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Abstract

When writing a program generator requires considerable intellectual effort, it is valuable to

amortize that effort by using the generator to build more than one application. When a

program generator serves multiple clients, however, the implementor must address pragmatic

questions that implementors of single-use program generators can ignore. In how many

languages should generated code be written? How should code be packaged? What should

the interfaces to the client code look like? How should a user control variations? This paper

elaborates on these questions by means of case studies of the New Jersey Machine-Code

Toolkit, the λ-RTL Translator, and the ASDL program generator. It is hoped that the paper

will stimulate the development of better techniques. Most urgently needed are a standard

way to support multiple target languages and a simple, clear way to control interfaces to

generated code.

1 Introduction

There are many ways to deploy program generators; not all are alike. For example,

some generators may be used to build only one application, while others may be

used in many different contexts. This paper examines program generators that are

intended to be reused – what properties they should have and how they might be

structured.

1.1 Why reuse?

Not all program generators need to be reusable. Many are simple tools that are

unknown to all but their authors; writing programs that generate programs is

a technique every experienced programmer should use from time to time (Hunt

& Thomas, 1999, Section 20). Even program generators that become known to

many programmers are not necessarily reusable. The lburg tool used to generate

lcc’s code generators (Fraser & Hanson, 1995), the spawn tool used to generate

executable editors (Larus & Schnarr, 1995), and the tool that gcc uses to compile

its machine descriptions (Stallman, 1992) are all examples. Someone building a new
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code generator, a new executable editor, or a new peephole optimizer1 would have

to create a new program generator.

A few program generators are intended for reuse. Examples include the lexer

generator Lex (Lesk & Schmidt, 1975), the parser generator Yacc (Johnson, 1975),

and the code-generator generator BURG (Fraser et al., 1992). The effort required

to create a reusable program generator is much greater than that required to create

a single-use program generator, so it is worth examining what benefits might justify

such an effort:

• Generating a lexical analyzer requires algorithms that manipulate finite auto-

mata. Such an algorithm may translate a regular expression to an NFA,

convert an NFA to a DFA, or minimize the number of states in a DFA. These

algorithms are worth reusing. Perhaps more importantly, the lexical analyzer

is a significant performance bottleneck in many compilers (Waite, 1986), and

it is worth trying to automate the expertise needed to make this component

efficient. Newer lexer generators attempt to provide not only good automata

but also efficient code (Gray, 1988; Bumbulis & Cowan, 1993).

• Generating a parser requires analysis of the grammar and construction of

lookahead sets. Writing an LR parser and building SLR(1) parsing tables is

fairly straightforward (Aho & Johnson, 1974), but building the more useful

LALR(1) tables is harder, especially if one wishes to do so efficiently (DeRemer

& Pennello, 1982).

• Some code generators select instructions by finding minimum-cost covers

of intermediate-code trees. A typical code generator might use dynamic

programming to find a minimum-cost cover, and it is fairly easy to write

a program to generate such a code generator. But to squeeze the last ounce of

performance out of the code generator, getting the fastest possible compiler,

it is desirable to do the dynamic programming at program-generation time.

Doing so efficiently is not so easy (Proebsting, 1992).

In each of these examples, the program generator is useful because it encodes a

difficult algorithm that can be used again and again, because it solves a performance

problem that occurs again and again, or both.

These and other examples show that if a nontrivial algorithm or technique

is required to create efficient code, that algorithm or technique may be worth

embodying in a program generator. How to do so is the central, domain-specific

question of any particular program-generation problem. This paper discusses a

different, pragmatic question: how can we arrange for generated code to work well

with the client code? A reusable program generator should generate code that can

fit into a variety of applications, written in a variety of implementation languages.

When a program generator is not reusable, we wind up with variations. For

example, iburg, lburg, nburg, ML-Burg, and jburg are all variations on BURG; the

1 Gcc’s machine descriptions contain all manner of information used to generate the compiler, but the
core of the system is based on instruction selection by peephole optimization (Davidson & Fraser,
1984).
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different variations support either different implementation languages or different

ways of specifying the connections between the tiles that BURG uses to cover a

tree and the actions that are to be taken once a minimum-cost cover is found. In

the process of providing this additional support, one of the significant benefits of

Proebsting’s original program generator has been lost: not one of the variations does

dynamic programming at program-generation time. While users might disagree over

the value of doing the dynamic programming at program-generation time, many

users do not have the option because Proebsting’s original program generator is not

reusable.

The primary contribution of this paper is to present problems that make it

difficult to build reusable program generators. The paper reports on experience with

the program generators behind the New Jersey Machine-Code Toolkit (Ramsey

& Fernández, 1995), the λ-RTL Translator (Ramsey & Davidson, 1999), and the

Abstract Syntax Description Language (Wang et al., 1997). A study of only three

tools cannot be comprehensive, and studying more tools, such as the GenVoca line

of program generators (Batory et al., 2000), the Horus stub generator (Gibbons,

1987), or the Mockingbird stub compiler (Auerbach et al., 1999), might yield more

insight. Still, the three tools in this study span a range of interesting program-

generation tasks, and from these tools we can learn much about the problems of

making program generators reusable.

The pragmatic aspects of program generation cut across the domain-specific

aspects. If the pragmatic problems can be solved, therefore, the solutions might well

apply to many domain-specific program generators, each of which could be made

reusable. If solutions can be realized in a reusable infrastructure like GenVoca, we

will take a big step forward in our ability to create reusable program generators.

A second contribution of this paper, therefore, is to discuss pragmatic aspects of

the implementation techniques used in the three tools of our study. The discussion

focuses on intermediate languages, which can represent both code to be generated

and the precursors of such code. The discussion identifies the elements of these

languages that might be valuable in a reusable infrastructure.

1.2 Requirements for reuse

If you want to use a program generator, what should you demand?

• The generated code should be written in the programming language of your

choice. Foreign-function calls may suffice in some cases, but for most purposes,

the generated code needs to work in the client’s native language. This require-

ment explains the repeated pleas for ‘Yacc-alikes’ on the Usenet newsgroup

comp.compilers.

• The generated code should be idiomatic and readable. Because Lex and Yacc

have been used for a long time, you might be willing to trust their output

without reading it, but code generated by an unproven generator should

be scrutinized. Wise programmers distrust generated code that they don’t

understand (Hunt & Thomas, 1999, Section 35).
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Prettyprinting code nicely is not enough; the code must use programming

conventions that are native to the target language. Such conventions encom-

pass decisions ranging from the spelling of identifiers (use of capital letters and

underscores) to the representations of common data structures (lists, tables)

to input/output conventions.

• The program generator should detect errors in specification. It should not

generate incorrect code that fails at a later stage, e.g. that fails to compile.

• The generated code should offer acceptable performance.

• You should control the interfaces between generated code and client code.

In many modern programming languages, even simple procedural interfaces

offer considerable scope for variation. Should a C procedure be called directly

or through a pointer? Should a Modula-3 procedure be called through a

procedure appearing in an interface or through a method appearing in an

object type? Should C++ procedures be generated at top level, in their own

class, or in their own namespace?

These choices are not always matters of personal preference. For example,

if the client program will contain multiple instances of an abstraction (some

of which may be generated automatically), the indirect call, the object type, or

the class are the better alternatives. But if there is to be only one instance of

the abstraction, and if performance is critical, the cost of indirection may be

too high. These trade-offs are illustrated below with examples from the New

Jersey Machine-Code Toolkit.

