry/2 definitions (green arrows), that dictate truth value over time
due to inertia law (“something is true once it initiates and up to the point it terminates”). We
can see that John carries with himself the football up to t= 6 when he drops it; the fluent

drop(john, football) disables the (default) inertia rule.

when he stops doing so. Indeed, John starts carrying something with itself once he picks

it up, and stops carrying something once he drops it:

initiatedAt(carry(P,O),T) : −happensAt(got(P,O),T).

terminatedAt(carry(P,O),T) : −happensAt(drop(P,O),T).

In this case, the commonsense knowledge that if someone carries an item he keeps it with

itself unless he drops it is implicit in the inertial law of the second SDEC axiom. Let Π

be a logic program that contains the Figure 1 rules, fluents’ definitions and the narrative

reified onto a set of facts as shown above. Answer sets of Π can be partitioned by the

second term of each atom (which models time), and we can interpret this model as a

sequence of fluents , as depicted in Figure 2. In this case, a single answer set is obtained.

However, more complex scenarios (e.g., involving nondeterministic outcomes for actions)

can be modeled by means of choice rules and constraints involving the truth value of

the fluents, which might yield more than one answer set or no answer sets for the SDEC

formalization, which has to be interpreted as multiple feasible course of actions matching

the narrative or infeasibility of the narrative (according to SDEC axioms and provided

definitions). Consequently, ASP reasoners can be used to reason about narratives in

a more complex way: checking if a given fluent is true at a given point in time, or if

a desired fluent is true in all answer sets. These reasoning tasks on narratives would

roughly correspond to brave reasoning and cautious reasoning in ASP.

3.3 Learning from answer sets

Inductive logic programming (ILP) (Cropper and Dumancic 2022), which aims at learning

logic programs called hypotheses that together with an existing background knowledge

explain a set of observations, has been extended to learning ASP programs (Law 2018).

Learning ASP programs allows us to learn a variety of declarative non-monotonic,

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

M. A. Borroto Santana et al.10

commonsense theories, including for instance the EC (Kowalski and Sergot 1986) and

domain-dependent theories (Katzouris et al . 2015). In this paper, we use the LAS frame-

work and its state-of-the-art system ILASP (Law 2018) for learning ASP programs. The

LAS framework solves learning tasks which consist of a background knowledge, the mode

bias and a set of examples . The background knowledge, denoted as B, is an ASP program

which describes a set of concepts that are known before learning.

Formally, the hypothesis space H is defined as a set of (possibly non-ground) rules, and

an hypothesis h is a logic program composed of rules in H, that is h⊆H. However, in

ILP systems, it is not so common to explicitly provide the hypothesis space, but rather to

rely on declarative means to describe it. One possible way to do so in the ILASP system

is to provide the hypothesis space by means of mode biases.

The mode bias, denoted as M and often called language bias , is used to express the

ASP programs that can be learned. A mode bias is defined as a pair of sets of mode

declarations M = 〈Mh, Mb〉, where Mh (resp. Mb) are called the head (resp. body) mode

declarations . Each mode declaration is a literal whose abstracted arguments are either

var(t) or const(t), for some constant t (called a type). For each type, a set of constants

is provided along with the maximum number of variables (maxv) that a rule can take,

thus constraining the search space induced by M . In other words, mode biases describe

what atoms can appear in rules that will describe the hypothesis space; maxv acts as a

filter to prune rules that contain more than a given number of variables. Informally, a

literal is compatible with a mode declaration m if it can be constructed by replacing every

instance of var(t) in m with a variable of type t, and every const(t) with a constant of

type t.

The set of constants of each type is assumed to be given with a task, together with the

maximum number of variables in a rule, giving a set of variables V1, . . . , Vmax that can

occur in a hypothesis. Whenever a variable V of type t occurs in a rule, the atom t(V) is

added to the body of the rule to enforce the type. This guarantees the learning of safe

rules.

Definition 1.

Given a mode bias M = 〈Mh, Mb〉, a normal rule R is in the hypothesis space SM if and

only if (i) the head of R is compatible with a mode declaration in Mh; (ii) each body

literal of R is compatible with a mode declaration in Mb; and (iii) no variable occurs

with two different types.

Example 2

(ILASP Mode Biases (Normal Rules)). In the input language of the ILASP system (Law

et al. 2020), mode biases (for normal rules) are provided by means of the #modeh and

#modeb directives. Other directives are available to express choice rules or disjunctive

rules. As an example, the mode bias:

#modeh(a). #modeh(b).
#modeb(a). #modeb(b).

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

Question answering with LLMs and learning from answer sets 11

states that the ground atoms a and b can belong to the head or to the body of a rule.

Thus, this can be understood as a compact, declarative specifications for the set of rules2:

1 ~ :- a.
1 ~ :- b.
1 ~ b.
1 ~ a.
1 ~ :- not b.
1 ~ :- not a.
2 ~ :- a; b.
2 ~ b :- a.
2 ~ a :- b.
2 ~ :- a; not b.
2 ~ a :- not b.
2 ~ :- b; not a.
2 ~ b :- not a.
2 ~ :- not a; not b.

where the integer left of the tilde corresponds to the cost of the rule, that is the number

of literals it contains. Thus, the provided mode biases implicitly define as hypothesis

space the set of programs that is obtained by combining the above rules.

The set of examples, denoted as E, describes a set of semantic properties that the

learned ASP program should satisfy. They are defined in terms of partial interpretations .

A partial interpretation is a pair of sets of ground atoms 〈einc, eexc〉, called respectively

inclusion and exclusion sets. An interpretation I extends e iff einc ⊆ I and eexc ∩ I = ∅.
A ILASP example ex∈E is a context dependent partial interpretation (CDPI). This

is a tuple ex= 〈exid, expi, exctx〉, where exid is an identifier for ex, expi is a partial

interpretation and exctx is an ASP program called a context . A CDPI ex is accepted by a

program P if and only if there is an answer set of P ∪ exctx that extends expi. The idea of a

context-dependent example is that each context only applies to a particular example. This

is suitable for our question-answering tasks where the answer to a question is normally

contextualized with respect to the story or text provided to the learner. Formally, an

ILASP context-dependent learning task is defined as follows.

Definition 2.

A ontext-dependent Learning task (cILP context
LAS) is a tuple T = 〈B, SM , E〉 where B is

an ASP program, called the background knowledge, SM is the set of rules allowed in

the hypotheses (the hypothesis space), and E is a set of CDPIs. A hypothesis H is an

inductive solution of T (written H ∈ ILP context
LAS (T)) if and only if:

1. H ⊆ SM ;

2. ∀〈exid, expi, exctx〉 ∈E, ∃A∈AS(B ∪ exctx ∪H) such that A extends expi.

2 The output can be obtained by running the command ILASP -s bias.lp, where bias.lp is a file
containing the above-specified directives.

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

M. A. Borroto Santana et al.12

Fig 3. Architecture of LLM2LAS.

A learning task may have multiple inductive solutions. These are scored in terms

of their length (i.e., number of literals they include), score(H, T) = |H|. An induc-

tive solution H ∈ ILP context
LAS (T) is optimal if there is no other inductive solution H ′ ∈

ILP context
LAS (T) such that score(H ′, T)< score(H, T).

3.4 Large language models and POS tagging

The introduction of LLMmodels, such as GPT and BERT, has revolutionized natural lan-

guage processing (NLP) by enabling machines to process and generate human language

with unprecedented accuracy (Vaswani et al . 2017). These deep neural network models

owe their effectiveness to the transformer-based architectures (Vaswani et al. 2017), which

utilize self-attention mechanisms to process and contextualize vast amounts of text. Most

currently available LLMs have billions of parameters and are trained in a self-supervised

way to predict missing tokens or the next token in a given sequence. LLMs are usually

instructed through text prompts to solve a specific task, such as translating or answering

questions. They have also been used successfully for semantic parsing, that is, converting

text into a structured format for analysis (Nye et al. 2021; Drozdov et al . 2023; Yang

et al . 2023).

Part-of-speech (POS) tagging involves assigning labels to tokens within a text based on

their grammatical function, that is whether the token is a noun, verb, adjective, adverb, or

other (Jurafsky and Martin 2009). Given a sequence x1, x2, . . . , xn of words (tokens) and

a set of tags, the task is to generate a sequence y1, y2, . . . , yn of tags, where yi represents

the assigned tag for the input xi. POS tagging presents challenges due to word ambiguities

because a word can have multiple meanings and functions depending on the context in

which it is used. In our approach, we employ the spaCy library (https://spacy.io/).

4 Methodology

In this section, we present our neuro-symbolic system LLM2LAS, which combines LLMs

with LAS to learn commonsense knowledge for story-based Q&A expressed in natural

language. As illustrated in Figure 3, the system consists of several modules. The Story

Processing module normalizes the story statements and enriches them with POS tag-

ging data, while the LLM Semantic Parsing generates relevant fluent and mode bias

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

Question answering with LLMs and learning from answer sets 13

representations from the given story. These are then used to generate an ASP represen-

tation of the narrative described in the story. The reasoner module attempts to answer

the question using the extracted narrative and the domain-independent rules given in

Figure 1. If the answer is incorrect, the learner module is invoked to learn relevant com-

monsense knowledge from the given narrative, question, and ground-truth answer. In the

following, we detail each of these steps.

Story Processing.

The module receives as input a story and a question from which the system is supposed

to learn some knowledge. A story consists of an ordered set of statements describing a

narrative or a scenario, while the question is designed to be answered by exploiting

the information in the story. Each question is associated with the correct and incorrect

answers. All sentences are normalized by identifying basic and compound coreferences

– that is, whether two different expressions refer to the same entity – in the text and

replacing them with their corresponding referents. Coreference resolution is automatically

performed using the spaCy (Honnibal et al. 2020).

For example, in basic coreference, the sentence “Mary went to the store, and she bought

food.” involves replacing the word “she” with “Mary.” Moreover, sentences containing

negations are identified and flagged to support the following phases.

LLM Semantic Parsing.

LLMs have proven to work well in many NLP tasks, including semantic parsing (Nye

et al . 2021; Drozdov et al . 2023; Yang et al. 2023). We exploit this strength and leverage

an LLM to parse narratives and questions into fluent-like representation as in Example 1.

The fluent representations support the creation of the EC representations and the mode

bias declarations in the next stage.

Most available LLMs are trained on extensive public data, allowing them to achieve rea-

sonable zero-shot generalization on diverse tasks. However, these models are not expected

to perform as well in domain-specific semantic parsing tasks, where the inductive bias

from pretraining is less favorable. To address this limitation, we used the few-shot prompt-

ing technique, which involves giving the model a few task-specific examples within the

prompt to help guide its responses (Drozdov et al . 2023). Listing 1 shows an example of

the prompt we have designed to ask the LLM to parse the bAbI dataset statements.

For example, if we ask an LLM model to parse the sentence “Sam moved to the

bathroom.”, using the previous prompt, the result would be: go to(sam, bathroom). Our

system parses each statement separately, using the same prompt multiple times to give

a precise semantic representation in fluent terms. Table 2 (second column) shows a few

examples of fluent representations.