• You may wish to control internals of the generated code, for example, to adjust

space/time tradeoffs or other properties that affect performance.

Two of these requirements, error detection and performance, seldom affect reusab-

ility. The other requirements affect reusability insofar as they are likely to change.

Most obviously, different clients may require different implementation languages,

different interfaces, and different internals. If you are writing your own program

generator, of which you intend to write the only client, then the right language,

interfaces, and internals should emerge naturally. It is much harder to create a

program generator intended for reuse; not all clients have the same needs, and after

all, these properties appear peripheral to a program generator’s main job, which is

to embody some useful, domain-specific algorithm or technique. The primary claim

of this paper is that these pragmatic aspects of program generation are every bit

as important as the domain-specific, algorithmic aspects. This claim is supported by

experience with the New Jersey Machine-Code Toolkit, the λ-RTL Translator, and

the Abstract Syntax Description Language program generator.

This paper presents experience in the form of case studies. Each case study begins

with an overview, which describes the sort of client in which the generated code

is embedded. The overview also explains what parts of the client’s problem are

solved by the program generator. The rest of the case study answers the following

questions:

1. What does the generated code do?

2. What are the interfaces between generated code and client code?
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3. What controls the output of the program generator – both the interfaces and

the internals?

4. How and how well does the tool meet the requirements set forth above?

2 Case study: The New Jersey Machine-Code Toolkit and λ-RTL Translator

The New Jersey Machine-Code Toolkit (Ramsey & Fernández, 1995) is a program

generator that helps programmers create applications that work with representations

of machine instructions, especially the binary representation. Such applications

include assemblers, disassemblers, code generators, tracers, profilers, debuggers, and

executable editors, for example. The code generated by the Toolkit handles the

low-level bit fiddling, which is tedious and error-prone to do by hand. Among other

applications, the Toolkit has been used to build a retargetable debugger (Ramsey &

Hanson, 1992), a retargetable, optimizing linker (Fernández, 1995), a run-time code

generator, a decompiler, an execution-time analyzer (Braun, 1996), an optimizing

compiler for object-oriented languages (Dean et al., 1996), and a binary translator

(Cifuentes et al., 1999).

The λ-RTL Translator (Ramsey & Davidson, 1998) is a companion to the

Toolkit. It is intended to help programmers create applications that work with

the semantics of machine instructions. While much less mature than the Toolkit, the

λ-RTL Translator has been used in compiler construction and to build tools that

analyze binary code. The two program generators are similar in concept, and their

implementations share code, so it makes sense to consider them together.

In discussing the Toolkit, I use first-person plural to describe joint work with

Mary Fernández, the Toolkit’s co-creator.

2.1 What the generated code does

The purpose of the code generated by the Toolkit and the λ-RTL Translator is

to map into and out of different representations of machine instructions. Between

them, the tools support five representations:

• Binary code is the hardware’s representation of instructions. For example, on

the SPARC, the instruction that takes the doubleword floating-point quotient

of values in registers 10 and 12, putting the result in register 14, has the

hardware representation depicted here, where the value of each field is shown

in decimal:

2 14 52 10 78 12

31 30 29 25 24 19 18 14 13 5 4 0

Because not every instruction on every machine fits in a machine word, the

Toolkit cannot simply use machine words to represent binary code. Instead,

the Toolkit requires that binary code be part of an instruction stream. An

instruction stream is like a byte stream, except that the units, which are called

“tokens,” need not be 8-bit bytes; the Toolkit permits tokens to have any

size. Within a stream, an instruction is a sequence of one or more tokens;
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for example, the SPARC instruction shown above is one 32-bit token, but

a Pentium instruction might include several 8-bit prefixes, an 8-bit opcode,

8-bit format bytes, and a 32-bit immediate operand, each of which would be

considered a token.

To use code generated by the Toolkit, a client must provide an implementa-

tion of the instruction-stream abstraction. Instruction streams can take many

forms; for example, a debugger can treat the text segment of a target process

as an instruction stream.

• Assembly language is a textual representation of instructions. Assembly lan-

guage is typically supported by assemblers, disassemblers, compilers, and

debuggers. For example, on the SPARC, the doubleword floating-point divide

instruction shown above has the following representation in the assembly

language suggested by the standard (SPARC, 1992):

fdivd %f10, %f12, %f14

Many machines have a single, standard assembly language, but for popular

platforms such as the Pentium, it is common for different software families to

use different assembly languages.

• The Toolkit generates an algebraic data type that represents instructions. This

data type stands in the same relation to an assembly language that an abstract-

syntax tree stands in relation to a programming language. In the case of the

Toolkit, it not only abstracts away from the details of concrete syntax but also

gives each instruction a unique name, eliminating any overloading. Overloading

the names of instructions is common in assembly languages.

For example, here are excerpts from the data types corresponding to the

SPARC instruction set, as generated in the Objective Caml language:

type address = ...

type t

= Ldsb of address * nativeint

| Ldsh of address * nativeint

...

| Fmuld of nativeint * nativeint * nativeint

| Fdivd of nativeint * nativeint * nativeint

| Faddq of nativeint * nativeint * nativeint

...

• Register transfers describe the computational effects of instructions. They have

long been used in research both on compilers and on computer architecture

(Davidson, 1981; Barbacci & Siewiorek, 1982). For example, the computational

effect of the floating-point divide instruction may be written using the following

register transfers, which are notated in λ-RTL:

$f[14] := fdiv ($f[10], $f[12], RD) : #64 bits
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The identifier RD represents the location containing the machine’s floating-

point rounding modes. The λ-RTL notation above is expanded into a fully

elaborated form, as described by Ramsey & Davidson (1998).

The λ-RTL Translator is intended to support different representations of

register transfers for use in different clients. Although the Translator currently

supports three clients written in two languages (C and Objective Caml), its

support for multiple representations of register transfers is still immature. This

support is therefore beyond the scope of this paper.

• The client’s view of instructions is embodied in an interface generated by the

Toolkit. This interface can take a number of forms. In each form, there is a

function, procedure, or method for each instruction. For example, here is a

fragment of an interface to SPARC instructions, written in the Objective Caml

language:

module type Sparc.S = sig

type reg_or_imm

type address

type regaddr

type t

...

val ldsb : address:address -> rd:nativeint -> t

...

val ldub : address:address -> rd:nativeint -> t

val fdivd : fs1 : nativeint -> fs2 : nativeint

-> fd : nativeint -> t

...

end

Now we can answer the question “what does the generated code do?” The

Toolkit and Translator generate programs that implement mappings between the

five representations listed above. In addition, the Toolkit can generate very flexible

recognizers for binary code.

Figure 1 shows a pictorial view of the mappings. The mappings at the top, called

decoders, map binary code, the data type, or register transfers to instructions. The

Toolkit cannot currently generate parsers, which would be needed to map assembly

language to instructions, so that arrow is missing in figure 1. The mappings at

the bottom of figure 1, called encoders, map from instructions to binary, assembly

language, the algebraic data type, or register transfers. The Toolkit and Translator

can also cooperate to generate deforested, combined mappings, e.g. directly from

binary code to register transfers. Most mappings are done in a single step, but an

encoder mapping into binary code may be split into two stages, as described below.