Mode Bias Generation.

Mode bias fluents consist of atoms from the sentence’s fluent representation where all

arguments have been replaced by their types wrapped in either “var” or “const.” The

argument types are determined using the POS tagging data and the WH-determiners

of the questions. If the sentence fluent contains an argument that is a variable (i.e., the

sentence is a WH-question), then the variable is given a type in the following way: if

the sentence is a “what,” “when,” or “where” question, then the variable’s type is “nn”;

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

M. A. Borroto Santana et al.14

Table 2. Examples of statements with fluent and EC representations (Rep.)

Statement Fluent rep. Event Calculus rep.

Mary went to the garden go to(mary, garden) happensAt(go to(mary, garden), T)
John and Helen went to
the store

go to(john, store),
go to(helen, store)

happensAt(go to(john, store), T),
happensAt(go to(helen, store), T)

John is in the park or
garden

{be in(john, park),
be in(john, garden)}

{initiatedAt(be in(john, park), T),
initiatedAt(be in(john, garden), T)}

Yesterday Ana went to the
park

go to(ana, park,
yesterday)

happensAt(go to(ana, park, yesterday), T)

Please parse the sentence provided below into a first-order logic predicate form.
The available predicates names are: go_to, be_in.
Sentence: Mary moved to the bathroom.
Semantic parse: go_to(mary,bathroom)
Sentence: John went to the hallway.
Semantic parse: go_to(john,hallway)
...

Sentence: Where is Daniel?
Semantic parse: be_in(daniel,V1)

Please, provide just the parsing data using the examples format.
The sentence to parse is:
Sentence: {{sentence}}
Semantic parse:

Listing. 1. Prompt for Fact Extraction.

if the sentence is a “who” question, then the variable’s type is “nnp”; if the sentence

is a “why” question, then the variable’s type is “jj” (which stands for adjective), and

if the sentence is a “how many” question, then the variable’s type is “number.” In all

other cases, the argument’s type is given by its associated POS tag. The types for all

arguments that have a temporal aspect and the types of variables in “why” questions

have “const” wrappings. The types of all other arguments are given “var” wrappings.

The mode bias fluents aid the learner in automatically generating mode bias declarations

for both formal representations. Table 3 provides an example for two narratives.

To handle this task, we introduced an LLM-based semantic parser to generate

the mode bias fluents given a sentence and its fluent representation. In partic-

ular, we designed a prompt that captures the mode bias generation methodol-

ogy discussed earlier and used it to request the parsing from the LLM, specifi-

cally Llama-3.3 70B. The prompts are available in the following Github repository:

https://github.com/IrfanKareem/llm2las/tree/journal. This choice allowed us to over-

come one of the main limitations of the previous version of the approach (Kareem

et al . 2024), that relied on spaCy and was not general in generating the mode bias

for several tasks.

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

Question answering with LLMs and learning from answer sets 15

Table 3. Sentences, fluent representations, and mode bias fluents for a short story

Sentence Fluent representation Mode bias fluents

Mary is a mouse. be(mary, mouse) be(var(nnp), var(nn))
Mice are afraid of wolves. be afraid of(mouse, wolf) be afraid of(var(nn), var(nn))
What is Mary afraid of? be afraid of(mary, V1) be afraid of(var(nnp), var(nn))
Jason is thirsty. be(jason, thirsty) be(var(nnp), const(jj))
Jason went to the kitchen. go to(jason, kitchen) go to(var(nnp), var(nn))
Why did Jason go to the
kitchen?

go to(jason, kitchen, V1) go to(var(nnp), var(nn)), const(jj))

Generating ASP Representation.

Once statements of the story are parsed into their corresponding fluent representation,

the next step is to create the EC representations (if needed). The EC representation

depicts the actions and their effects in the story and comprises the four predicates

introduced in Section 3. The construction of the EC representation from the fluent rep-

resentation involves choosing an EC predicate and a time point. Given a sentence and

its fluent representation, we select the predicate according to the following schema: (i)

if the sentence is a question, then the holdsAt/2 predicate is used; (ii) if the base of

the literal’s predicate is “be” and the statement is negated, then the terminatedAt/2

predicate is used; (iii) if the base of the literal’s predicate is “be” and the statement is

not negated, then the initiatedAt/2 predicate is used; (iv) otherwise, the happensAt/2

predicate is used. The time point for the EC predicate is determined by the sentence’s

placement within the story. The first sentence is given time point 1, and every subsequent

sentence has a time point determined by the previous one plus 1. Questions are given a

time point according to when they are asked. Table 2 shows some examples of statements

and their representations.

Reasoning.

The reasoning module attempts to answer a question using the information extracted

from the story and the learned hypothesis. It involves automatically generating and

solving an ASP program that combines the ASP representations and learned hypothesis.

Ideally, the correct solution to this program (i.e., the answer sets) will contain the correct

answer to the question. To extract the answer from the reasoning output, we divide the

questions into two types: “yes/no/maybe” and others. In the case of the former, we use

a representation search that checks the question’s representation against the answer sets

based on the following criteria: (i) if there is at least one answer set, and the representation

is in all answer sets, then return “yes”; (ii) if there is at least one answer set, and the

representation is in some, but not all answer sets, then return “maybe”; (iii) otherwise

the answer is “no.” For all other questions, we extract the answer using a unification

search, that is by finding all ground atoms in the set of answer sets that unify with

the question’s formal representation. To identify these unifications, a regular expression

is constructed from the question’s formal representation, replacing variables with the

wildcard expression “.∗”. Once unifications are detected, the ground terms corresponding

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

M. A. Borroto Santana et al.16

to the “.∗” sections of the regular expressions are added to the answer list. For example,

the question in Table 3 generates “be afraid of(mary, .∗).“ In case of a wrong predicted

answer, the learner is invoked with the question and correct answer to learn from.

LAS Learning.

Learning commonsense knowledge from story-based Q&A is initiated through the LAS

Learning module. It takes as input the EC representations of the story and the question –

generated by the ASP representation module – and the correct and incorrect answers for

the question. It creates the context dependent learning task for ILASP by automatically

generating the mode bias declarations, using the mode bias fluent representations, and

the set E of CDPI examples. To create the mode bias declarations, the system checks

whether the sentence is a question, or whether the base of its fluent predicate is “be.”

This two-check scheme suffices to generate the language bias, given our basic sentences

and limited bAbI dataset vocabulary. For questions, the system aims to learn the concept

introduced in it. So, its mode bias fluent representation becomes the argument of a mode

head declaration, denoted in ILASP as “modeh.” If the sentence is not a question and the

base of its fluent representation is “be,” then ILASP “modeb” declarations are generated

with the sentence’s fluent as argument of mode body declaration. For the story presented

in Table 3 the mode bias are:

#modeb(be(var(nnp),var(nn))).
#modeb(be_afraid_of(var(nn),var(nn))).
#modeh(be_afraid_of(var(nnp),var(nn))).

When LLM2LAS detects that the task requires reasoning about events, the language

bias, referred to as EC mode bias, includes dedicated predicates. To learn the concept

introduced by the question, LLM2LAS learns if it is initiated or terminated , considering

also the initiation or termination of other fluents in the story. For the question’s fluent,

two mode head predicates are generated: “initiatedAt” and “terminatedAt” and declared

as arguments of ILASP “modeh.” A body predicate is created by enclosing the question’s

fluent in a “holdsAt” predicate, which is then wrapped in “modeb.” For sentences that

are not questions, the system detects if they describe an initiated state or a state that

holds. In the first case a mode body predicate is created by enclosing the sentence’s fluent

into a “initiatedAt” predicate, in the second case the sentence’s fluent is enclosed into a

“holdsAt” predicate. Both become arguments of ILASP “modeb” declarations. The EC

mode bias declarations for the example in Table 3 are as follows:

#modeb(initiatedAt(be(var(nnp),var(nn)),var(time))).
#modeb(initiatedAt(be_afraid_of(var(nn),var(nn)),var(time))).
#modeb(holdsAt(be(var(nnp),var(nn)),var(time))).
#modeb(holdsAt(be_afraid_of(var(nn),var(nn)),var(time))).
#modeh(initiatedAt(be_afraid_of(var(nnp),var(nn)),var(time))).
#modeh(terminatedAt(be_afraid_of(var(nnp),var(nn)),var(time))).
#modeb(holdsAt(be_afraid_of(var(nnp),var(nn)),var(time))).

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

Question answering with LLMs and learning from answer sets 17

The formal representation of non-question sentences is used to prove or disprove other

facts using the domain-independent EC rules in Figure 1 and the learned hypothesis.

Sentences where “be”-based verbs do not appear denote actions at a specific time point

in the story. Thus, their mode bias fluent representation becomes an argument of the

“happensAt” predicate. Consider the sentence “Mary goes to the store,” whose mode bias

fluent is go to(var(nnp), var(nn)). The system generates the mode body declaration:

#modeb(happensAt(go_to(var(nnp),var(nn)),var(time))).

Another key step is the automatic generation of CDPI examples. Examples are created

from questions, stories, and their correct and incorrect answers. Each example corre-

sponds to an incorrectly answered question by the reasoning module, as this would trigger

the learning module. Intuitively, the representations of all sentences prior to the ques-

tion would form the example’s context, the formal representations of the correct answer

would be part the example’s inclusion set and the formal representations of some of the

incorrect answers would be part of the example’s exclusion set.

We distinguish two cases, based on whether the formal presentation of the story uses

choice rules (that might lead to multiple answer sets).

No Choice Rules.

In this case, only positive examples are created. The question’s answer defines the

example’s inclusion and exclusion set: if the question answer is “yes,” the question rep-

resentation composes the inclusion set, otherwise it composes exclusion set. In all other

cases (i.e.,, questions that are not yes/no) the inclusion set is composed with the ques-

tion’s correct answer, and the exclusion set is populated with a wrong answer’s fluent

representation.

Choice Rules.

If choice rules are present in the formal representation of a story, the example gen-

eration has to take into account brave and cautious entailment. For a yes/no/maybe

question, if the answer is “maybe,” then the example will include the question represen-

tation in its inclusion set to guarantee that the question’s concept occurs in at least one

answer set. If the correct answer is a “yes,” then a negative example is created where the

inclusion set is empty and the exclusion set includes the question’s correct answers. This

is to guarantee that the question’s formal representation is true in all answer sets. In

all other cases, a negative example is created with an empty exclusion set and inclusion

set given by the representation of the question’s answers. This is to guarantee the wrong

answer will be false in all answer sets.

To illustrate some of the cases explained above, consider the following story: Daniel

went to the kitchen. Daniel went to the bedroom. The question: Where is Daniel? The

correct answer is the bedroom and incorrect answer is kitchen. If the incorrect answer is

predicted, then the following example is created:

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

M. A. Borroto Santana et al.18

% Mode bias
#modeb(happensAt(go_to(var(nnp),var(nn)),var(time))).
#modeb(holdsAt(be(var(nnp),var(nn)),var(time))).
#modeh(initiatedAt(be(var(nnp),var(nn)),var(time))).
#modeh(terminatedAt(be(var(nnp),var(nn)),var(time))).