The rest of this section illustrates some of the mappings with examples.
A map from a client’s view to binary code is implemented by an encoding

procedure. Here is one written in the C language. The macro emitm is used to emit
binary code into the “current instruction stream,” which is stored in global mutable
state.

https://doi.org/10.1017/S0956796802004628 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004628


608 N. Ramsey

Binary
code

Client’s view
of instructions

Assembly
language

Algebraic
data type

Register
transfers

Binary
code

Assembly
language

Algebraic
data type

Register
transfers

Fig. 1. Mappings implemented by the Machine-Code Toolkit and λ-RTL Translator. Given

any path through the graph above, the Toolkit and Translator can cooperate to generate

a mapping corresponding to that path. Example mappings appear in the text. Because the

Toolkit cannot generate a useful parser for assembly language, there is no arrow emerging

from “Assembly Language.”

void fdivd(unsigned fs1, unsigned fs2, unsigned fd) {

emitm(2 << 30 | 52 << 19 | 78 << 5 | fs1 << 14 | fs2 | fd << 25, 4);

}

This kind of mapping may be used to generate binary code in an assembler, dynamic

compiler, or other program that emits binary; Fernández (1995) describes its use in

a whole-program optimizer.

Here is a fragment of the mapping from the client’s view to assembly language:

static void print_unsigned_fd(unsigned fd) {

static char *fd_names[] = {

"%f0", "%f1", "%f2", "%f3", ..., "%f30", "%f31",

};

asmprintf(asmprintfd, "%s", fd_names[fd]);

}

void fdivd(unsigned fs1, unsigned fs2, unsigned fd) {

asmprintf(asmprintfd, "%s", "fdivd ");

print_unsigned_fd(fs1);

asmprintf(asmprintfd, "%s", ", ");

print_unsigned_fd(fs2);

asmprintf(asmprintfd, "%s", ", ");

print_unsigned_fd(fd);

asmprintf(asmprintfd, "\n");

}

This kind of mapping would typically be used in a compiler to emit assembly

language. It might also be part of a debugger or disassembler.
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Here is a mapping from the client’s view to register-transfer lists.

Rtl_ty_rtl fdivd (unsigned fs1, unsigned fs2, unsigned fd)

{

return Rtl_assign(Rtl_location(’f’, fd), 64,

Rtl_apply(Rtl_mkOperator(Rtl_op_fdiv, 64),

Rtl_fetch(Rtl_location(’f’, fs1), 64),

Rtl_fetch(Rtl_location(’f’, fs2), 64),

Rtl_fetch(Rtl_location(’F’, Rtl_int(0)), 2),

NULL));

}

This mapping has been used to help connect the lcc compiler (Fraser & Hanson,

1995) to the Very Portable Optimizer (Benitez & Davidson, 1988).

Mapping into binary code is actually more complicated than is clear from the

example above. The problem is that operands of some instructions may be bound

to values at two different times: assembly time and link time. For example, in an

instruction such as fdivd %f10, %f12, %f14, the values of the operands (10, 12,

and 14) are known at the time the instruction is emitted, i.e. at assembly time.

In an instruction such as call printf, however, the value of printf is typically

not available until link time. In standard linkers, this problem is dealt with by

a mechanism called relocation. The Toolkit deals with the problem by treating

the client-to-binary mapping as a Curried function (Ramsey, 1996a). A generated

encoding procedure may not only emit binary code but also produce a closure. The

code part of that closure is called a relocation procedure.

The most interesting mapping generated by the Toolkit is the mapping shown

by the upper left arrow in figure 1: a mapping from binary code to the client’s

view of instructions. Such a mapping amounts to an instruction decoder, which is

implemented as a decision tree. In C, such a tree may be represented as a nest

of switch statements; here, for example, is the leaf that recognizes the fdivd

instruction:

...

switch (MATCH_w_32_0 >> 5 & 0x1ff) {

...

case 78: {

unsigned fs1 = MATCH_w_32_0 >> 14 & 0x1f;

unsigned fd = MATCH_w_32_0 >> 25 & 0x1f;

unsigned fs2 = MATCH_w_32_0 & 0x1f;

fdivd(fs1, fs2, fd);

break;

}

...

}

...
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The Toolkit’s ability to generate efficient decoders is highly valued by the Toolkit’s

users; the next section describes a more flexible interface to this ability.

2.2 Interfaces between client code and generated code

There are interface layers both underneath and on top of the code generated by the

Toolkit. Underneath, generated encoders and decoders need interfaces to instruction

streams. On top, clients need interfaces to generated encoders and decoders. Also

underneath, code that emits assembly language needs an interface for printing.

Interfaces to instruction streams

Just as many strongly typed programming languages use two interfaces for I/O

streams, the Toolkit uses two interfaces for instruction streams, depending on

whether the stream is to be read (in a decoder) or written (in an encoder).

When writing an instruction stream, C code generated by the Toolkit uses a single

C procedure or macro as its interface; in the first implementation of fdivd on

page 607, this procedure is called emitm. Each encoding procedure calls emitm to

emit a token into the instruction stream. At program-generation time, the Toolkit’s

user can choose a name other than emitm by giving a command-line option. The

instruction stream that is modified by emitm is global mutable state. The Toolkit

includes a 600-line library that implements an instruction-stream abstraction and

several emission procedures and macros, but application programmers can replace

that library with their own code.

When reading an instruction stream, the code generated by the Toolkit uses

one type and three phrases as its interface. The type is an address; it is abstract

and represents a location within an instruction stream. Client code supplies a

representation of addresses, as well as code phrases that perform three operations:

• Add an integer to an address

• Fetch a token from an address

• Convert an address to an integer

The decoder uses arithmetic and fetching to get at the parts of an instruction, and

it may convert addresses to integers, e.g. to extract bits from the program counter.

Interfaces to encoding procedures

Our model of the encoding interface is “something just like assembly language, but

more flexible than a traditional assembler.” We want to emit instructions by name

and to have the assembler make sure the types and values of the operands are

sensible. For this reason, the Toolkit associates an encoding procedure with each

machine instruction; the procedure can be named after the instruction, and the type

system can enforce some useful restrictions on operands. The examples above show

interfaces and implementations in which clients call encoding procedures directly, but

the Toolkit can also generate interfaces and implementations that support indirect

calls.
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Independent of direct versus indirect calls, there is another set of variations in a

client’s view of the interface to encoding:

• In the applicative view, an instruction is an abstraction, which is built by

applying constructors. To get binary code, the client program applies a function

to an instruction or to a sequence of instructions. This view is congenial to

clients written in applicative style, like the Standard ML of New Jersey

compiler.

• In the imperative view, there is no abstraction representing instructions, and

instructions are not constructed; instead, to each instruction there corresponds

a procedure, which is executed for its side effect, e.g. emission of the binary

representation of the instruction. This view, which is the one shown in the

examples above, is congenial to traditional assemblers.

• The default view supported by the Toolkit is actually a hybrid view. The

“effective address”2 is treated as an abstraction, and each addressing mode

corresponds to an applicative constructor for effective addresses. Each instruc-

tion, however, corresponds to an imperative procedure, which is executed to

cause binary emission.

• There are other ways to mix alternatives. For example, one might construct

abstract instructions, but emit their binary representations as side effects.

Or one might construct binary representations (sequences of tokens) directly,

allowing the application to concatenate them explicitly. The Toolkit supports

the first mix but not the second.

Interfaces to decoders

For the top left mapping depicted in figure 1, from binary code to procedures, the

Toolkit generates a decoder that distinguishes all the instructions and addressing

modes and calls the appropriate procedures in the client’s interface. This kind of

generated decoder is not very flexible; to use it, a client must specify an action for

each instruction and addressing mode. This kind of decoder can also be inefficient;

because it distinguishes all instructions and addressing modes, it may do more

work than is needed to solve a particular problem. For example, to do control-flow

analysis, it is not necessary to distinguish among different floating-point instructions,

so an efficient decoder should not examine a floating-point opcode. As a better

interface to its decoder-generation capability, the Toolkit provides a construct called

a matching statement. A matching statement enables a programmer to build an

efficient decoder that associates single actions with either individual instructions

or groups of instructions. The term “matching statement” is motivated by our

model of the decoding interface, which is “ML-like pattern matching over binary

representations of machine instructions.”

2 In a CISC instruction set, an effective address is a fragment of a machine instruction that identifies
the location of an operand or a result. Typically this location refers either to a machine register or to
a location in memory.
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PROCEDURE Follow(m:Memory.T; pc:Word.T):FollowSet.T =

VAR succ : Word.T;

BEGIN

match [succ] pc to

| nonbranch => RETURN FollowSet.T{succ};

| call(target) => RETURN FollowSet.T{target};

| branch(target) & (ba | fba | cba) => RETURN FollowSet.T{target};

| branch(target) => RETURN FollowSet.T{succ, target};

| jmpl(dispA(rs1, simm13), rd) => RETURN FollowSet.T{GetReg(m, rs1)+simm13};

| jmpl(indexA(rs1, rs2), rd) => RETURN FollowSet.T{GetReg(m, rs1)+GetReg(m, rs2)};

| some itoken => Error.Fail("unrecognized instruction");

endmatch

END Follow;

Fig. 2. Matching statement used for control-flow analysis of SPARC instructions.

Figure 2 shows an example matching statement, which is embedded in a Modula-3

procedure. The text between match and endmatch is the matching statement. The

phrases between vertical bars (|) and right arrows (=>) are patterns written in

the Toolkit’s domain-specific specification language, SLED (Ramsey & Fernán-

dez, 1997). These patterns describe the binary representations of either individual

instructions or groups of instructions. The code on the right-hand sides of the arrows

is ordinary Modula-3 code. When the matching statement is executed, the generated

decoder finds the first pattern that matches the instruction stream at address pc,

then executes the corresponding right-hand side – just as in ML pattern matching.

The code in figure 2 is a simplified version of code used in a retargetable

debugger to help implement breakpoints on the SPARC. The procedure returns the

set of instructions that could be executed immediately after an instruction at which

a breakpoint has been planted (Ramsey, 1994). The version in the figure omits

subtleties associated with delayed branches. Each case in the matching statement

corresponds to a family of machine instructions. For example, the pattern nonbranch

matches any non-branching instruction. In this case, the only instruction that can be

executed immediately afterward is the inline successor, which is located at succ. The

Modula-3 expression that is returned, FollowSet.T{succ}, represents the singleton

set of addresses containing succ. In the next case, the pattern call(target) matches

call instructions. This occurrence of target is a binding occurrence. Because control

can flow only to the target address, again the Modula-3 code returns a singleton

set. The third case matches unconditional branches, and the fourth case matches

all branches not matched by previous cases, i.e. the conditional branches. Because

a conditional branch can flow to its inline successor or to its target address, the

Modula-3 code for the fourth case returns a set containing those two elements. The

two jmpl patterns are indirect jumps through registers; the GetReg procedure gets

the value in the register to compute the target address.

Printing assembly language

A procedure that maps to assembly language must emit strings, and the client must

provide a suitable interface. To be suitable, an interface must conform to the idioms

used for printing in the language of the generated code. This problem is more
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difficult than it might appear, because language paradigm alone does not determine

the idiomatic way to print. Several examples illustrate this point.

The example printing procedure on page 608 shows the interface the Toolkit

uses between generated printing procedures and clients written in C. The interface

consists of two variables:

void (*asmprintf)(void *cl, const char *fmt, ...);

void *asmprintfd; /* first arg to asmprintf */

Because C’s rules for type casting are very loose, we can assign either of the standard

library functions fprintf and sprintf to asmprintf. Of course, the C compiler

does no useful type checking on these assignments. We made asmprintf and

asmprintfd global variables not merely for convenience, but to enable the encoding

procedures for both binary and assembly language to have identical prototypes.

The imperative idiom used to print assembly language in C has a counterpart

in ML, but instead of using two variables, it is idiomatic to use a closure. For

example, to print assembly language to standard output, one might define

val asmprintf = ref (fn s => TextIO.output(TextIO.stdOut, s))

Because ML is a functional language, however, many ML programmers would find

it more natural to use an applicative interface that returns a string, or perhaps a

list or tree of strings. To generate truly idiomatic ML, a program generator must

provide a choice of printing interfaces.

Modula-3 is an object-oriented language, so you might expect that the idiomatic

way to print would be to use an object type with a print method. The correct idiom

is actually to use a fully abstract type: the “writer” type defined in the Modula-3

standard library. Although writers are implemented using object types, the methods

of the object type are hidden from clients, which use only the procedures defined in

the Wr interface. A suitable interface for emitting assembly language might say

VAR asmwr : Wr.T;

The details of the examples above are language-dependent, and they may seem

obscure or picky, but they matter because they are exposed at the interfaces between

generated code and client code. For example, a Modula-3 programmer who is forced

to use a “printing object” instead of a writer is also forced to write glue code by

hand in order to use the Modula-3 library. These kinds of requirements seem to call

for very fine control over program generation. Other program generators must cope

with similar problems. In the program generator for the Abstract Syntax Description

Language, for example, one of the hardest problems has been to hide differences

between target-language idioms, even for a problem as seemingly straightforward as

printing.3

3 Private communication from Dan Wang, 21 May 2000.

https://doi.org/10.1017/S0956796802004628 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004628


614 N. Ramsey

2.3 Controlling the output of the generator

The significant variations in the output of the Toolkit come from variations in

the instruction set itself and in the interfaces to the encoders and decoders. Both

the binary and the assembly-language representations of the instruction set are

described using a domain-specific language: SLED, the Specification Language

for Encoding and Decoding (Ramsey & Fernández, 1997). A SLED specification

captures knowledge in a specific domain (instruction formats), and writing one is

a job for a domain expert. Because the SLED specification does not bear on the

issues discussed in this paper, this paper does not include an example. Examples can

be found in papers by Ramsey & Fernández (1995, 1997).

As noted above, a decoder’s interface to an instruction stream is defined by an

abstraction that has one type (address) and three operations: add an integer to an

address, fetch a token at an address, and convert an address to an integer. To define

an instance of this abstraction, a client of the toolkit does not use the mechanisms

of the language in which the client is written (and in which the Toolkit generates

code). Instead, the client uses a simple form of macros provided by the Toolkit.

Client programmers provide “code templates” that perform the basic operations

above, and the Toolkit instantiates these templates as needed.

As an example, here is the part of the SLED specification that gives the templates

used in a binary translator, which is written in C (Cifuentes et al., 1999); the

instruction stream is implicit in the getDword operation.

address type is "unsigned"

address add using "%a+%o"

fetch 32 using "getDword(%a)"

address to integer using "%a"

As another example, here are the templates used in a debugger, which is written in

Modula-3 (Ramsey & Hanson, 1992):

address type is "Word.T"

address add using "Word.Plus(%a, %o)"

fetch any using "FetchAbs(m, %a, Type.I%w).n"

address to integer using "%a"

The variable m used in the fetch template stands for an instruction stream. A matching

statement generated using this template will compile correctly only in contexts in

which m stands for an instruction stream.