% Positive and Negative Examples
#pos({holdsAt(be(daniel,bedroom),3)},{holdsAt(be(daniel,kitchen)
,3)},{time(1..3). happensAt(go_to(daniel,kitchen),1).
happensAt(go_to(daniel,bedroom),2).}).

% Background Knowledge
holdsAt(F,T+1) :- initiatedAt(F,T),time(T).
holdsAt(F,T+1) :- holdsAt(F,T), not terminatedAt(F,T),time(T).

The system requires minimal background knowledge. If the EC is required, the back-

ground knowledge will consist of the rules in Figure 1, that encode the notion of inertia

(e.g., if a has initiated previously before time t, and has not been terminated, it continues

to hold at time t+ 1). When the ILASP system is run to solve the generated learning

task, if the task is satisfiable, the reasoner is updated with the learned hypothesis.

5 Empirical evaluation

In this section, we report on our evaluation of the proposed approach on a well-known

Q&A dataset. To this end, we first describe the bAbI dataset from Facebook Research

(Weston et al . 2016), and then provide a description of the hardware and software con-

figurations we have employed and of our baselines. Finally, we comment on the results

that confirm the efficacy of our system.

5.1 Experiment setup

Dataset.

The bAbI dataset is composed of 20 non trivial tasks of text understanding and rea-

soning that was proposed by Facebook Research. The bAbI dataset was conceived as a

benchmark for assessing a range of natural language reasoning abilities, including deduc-

tion, path finding, spatial reasoning, and counting (Weston et al . 2016). Each task of

the dataset is constructed by simulating words that represent entities and actions. An

entity, denoted as a noun, can be a location, an object, or a person, and possesses inter-

nal attributes such as size, color, or relative position to cardinal directions. Within this

simulation, each entity can perform ten fundamental actions, with each action associated

with a collection of replacement synonyms, pronouns, and temporal adverbs, ensuring

lexical diversity within the tasks. More in detail, the dataset comprises 4 actors, 6 loca-

tions, and 3 objects per task, it features stories ranging from 3 to 229 sentences and 1

to 12 questions. Each sentence within a story is uniquely identified and accompanied by

its answer for each task. The dataset includes both training and test data for each task,

with a strong focus on learning from a few examples. The stories are also available in

human-readable formats in various languages. In the experiment, we place our focus on

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

Question answering with LLMs and learning from answer sets 19

Table 4. Tasks of the bAbI dataset. “Solved w/t” stands for “solved with impr.”

Requires
Task name Status EC? Notes

(1) Single Supporting Fact Solved �
(2) Two Supporting Facts Unsolved Additional mode bias declarations

required and large hypothesis space
(3) Three Supporting Facts Unsolved Additional mode bias declarations

required and large hypothesis space
(4) Two Argument Relations Solved
(5) Three Argument Relations Unsolved ILASP hypothesis space too large
(6) Yes/No Questions Solved �
(7) Counting Solved

w/t
� Counting background knowledge added

(8) Lists/Sets Solved �
(9) Simple Negation Solved �
(10) Indefinite Knowledge Solved �
(11) Basic Coreference Solved �
(12) Conjunction Solved �
(13) Compound Coreference Solved �
(14) Time Reasoning Solved
(15) Basic Deduction Solved �
(16) Basic Induction Solved
(17) Positional Reasoning Solved

w/t
Recursion removed from learned
program

(18) Size Reasoning Solved
(19) Path Finding Solved
(20) Agents Motivations Solved

the natural language, examining the tasks for which our implementation can be applied.

The considered tasks are detailed in Table 4.

Hardware and Software Setup.

All experiments are conducted on a computer equipped with a AMD EPYC 7313 16-

Core processor, 2 TB of RAM, and GPU AMD Instinct MI210 with 64 GB of memory.

The experiment pipelines are implemented in the Python programming language version

3.9. Our architecture has been implemented using the open-source LLM LLama-3.3 70b,

Clingo 5.6.2 for reasoning on ASP programs, and ILASP 4.4.1 for LAS. In particular,

we use the 2i version of the ILASP system, which has proved to be the most suitable

for our purposes due to the incremental processing of examples. Concerning the learning

parameters, the maximum penalty for the size of the hypothesis was set to 50, and the

maximum number of variables was set to 3 for the tasks solved with fluent representation,

and to 4 for the tasks solved with EC representation. Each task was evaluated on 1000

training examples.3 For each considered task, we measure the accuracy (e.g., ratio over

correct answers) of compared methods.

3 The values for these parameters has been determined experimentally. Tasks that use the EC require
one extra variable due to the time variable that appears in the background knowledge.

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

M. A. Borroto Santana et al.20

Our implementation has been also compared against two baselines from the litera-

ture, also based on logic programming: the ILP-based system in Mitra et al . (Mitra and

Baral 2016), and the approach proposed by Yang et al . (2023).

All the material needed to reproduce our experiments can be downloaded from:

https://github.com/IrfanKareem/llm2las/tree/journal.

5.2 Results and discussion

We discuss our results in three separate paragraphs, considering three different settings.

The first paragraph assesses the system applying – without any expert knowledge inter-

vention – the workflow in Figure 3; the second describes some techniques we applied to

the basic workflow to improve its performance; the third paragraph focuses on identifying

the cases where our system had some difficulty; finally, we compare it with alternative

solutions. The section concludes with a general discussion summarizing our findings.