Variations in other interfaces are controlled by command-line options. These

variations include applicative and imperative views of encoding, support for direct

and indirect calls, and various conventions for naming procedures, types, and

structures. To achieve even the incomplete control provided by the Toolkit, there are

nine options that affect the interfaces to encoding procedures. Another three affect

internals (e.g. logging), and perhaps a half dozen affect relocation procedures.
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2.4 Assessment

Multiple languages

The only language for which the Toolkit provides full support is C. The Toolkit

provides partial support for Modula-3, Standard ML, and Objective Caml; the

λ-RTL Translator provides partial support for C, Standard ML, and Objective

Caml. Section 4, which discusses the Toolkit’s implementation, explains why the

multiple-language support is limited.

Idiomatic and readable code

Code generated by the Toolkit or Translator respects common programming idioms

in the target language. The most important idiom to get right is probably printing.

The Toolkit also supports indirect calls through C structures, an idiom that is used

to write object-oriented programs in C. These tools also provide a suitable choice

of functional and imperative idioms for clients written in functional or imperative

languages.

Code generated by the Toolkit or Translator is fairly easy to read. Most of the

readability comes from using a code prettyprinter after the style of Oppen (1980).

Some comes from other choices about the generated code; for example, the call

to emitm on page 607 contains many constant expressions that could be simplified

by the program generator. We elected not to simplify these expressions because the

generated code is much more readable if they are left unsimplified.4

It is self-reinforcing for the author of a program generator to emit readable code;

if the code is readable, it is easier to debug the program generator and to understand

the performance and behavior of the generated code.

Control of interfaces and internals

Compared to a program generator such as Yacc or BURG, the Toolkit and

Translator create code with many interfaces and even more variations on interfaces

and internals.

Instruction streams To write an instruction stream, code generated by the Toolkit or

Translator uses a single interface that is determined by the implementation language

of the generated code. In our experience and that of our users, this single interface

seems adequate to the task of emitting instructions quickly.

To read an instruction stream, code generated by the Toolkit or Translator uses

code templates, as explained in section 2.3. The code templates are a surprisingly

effective mechanism: they leave the packaging of the instruction-stream abstraction

open, and they support multiple languages effortlessly. Using templates, program-

mers can easily arrange for decoders to manipulate instruction streams without

4 By command-line option, a user can force the program generator to simplify all expressions.
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the overhead of procedure calls. Finally, there are no command-line options or

configuration parameters to remember.

Users of functional languages may see a connection between templates and para-

meterized modules. For example, in Objective Caml one might try to parameterize

a decoder by a module of the following type:

module type S = sig

type address

val add : address -> int -> address

val fetch : address -> width:int -> int32

val to_int : address -> int32

end

You might be tempted to conclude that the Toolkit’s code templates are simply

a poor man’s substitute for parameterized modules, but a closer look shows two

problems with encapsulating addresses in module parameters:

• The interface leaves implicit the instruction stream from which information is

to be fetched. This information is intended to be hidden inside the implement-

ation of fetch, but that means fetch should be a closure, not a top-level

function. It is easy to make fetch a closure when using code templates (e.g.

the template written in Modula-3 has the free variable m), but not when using

module parameters.

• Functions such as to int, add, and fetch are typically very small and should

be inlined, but many implementations of functional languages do not inline

functions that appear in module parameters. In low-level systems codes for

which performance is critical, such as dynamic compilers and optimizers,

the cost of a function call for such small operations would be unacceptable

(Engler, 1996; Bala et al., 2000). Using templates, client code can achieve

excellent performance even if using a compiler that does not inline procedure

calls or method calls.

The code templates do not simply substitute for parameterized modules; they are

actually better suited to the purpose.

Encoding procedures Interfaces to encoding procedures are controlled by a large

number of command-line options. This situation is intolerable; even the Toolkit’s

authors are puzzled by the variations. As an alternative, I have considered a

configuration language, but my enthusiasm is limited; it is not clear why a big set of

configuration variables should be significantly better than a big set of command-line

options.

Could we solve the problem by eliminating variations? Our users say no.

Applications that generate code dynamically, such as DyC (Auslander et al., 1996),

Fabius (Lee & Leone, 1996), VCODE (Engler, 1996), and Dynamo (Bala et al.,

2000), all want the best possible performance. Overhead for indirect calls would be

unacceptable. In the case of VCODE, even procedure-call overhead is unacceptable;
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because VCODE requires macros, it cannot be implemented using the Toolkit.5

Authors of other applications, like static compilers, prefer to call encoding proce-

dures indirectly, so they can easily get both binary code (for speed) and assembly lan-

guage (for debugging) from the same compiler.

Decoders Clients see no formal interface between an application and a generated

decoder. Because a matching statement acts just like a statement in the source

language (C or Modula-3), and because an action within a matching statement is

an ordinary statement in the source language, the Toolkit effectively extends the

language’s abstract syntax with direct support for instruction decoding. Compared

with code templates and command-line options, this syntactic extension is the

simplest method of controlling how generated code is coupled to client code. Because

the application programmer writes a matching statement wherever a decoder is

needed, there is no need to wrap a generated decoder in a procedural abstraction,

and therefore there is no need to provide different interfaces to different clients.

One penalty of the approach is that an error in a matching statement or in a

template can be detected only after the program generator runs, and the resulting

error messages may be mystifying. The Toolkit mitigates the problem by careful use

of line-numbering pragmas (e.g. #line in C), which make it possible for some error

messages to refer to source-code locations in the original matching statement.

3 Case study: The Abstract Syntax Description Language

The Abstract Syntax Description Language (ASDL) describes recursive, tree-like

data structures, such as are used in compilers to represent abstract syntax, inter-

mediate code, etc. (Wang et al., 1997). The corresponding program generator,

asdlGen, is intended to do three things for a programmer:

• To make it easy to manipulate trees using the implementation language of the

programmer’s choice

• To make it possible to write such trees to disk and read them back again

• To make it possible to exchange trees between programs written in different

languages

The core of ASDL is a data-definition language with a simple type system.

ASDL’s three base types are int (arbitrary-precision integer), string (sequence of

characters), and identifier (atomic name with fast equality test). ASDL also has

type constructors for products and for recursive sum types with named variants.

Finally, ASDL has type constructors for lists and optional values. In a language like

ML or Haskell, an optional value would be represented by a value of option or

Maybe type; in a language like C or Java, an optional value would be represented

by a pointer value that is possibly NULL.

Figure 3 shows an example ASDL description, which describes an oversimplified

version of a data type used to represent low-level expressions in a compiler. The

5 Private communication from Dawson Engler, 1995.
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module Machine {

cell = CELL (space, exp)

exp = CONST (const)

| FETCH (cell)

| APPLY (operator, exp*)

const = BOOL (bool)

| INT (int)

space = (char)

char = (int)

bool = (int)

operator = (identifier) -- treat as opaque

}

Fig. 3. Example ASDL description.

cell type represents a location (given by an expression exp) in a register or in

memory (identified by a space of ’r’ or ’m’). An expression is a constant, a fetch

from a cell, or an application of an operator to a list of expressions. Constants may

be Boolean or integral. Because ASDL does not support characters, Booleans, or

opaque types, it is necessary to supply definitions for char, bool and operator.