Table 4 summarizes the results obtained while approaching the various tasks in the

dataset. Each row in the table reports the task number and name, the status of the

task, a flag indicating whether the EC background knowledge is needed, and a short note

about improvements made to the basic pipeline (if any).

Tasks Solved within the Framework.

First of all, we report that LLM2LAS could be applied to all bAbI tasks, correctly

generating ASP representation for stories and mode biases. Then, the system was able to

learn in a reasonable time (within 24 hours) the ASP specification for 15 tasks out of 20.

In particular, the solved tasks required on average 40 s, for a cumulative learning time of

9 minutes. The bAbI tasks that were fully solved are: 1, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15,

16, 18, 19, and 20. Of these 4, 14, 16, 18, 19, and 20 required no background knowledge,

and the remaining, namely 1, 6, 8, 9, 10, 11, 12, 13, and 15, required EC background

knowledge. LLM2LAS achieved perfect accuracy (100% accuracy), that is, it was able

to learn an ASP program solving task without any human intervention. The average

runtime for learning is a matter of a few seconds, once ILASP generates the hypothesis

space for the first time. Indeed, the hypothesis space is cached and reused across multiple

examples in an incremental learning setup, significantly improving efficiency.

Mitigating Hypothesis Space Size.

LLM2LAS struggled in the remaining 5 tasks because the ILP task was too expensive,

often because of the size of the hypothesis space. Thus, upon inspecting its cause, we

applied some ad hoc improvements on a task-by-task basis to prune the size of the hypoth-

esis, such as adding background knowledge involving aggregates for arithmetic-related

reasoning, learning non-recursive programs and marking some predicates as being sym-

metric or anti-symmetric. In this way we solved bAbI Tasks 7 and 17 with an intervention

on the learning tasks.

Task 7 involves basic arithmetic reasoning, specifically the ability to track the number

of items an individual is carrying based on a sequence of actions described in the narrative.

Here, it is required to learn how to count items, but ILASP cannot learn effectively

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

Question answering with LLMs and learning from answer sets 21

programs that use aggregates. Nonetheless, counting can be considered basic knowledge,

so we added the following rule to the background knowledge:

carriedItems(X,N,T) : -holdsAt(carry(X,_),T),N= #count{Z : holdsAt(carry(X,Z),T)}.

that is, we provide an explicit definition for the “number of items carried by a person at

a given point in time.” Including this rule makes the task solvable by our system, which

is able to learn the initiating and terminating conditions for the carry/2 fluent. Thus,

we obtained 100% accuracy for this task, with a learning time of around 46 s.

On the other hand, Task 17 deals with positional reasoning and, in particular, the rel-

ative positioning of objects in a scene, for example learning the definition of “being

left of something,” and “right of something,” modeled by means of be right of/2,

be left of/2, be above of/2, be below of/2 atoms. Informally, the learning task

involves acquiring both the knowledge that spatial relations such as left–right and above-

below are opposites and “symmetric,” as well as learning rule pairs that define the

transitive closure of these spatial predicates. As an example, the for be above of/2

predicate we should have:

% above, below are antisymmetric
be_above_of(X,Y) :- be_below_of(Y,X).
% transitive closure of the be_above_of/2 predicate
be_above_of(X,Y) :- be_above_of(X,Z), be_above_of(Z,Y).

We observed that the learning task can be made less heavy by reformulating it so

that a non-recursive solution is admitted. This can be obtained by introducing auxil-

iary predicates (limited to the head of rules) of the form be ∗ /2 for each be ∗ of/2

predicate.

Although with this improvement we managed to learn an ASP specification that covers

most of the examples, thus circumventing the learning bottleneck, this solution does not

generalize as the intended (recursive) solution. In particular, the system obtained an

accuracy of 97.8%, with a learning time of 16 minutes on average.

Challenges and Open Tasks.

For the remaining tasks, namely 2, 3, and 5, there was no space for reducing the impact

of the learning phase.

Task 5 consists of learning narratives that involve tracking movement, location and pos-

session of objects over time. It is characterized both by the requirement of EC background

knowledge, and the need for ternary fluents (give to(P1, P2, O)–P1 has given object O to

P2, receive(P1, P2, O)–P1 has received object O from P2). LLM2LAS correctly generates

the learning task, but the joint presence of ternary fluents and EC yields a too large

hypothesis space, that the ILASP system is unable to ground (i.e., the ILASP system

could not build the set of rules that can appear in an hypothesis) in a reasonable time.

Task 2 consists of narratives that involve tracking the position of objects over time;

and Task 3 is a more complex version of Task 2. In these cases, the primary challenge

arises from the need to learn multiple commonsense notions, such as understanding that

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

M. A. Borroto Santana et al.22

an agent is “in” a location after moving, or that receiving a gift implies “possession” or

“ownership,” that are not explicitly stated within the narrative. Being able to process

this learning task without substantial additions to the background knowledge remains

an open problem.

Comparison with Other Systems.

We now compare LLM2LAS with existing approaches in the literature both in terms

of accuracy and in terms of the need for human intervention on the 17 successfully-solved

tasks. For the systems by Mitra and Baral (2016),Yang et al . (2023) we use the accuracy

reported in the respective publications. The approach of Yang et al ., which relies on

humanly-devised ASP programs, reaches 100% accuracy in all 17 tasks. On the other

hand, the approach by Mitra and Baral can obtain 100% accuracy in all tasks but task

16 (where accuracy is of 93.6%). Finally, LLM2LAS achieves 100% accuracy in all tasks

but task 17 where it achieves 97.8% of accuracy.

Although the performance of the compared methods are essentially aligned in terms of

accuracy, there is a major difference that has to be outlined: our approach does not require

writing ASP code, which is learned automatically from the examples in the training sets

of the bAbI dataset.