3.1 What the generated code does

The code generated from an ASDL description can be divided into three parts,

which describe trees, create trees, and serialize trees. (Serialization is the process

of converting a data structure in memory into a serial representation that can be

written to disk or sent over a network. It is also called flattening, pickling, and

marshalling.)

Describing trees

To describe trees, ASDL defines a reasonable mapping from ASDL’s type system to

the type system of the target language. In Standard ML, for example, asdlGen relies

on the language’s direct support for sum types with named constructors. AsdlGen

generates this representation of the const type from figure 3:

signature Machine_SIG =

sig

datatype const =

BOOL of (bool)

| INT of (StdPrims.int)

...

withtype bool = (StdPrims.int)

...

end (* sig *)

In C, for example, the local idiom for sum types combines an untagged union

with an explicit tag. The resulting type definition is more awkward than in ML:
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typedef StdPrims_int_ty Machine_bool_ty;

typedef struct Machine_const__s* Machine_const__ty;

struct Machine_const__s {

enum {Machine_BOOL_enum, Machine_INT_enum} kind; union {

struct Machine_BOOL_s {

Machine_bool_ty bool1; } Machine_BOOL; struct Machine_INT_s {

StdPrims_int_ty int1; } Machine_INT; } v; };

In Java, for example, the local idiom for sum types is to represent the sum type

by a single “abstract base class,” from which each alternative in the sum inherits.

Here is a somewhat simplified version of the code:

public final class bool { public int int1;

public bool(int int1) {

this.int1 = int1;

}

}

public abstract class const_ {

...

}

public final class BOOL extends const_ {

public bool bool1;

public BOOL(bool bool1)

{

this.bool1 = bool1;

}

...

}

AsdlGen 2.0 supports many target languages: C, C++, Haskell, Icon, Java,

Objective Caml, and Standard ML. For each target language except Icon, the

ASDL manual explains how ASDL’s type system maps to that language’s type

system.

Creating trees

To create trees, asdlGen uses one of two strategies. In a target language that has

native support for creating tree nodes, such as Haskell or ML, asdlGen generates

only the description of the tree type; to create a tree, a client program simply applies

the constructors of the tree type. In a target language that has no native support

for creating tree nodes, such as C, asdlGen generates procedures that allocate space

for and initialize tree nodes; a client program calls these procedures to create trees
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applicatively. For example, here is a generated C procedure used to create a tree

node that represents a Boolean constant of type const:

Machine_const__ty Machine_BOOL(Machine_bool_ty bool1)

{

Machine_const__ty t1_; t1_ = malloc(sizeof(*t1_));

if(t1_ == NULL)

die();

t1_->kind = Machine_BOOL_enum;

t1_->v.Machine_BOOL.bool1 = bool1;

return t1_;

}

Serializing trees

To serialize trees, ASDL creates two families of procedures: one to read and one to

write. A serialized tree is called a pickle, a reading procedure is called an unpickler,

and a writing procedure is called a pickler. Because the format of an ASDL pickle

is independent of the programming language in which the trees are created, pickled,

and unpickled, components implemented in a variety of languages can exchange

pickles.

The generated code contains a pickler and an unpickler for each type in the ASDL

description. Here, for example, are declarations of two unpicklers; the declarations

come from a generated interface that is written in Standard ML:

val read_bool : StdPkl.instream -> Machine.bool

val read_const : StdPkl.instream -> Machine.const

Here is the implementation of read const:

and read_const s_ =

let

val t = (StdPkl.read_tag s_)

in (case (t) of

1 => let

val bool1 = (read_bool s_)

in Machine.BOOL(bool1)

end

| 2 => let

val int1 = (StdPrimsUtil.read_int s_)

in Machine.INT(int1)

end

| _ => (StdPkl.die ()))

(* end case *)

end

Here are the declarations of the analogous procedures in the corresponding C inter-

face:

StdPrims_int_ty Machine_read_bool(instream_ty s_);

Machine_const__ty Machine_read_const_(instream_ty s_);
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3.2 Interfaces between generated code and client code

The examples above show not only what the generated code does but also what the

interfaces look like. Two properties of these interfaces are noteworthy:

• Generated code can mix separate functions in a single interface. The original

version of asdlGen always interleaved type definitions, constructors, and

serialization code in a single interface. The newer version, asdlGen 2.0, uses

different placements for different target languages. For some target languages,

such as ML, asdlGen 2.0 places the serialization code in a different interface

from the type definitions. For other target languages, such as C, asdlGen 2.0

places the serialization code in the same interface as the type definitions.

• In the code generated by asdlGen, the serialization code is coupled to the

concrete representation of trees. It is not possible to generate code that is

coupled to an abstraction representing trees. (As described below, it is possible

to change the concrete representation that asdlGen uses.)

3.3 Controlling the output of the generator

For controlling the interfaces to and the internals of the generated code, ASDL

provides two mechanisms: command-line options and views. Command-line options

are self-explanatory; a view is a named collection of annotations.

A command-line option passed to asdlGen can control one of a few properties

of generated code:

• The language in which generated code should be written

• The number of columns into which the text of generated code should fit

• The location in which generated code should find supporting library code

• The representation of lists that should be used in generated code

• The representation of integers that should be used in generated code

• The view that should be used to control other aspects of generated code

In an ASDL view, each annotation attaches a property to a named module, type,

or constructor defined in an ASDL specification. A property is simply a key-value

pair; to have any useful effect, of course, the pair must use a key that is known to

asdlGen. The uses of views are manifold and difficult to characterize precisely. The

most significant uses are to override default choices of names and representations

and to insert hand-written code in various places in the generated code. This paper

presents some examples, but the whole story is told only in the manual (Wang,

1999).

An example of a property that can be changed with a view is the natural type

property, which determines the generated code’s representation of an ASDL type.

If a view changes this property, it also must provide a bijective mapping between

the default representation and the new representation specified by the view. This

mapping is specified by a pair of properties: wrapper and unwrapper. Figure 4

shows a view that changes the natural type property. The view changes the

representations of the char and bool types that are defined in figure 3. The
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view SML {

module Machine <= implementation_prologue

%%

fun int2bool i = i <> 0

fun bool2int p = if p then 1 else 0

%%

Machine.char <= { natural_type : Char.char

wrapper : Char.ord

unwrapper : Char.chr

}

Machine.bool <= { natural_type : Bool.bool

wrapper : bool2int

unwrapper : int2bool

}

}

Fig. 4. A view that changes representations of char and bool.

mapping between characters and integers can be taken directly from the Char

module in the initial basis of Standard ML, but the mapping between Booleans and

integers requires the hand-written functions int2bool and bool2int. Figure 4 uses

the implementation prologue property to insert definitions of these functions into

the generated code.

When this view is used with the ASDL specification in figure 3, the description

of the tree type const is changed as follows:

signature Machine_SIG =

sig

datatype const =

BOOL of (Bool.bool)

| INT of (StdPrims.int)

...

withtype bool = (StdPrims.int)

...

end (* sig *)

Although the use of the ASDL type bool within the const type uses the new

definition, the signature retains the old definition of bool as StdPrims.int. This

retention not only confuses the reader, but also makes it pointless to write a client

that refers to the bool type in this signature.

The view also changes the types of the generated functions read bool and

write bool, and asdlGen inserts int2bool or bool2int in each function as

appropriate:

and read_bool s_ =

let

val int1 = (StdPrimsUtil.read_int s_)

in (bool2int (int1))

end
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Views can achieve a variety of other ends; here is a partial list.

• A view can suppress program generation for one module, so that a user can

supply a hand-written implementation of that module.

• A view can change the name that generated code uses for a module or a

constructor.

• A view can change the name of the base class that is generated to represent a

sum type in an object-oriented language.

• A view can replace the body of a serialization function (reader or writer) with

a call to another named function.

• A view can specify the value of the integer tag associated with a sum-type

constructor in generated C, C++, or Java code.

3.4 Assessment

Multiple languages

AsdlGen provides impressive support for multiple languages. If a user can live with

the default representations, he or she can achieve instant data exchange between

programs written in any of seven languages. Although ASDL has aspects of a

lowest-common-denominator system, it does provide type constructors, notably lists,

that are not found in all target languages.

Idiomatic and readable code

ASDL is designed to support one programming idiom: applicative construction

and deconstruction of trees. This idiom maps very naturally onto such languages

as ML and Haskell, and the ASDL documentation does a good job explaining

how the idiom works in other target languages. In the details, however, asdlGen

generates code that is unidiomatic or unreadable in its use of names, concrete

syntax, interfaces, and types. Even more significant are missed opportunities to

support separate compilation and abstraction.

Names It can be difficult for a program generator to avoid name collisions when

emitting code in languages such as C, where there is a single, flat name space at top

level. An easy solution is to extend the generated names with enough prefixes and

suffixes to make the names unique. Sometimes prefixes or suffixes can be idiomatic;

Hanson (1996), for example, uses a C programming idiom in which a “module”

name is used as a prefix. Unfortunately, asdlGen overuses prefixes and suffixes, which

makes generated code hard to read. For example, the ty suffix on type names is not

idiomatic C, and this suffix is not needed to avoid collisions. As another example, the

Machine prefix on the name of the union member Machine BOOL is not necessary

or idiomatic. Because the members of a union occupy their own private name space,

it is safe to use BOOL, the name of the datatype constructor.

There are other, minor examples of poor use of names in code generated by

asdlGen. A local variable in C code or ML code may have an unnecessary underscore
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at the end of its name. The names of the serialization procedures in ML use internal

underscores (e.g. read bool) where the Standard Basis capitalization conventions

recommend mixed case (e.g. readBool).

Concrete syntax As can be seen in the examples above, concrete syntax generated

by asdlGen can suffer from two flaws: excessive use of parentheses and poor choice

of indentation and line breaks. These problems might seem trivial, but programmers

tend to avoid a program generator if they can not easily read its output – especially

the interfaces. It is surprisingly difficult to do a really good job putting indentation

and line breaks in generated code, and even avoiding redundant parentheses is not

completely trivial (Ramsey, 1998).

Interfaces The interfaces generated by asdlGen typically mix type definitions,

creation functions, and serialization functions. When a type definition exposes its

representation, it is more idiomatic and readable to put related utility functions in

separate interfaces. While any module using the generated code will need access

to the type definition, most will use either creation functions, reading functions, or

writing functions – not all three. Some clients may use only the type definition and no

generated operations. Merging all into one interface makes it harder to understand

and use the generated code, even if one never looks at the implementation.6 Worse, it

creates a configuration problem: code generated with asdlGen can not be compiled

without an installation of asdlGen that provides serialization libraries, and installing

asdlGen can be burdensome because the installation procedure tries to build libraries

for all the languages that ASDL supports.

Types ASDL’s use of types should be assessed at two levels: the level of the ASDL

type system and the level of the generated code. ASDL’s type system includes many

type constructors of proven value. Sums, products, lists, and optional types suffice

to support a rich variety of common programming idioms. Since ASDL is intended

to describe data, not code, it is sensible that ASDL does not support function

types or object types. The choice of base types for ASDL is less understandable.

While strings, symbols, and unlimited-precision integers are very useful, there seems

to be no good reason for omitting characters and Booleans. The most significant

omission, however, is ASDL’s lack of support for abstract types; data abstraction

is an essential programming idiom, and almost all of asdlGen’s target languages

support it in some form.

6 Readers unfamiliar with compiler construction may benefit from some elaboration of these claims.
Today’s compilers are often written using many simple passes. Many such passes might analyze or
transform a data structure defined by ASDL, such as an abstract-syntax tree or an intermediate-
representation tree, but very few passes need to worry about serialization. The author of a register
allocator, for example, will at best be distracted if the interface refers to functions and types that are
used only for serialization. The problem can be mitigated if the program generator carefully separates
different parts of the interface, for example by putting common type definitions first and serialization
code last. In effect, one then has several interfaces that just happen to be written in one file – a
tenable situation.
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It is possible to simulate an abstract type using an ASDL view. In the main part

of the ASDL description, the programmer must pretend that the abstract type is

some concrete type, e.g. a string. The programmer can use a view to override the

pretend type with the actual type and to provide conversion routines between the

pretend type and the actual type. These conversion routines must be written even

if the programmer knows that values of the abstract type will never be serialized,

because there is no way to assert that such values will never be serialized.

At the lower level, asdlgen does a very good job mapping ASDL’s types to types

in the generated code, and this mapping is carefully explained in the manual. This

achievement is especially praiseworthy because the ASDL type system does not take

the easy way out of using only type constructors that are available in all target

languages. The ASDL system fills the gaps with libraries; for example, asdlGen

comes with list libraries for C, C++ and Java.

There is one minor bug in asdlGen’s low-level treatment of types; as shown on

page 622, changing the natural type property changes all the uses of an ASDL

type, but it leaves a misleading definition in the generated code.

Separate compilation AsdlGen does not support separate compilation; all types used

in a representation must be presented to a single run of asdlGen. This restriction

inhibits a number of useful programming idioms. For example, a programmer may

want to define a type using hand-written code, e.g. to exploit a feature that is

available in the target implementation language but not in ASDL. Code generated

by asdlGen cannot easily refer to such a type, even when there is hand-written

serialization code available to support it.

A related problem, which is one of the most significant defects in ASDL, is that

it is difficult to define a tree type that uses a type defined in another source file. For

example, if a programmer is designing a compiler, he or she might want to define the

statement type and the expression type in different source files. Because a statement

may contain an expression, this structure is difficult to achieve using ASDL, even if

both types are defined in ASDL.

The program generator would benefit from a cleaner way to interface to separately

compiled types, for which the definitions, constructors, picklers, and unpicklers are

in ordinary source files. Such source files might be generated by other runs of the

generator, or they might be written by hand.

Abstraction One way to think of an ASDL pickle is that it says which constructors

should be called, in what order, to reproduce a tree. If we think abstractly, a pickle

is a specification for a catamorphism: a higher-order function that builds trees. Just

as foldr implements abstract list construction using any suitably typed functions in

place of nil and cons, so should asdlGen generate an unpickler that implements

abstract tree construction using any suitably typed functions in place of the concrete

constructors that asdlGen defines for the tree. This conclusion is also supported by

the algebraic approach to data abstraction; because there is an obvious one-to-one

mapping between trees of some concrete algebraic data type and a corresponding
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abstraction, the concrete representation should be irrelevant (Liskov & Guttag,

1986).