6 Discussion

The results reported above show that LLM2LAS successfully learns, reasons and provides

answers over 17 commonsense-driven tasks in the bAbI dataset, matching the perfor-

mance of most of the human-expert manually engineered ASP programs. Although this

is a promising result in combining LLMs with logic reasoners, the experiment also helped

to identify two open problems: (i) there are tasks we can in principle solve, but the ILP

task is out of reach for the learning system (due to size of generated hypothesis space);

and (ii) the approach struggles to deal with notions that are not explicitly mentioned

within the narrative.

Focusing on issue (ii), we observe that while there is a growing consensus that LLMs

encode a certain degree of commonsense knowledge about the world, the framework

proposed in this work does not currently leverage this capability to pre-populate the

background knowledge with a set of task-relevant rules. Enabling such integration rep-

resents a promising direction for future research, aligning well with current trends

in neuro-symbolic learning and the broader effort to bridge statistical and symbolic

reasoning.

7 Conclusion

This work presents LLM2LAS, a novel hybrid framework that advances the integration of

LLMs with symbolic reasoning, by introducing an automated pipeline for learning com-

monsense knowledge from examples. Building on prior research that combines LLMs with

symbolic components for story-based Q&A, our approach moves a step forward existing

methods by eliminating the need for manually crafted logic rules. This is obtained by

leveraging LLMs for semantic parsing, ILASP for rule induction, and ASP for reasoning.

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100343

Question answering with LLMs and learning from answer sets 23

Our results on the bAbI dataset demonstrate that it is not only feasible but also

effective (in terms of accuracy) to automatically induce ASP specifications with minimal

supervision, thus reducing the reliance on human modeling expertise. From an accuracy

standpoint, LLM2LAS is capable of matching solutions based on manually crafted ASP

encodings. At the same time, our findings highlight limitations of our implementation:

current LAS systems, such as ILASP, sometimes struggle with scalability when faced with

large or complex hypothesis spaces, and with notions that are not explicitly mentioned in

the datasets. Another limitation lies in the support of mathematical reasoning constructs,

as at the time being ILASP cannot learn programs with aggregates, whereas LLMs are

able to extract this kind of information in the semantic parsing step. However, knowledge

engineers can mitigate these issues by providing more background knowledge, or by

resorting to hypothesis space pruning techniques.

Future works will explore methods to further address this bottleneck, potentially

through hypothesis space pruning techniques, automated background knowledge extrac-

tion, support for richer mathematical reasoning constructs (e.g., aggregates) and tighter

LLM-LAS integration, as well as alternative learning strategies. Overall, LLM2LAS con-

tributes a promising step toward more autonomous, interpretable, and robust systems

for reasoning in natural language tasks.

Acknowledgments

This work was partially supported by the Italian Ministries MIMIT, under project EI-

TWIN n. F/310168/05/X56 CUP B29J24000680005, project ASVIN n. F/360050/01-

02/X75 CUP B29J2400020000, and MUR, under projects: PNRR FAIR – Spoke 9 – WP

9.1 CUP H23C22000860006, Tech4You CUP H23C22000370006, and PRIN PINPOINT

CUP H23C22000280006.

Competing interests

The author(s) declare none.

References

Al-Negheimish, H., Madhyastha, P. and Russo, A. 2021. Numerical reasoning in
machine reading comprehension tasks: are we there yet?. In EMNLP (1). Association for
Computational Linguistics, 9643–9649.

Alviano, M. and Grillo, L. 2024. Answer set programming and large language models inter-
action with YAML: Preliminary report. In CILC. CEUR Workshop Proceedings, vol. 3733.
CEUR-WS.org.

Alviano, M., Scudo, F. L., Grillo, L. and Reiners, L. A. R. 2024. Answer
set programming and large language models interaction with YAML: Second report.
In KoDis+CAKR+SYNERGY@KR. CEUR Workshop Proceedings, vol. 3876. CEUR-WS.org.

Apt, K. R. 2003. Principles of Constraint Programming. Cambridge University Press.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://ceur-ws.org/Vol-3733/short2.pdf
https://ceur-ws.org/Vol-3876/paper3.pdf
https://doi.org/10.1017/S1471068425100343

M. A. Borroto Santana et al.24

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone,
N., Maratea, M., Ricca, F. and Schaub, T. 2020. Asp-core-2 input language format. Theory
and Practice of Logic Programming 20, 2, 294–309.

Cheng, F., Li, H., Liu, F., van Rooij, R., Zhang, K. and Lin, Z. 2025. Empowering llms with
logical reasoning: A comprehensive survey. CoRR abs/2502.15652.

Colmerauer, A. and Roussel, P. 1993. The birth of prolog. In HOPL Preprints. ACM, 37–52.

Cropper, A. and Dumancic, S. 2022. Inductive logic programming at 30: A new introduction.
Journal of Artificial Intelligence Research 74, 765–850.

Davis, E. and Marcus, G. 2015. Commonsense reasoning and commonsense knowledge in
artificial intelligence. Communications of the ACM 58, 9, 92–103.

Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O.
and Zhou, D. 2023. Compositional semantic parsing with large language models. In ICLR.
OpenReview.net.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2019. Multi-shot ASP solving with
clingo. Theory and Practice of Logic Programming 19, 1, 27–82.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.
In ICLP/SLP, vol. 88, 1070–1080.

Honnibal, M., Montani, I., Van Landeghem, S. and Boyd, A. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Ishay, A., Yang, Z. and Lee, J. 2023. Leveraging large language models to generate answer set
programs. In KR, 374–383.

Jurafsky, D. and Martin, J. H. 2009. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition, 2nd ed.
Prentice Hall, Pearson Education International.

Kareem, I., Gallagher, K., Borroto, M. A., Ricca, F. and Russo, A. 2024. Using learning
from answer sets for robust question answering with LLM. In LPNMR. Lecture Notes in
Computer Science, vol. 15245. Springer, 112–125.

Katzouris, N., Artikis, A. and Paliouras, G. 2015a. Incremental learning of event definitions
with inductive logic programming. Machine Learning 100, 2–3,555–585.

Kautz, H. A. 2022. The third AI summer: AAAI robert s. engelmore memorial lecture.
AI Magazine 43, 1, 93–104.

Kim, J., Kim, D. and Yang, Y. 2024. Learning to correct for QA reasoning with black-box llms.
In EMNLP. Association for Computational Linguistics, 8916–8937.

Kowalski, R. and Sergot, M. 1986. A logic-based calculus of events. New Generation
Computing 4, 67–95.

Lake, B. M. and Murphy, G. L. 2020. Word meaning in minds and machines. CoRR
abs/2008.01766.

Law, M. 2018. Inductive Learning of Answer Set Programs. Ph.D. thesis, London, UK

Law, M., Russo, A. and Broda, K. 2015. Simplified reduct for choice rules in ASP. Tech.
Rep. DTR2015-2, Imperial College of Science, Technology and Medicine, Department of
Computing.

Law, M., Russo, A. and Broda, K. 2020. The ILASP system for inductive learning of answer
set programs. CoRR abs/2005.00904.

Lifschitz, V. 2008. What is answer set programming?. In AAAI. AAAI Press, 1594–1597.

Luo, M., Kumbhar, S., Shen, M., Parmar, M., Varshney, N., Banerjee, P., Aditya, S.
and Baral, C. 2023. Towards logiglue: A brief survey and A benchmark for analyzing logical
reasoning capabilities of language models. CoRR abs/2310.00836.

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://arxiv.org/abs/2502.15652
https://arxiv.org/abs/2008.01766
https://arxiv.org/abs/2005.00904
https://arxiv.org/abs/2310.00836
https://doi.org/10.1017/S1471068425100343

Question answering with LLMs and learning from answer sets 25

Mitra, A. and Baral, C. 2016. Addressing a question answering challenge by combining
statistical methods with inductive rule learning and reasoning. In AAAI. AAAI Press,
2779–2785.

Nye, M. I., Tessler, M. H., Tenenbaum, J. B. and Lake, B. M. 2021. Improving coher-
ence and consistency in neural sequence models with dual-system, neuro-symbolic reasoning.
In NeurIPS, 25192–25204.

Ray, O. 2009. Nonmonotonic abductive inductive learning. Journal of Applied Logic 7, 3,
329–340.

Ruis, L., Andreas, J., Baroni, M., Bouchacourt, D. and Lake, B. M. 2020. A benchmark
for systematic generalization in grounded language understanding. In NeurIPS.

Sap, M., Shwartz, V., Bosselut, A., Choi, Y. and Roth, D. 2020. Commonsense reasoning
for natural language processing. In ACL (tutorial). ACL, 27–33.

Shanahan, M. 1999. The event calculus explained. In Artificial Intelligence Today. Lecture
Notes in Computer Science, vol. 1600. Springer, 409–430.

Sinha, K., Sodhani, S., Dong, J., Pineau, J. and Hamilton, W. L. 2019. CLUTRR: A diag-
nostic benchmark for inductive reasoning from text. In EMNLP/IJCNLP (1). Association for
Computational Linguistics, 4505–4514.

Tafjord, O., Dalvi, B. and Clark, P. 2021. Proofwriter: Generating implications, proofs, and
abductive statements over natural language. In ACL/IJCNLP (Findings). Findings of ACL,
ACL/IJCNLP 2021, 3621–3634.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.
and Polosukhin, I. 2017. Attention is all you need. In NIPS, 5998–6008.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E. H., Le, Q. V.
and Zhou, D. 2022. Chain-of-thought prompting elicits reasoning in large language models.
In NeurIPS.

Weston, J., Bordes, A., Chopra, S. and Mikolov, T. 2016. Towards ai-complete question
answering: A set of prerequisite toy tasks. In ICLR (Poster).

Wu, Y., Han, X., Song, W., Cheng, M. and Li, F. 2024. Mindmap: Constructing evidence
chains for multi-step reasoning in large language models. In AAAI. AAAI Press, 19270–19278.

Yang, Z., Ishay, A. and Lee, J. 2023. Coupling large language models with logic programming
for robust and general reasoning from text. In ACL (Findings). Association for Computational
Linguistics, 5186–5219.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y. and Zhang, B., et al .
2023. A survey of large language models. arXiv preprint arXiv:2303.18223.

Zheng, S., Huang, J. and Chang, K. C.-C. 2023. Why does chatgpt fall short in answering
questions faithfully? arXiv preprint arXiv:2304.10513.

https://doi.org/10.1017/S1471068425100343 Published online by Cambridge University Press

https://arxiv.org/arXiv:2303.18223
https://arxiv.org/arXiv:2304.10513
https://doi.org/10.1017/S1471068425100343

	Introduction
	2 Related work
	3 Preliminaries
	Answer set programming
	Simplified Discrete Event Calculus
	Modeling narratives with event calculus

	Learning from answer sets
	Large language models and POS tagging

	Methodology
	5 Empirical evaluation
	Experiment setup
	Results and discussion

	6 Discussion
	7 Conclusion
	References