As an example, here is an interface to such an unpickler for trees of type const:

val read_const_catamorphically :

{ bool : StdPrims.int -> ’a, int : StdPrims.int -> ’a } ->

StdPkl.instream -> ’a

Such an interface could easily be produced mechanically; we require a parameter

of function type for each datatype constructor, and we replace all occurrences of

the const type with the type variable ’a. In the implementation of read const

on page 620, we simply replace Machine.BOOL and Machine.INT with the function

parameters.

Unfortunately, the designers of asdlGen overlooked the possibility of catamorphic

interfaces. An unpickler generated by asdlGen cannot call abstract tree-creation

functions; it always creates the concrete representation that corresponds to the

ASDL type. The only way to pickle and unpickle a value of an abstract type is to

write “transducers” by hand. The int2bool and bool2int functions in figure 4 are

examples of such transducers; although they work with the concrete type Bool.bool,

they could as easily work with an abstract type. One can interleave the execution

of a transducer with the execution of a generated pickler or unpickler by suitable

use of the wrapper property in an ASDL view, but the wrappers do not eliminate

the need for transducers. The interleaving does not eliminate the use of ASDL’s

concrete representation as a bridge between the serial representation and the client’s

abstract representation, but it does reduce the lifetime of the concrete representation.

An implementation based on catamorphisms would automatically be deforested: it

would never create values of the concrete representation.

Unhappily, transducers are needed not only for abstraction but also to interface

to existing compilers. Hanson (1999) reports on experience with ASDL and lcc.

This duplication of effort [the transducer] is an onerous side effect of retrofitting an existing

compiler with ASDL. . . Most of the code in the ASDL back end is devoted to building

copies of [the compiler’s] data structures – that is, building a different, but logically equivalent

representation for nearly everything.

Christian Lindig, Simon Peyton Jones and I have found that transducers are

necessary even when designing a new compiler from scratch. We want to couple

a back end to front ends written in different languages, so we want the ability

to pickle and unpickle. Inside the compiler, however, we want not to use the

representation defined by ASDL; instead we want a representation that includes

private annotations: sets of registers read and written, sets of live variables, and so

on. Such annotations, which are likely to change as the compiler evolves, should not

be visible from the external interface used by the pickler, which should not change

as the compiler evolves. Because we cannot couple asdlGen’s generated code to an

abstraction, we must write transducers.

These needs for transducers arise not from fundamental limitations of program

generation or of ASDL, but from an accident of asdlGen’s design. AsdlGen
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could be modified to emit a type-definition interface giving only an abstraction,

not a representation. It could also emit picklers and unpicklers parameterized by

the abstraction; read const catamorphically is one example of a parameterized

unpickler.7 The flaw in the program generator lies not in the fundamental model or

the underlying algorithms, but in the generator’s lack of support for an important

programming idiom.

Control of interfaces and internals

Three aspects of the control of the ASDL program generator are worth assessing:

the mechanisms used for control, the choices provided for interfaces, and the choices

provided for representations.

Mechanisms AsdlGen uses command-line options and views to control interfaces

to and internals of generated code. These mechanisms are most comparable to

the command-line options that the Toolkit uses to control generated encoding

procedures, and they suffer from one of the same problems: complexity that users

find daunting and difficult to manage. The view mechanism, however, does have two

properties that make it superior to command-line options alone:

• The view is part of the same source language as the ASDL description, and

it is processed by the same processor. Unlike a collection of command-line

options stored in a Makefile, a useful view is much less likely to be lost or

overlooked.

• Using a view, a programmer can collect a set of useful directives and give

the set a name. He or she can then select this set by using the -V option on

the command line. To be able to define such a shorthand is convenient. It

is unfortunate that neither the view language nor asdlGen’s command line

makes it possible to compose views.

Choices of interfaces AsdlGen’s mechanisms for controlling interfaces and internals

are similar to the Toolkit’s, if slightly superior. The range of possible interfaces,

however, is more limited. As discussed above, the current range of interfaces

precludes some important programming idioms: generated code cannot interface

cleanly with abstract types, and serialization works only with asdlGen’s concrete

representation. For serialization, at least, it is clear that some choice at program-

generation time is needed. Many clients will be content to manipulate a concrete

representation, but some clients, to avoid transducers, will want an interface based

on catamorphisms. For the other problems noted above – abstract types and separate

compilation – it is not clear that choices need to be provided at program-generation

time; there may be a general solution that can be “always on.”

7 Granted, it is not obvious what mechanism to use for the parameterization, especially in C. Indeed, even
though many object-oriented and functional languages provide natural, idiomatic parameterization
mechanisms (e.g. classes, functors, generics, and templates), it is not clear that these are always the
best mechanisms for a program generator to use. Still, any parameterization mechanism is better than
none.
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Internal representations AsdlGen does offer important choices in representation,

especially representations of lists. These choices are worth discussing because

questions of list representation arise not only in asdlGen and in the Toolkit but

also in parser generators and other program generators. In all cases, the problem to

be solved is to make generated code interoperate with hand-written code.

In some target languages, like ML and Haskell, polymorphic list types provide

natural representations of lists. In other languages, there is no obvious natural

representation. In C, for example, there are at least three alternatives: linked list, null-

terminated array of pointers, and dynamic-array abstraction. Different applications

have different needs; for example, the lcc back end needs an implementation in

which appending to a list takes constant time (Hanson, 1999).

When generating code in a monomorphic language, a user of sequences must

decide not only what is a suitable representation but also how many types to define.

Heterogenous generation defines a specialized sequence type for each different kind

of sequence. This choice bloats the code, but it preserves type safety and keeps

dynamic instruction counts down. Homogeneous generation uses a generic sequence

type that contains something like C’s void * or Java’s Object. This choice does not

duplicate code, but depending on the language it may abandon type safety (C) or

require dynamic type checks (Java). Again, no single choice is always suitable; for

example, when translating polymorphic types into Java, the Pizza translator provides

both alternatives (Odersky & Wadler, 1997).

Users of asdlGen make these kinds of choices with command-line options. The

choices available depend on the language in which code is generated. The document-

ation is not completely clear, but it appears a user generating C code can choose

between heterogenous and homogeneous generation, and a user generating Java code

can choose between a linked-list representation and the built-in java.util.Vector.

It is unclear why asdlGen provides only this limited set of choices; users might

prefer to choose both representation and generation strategy independently, for all

relevant languages.

Choosing representations of even simple, monomorphic types can be hard for the

author of a program generator. Should integers have arbitrary precision (bignums),

some fixed precision (e.g. 32 bits), or the native precision of integers in the target

language (not specified in C, and perhaps 31 or 63 bits in a functional or object-

oriented language that uses tags for garbage collection)? Should strings be null-

terminated, or should they carry an explicit length? What codes should be used to

represent the enumerations that asdlGen uses to distinguish different constructors?

How can one match codes used in an existing application? How can one make codes

distinct across all types, so each code identifies not only a constructor but also a

type? Again, asdlGen solves some of these problems. By selecting the appropriate

library, a user can choose between arbitrary-precision and limited-precision integers.

By using the enum value property in a view, a user can assign codes explicitly to

constructors. A uniform, comprehensive mechanism would be preferable.

To summarize, different clients need different representations of ASDL’s types,

and there are surprisingly many choices. Finding a simple, clear way even to specify

the clients’ needs, let alone satisfy them, appears to be an unsolved problem.
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External representations AsdlGen provides no choices about the representation of

pickles (the serial format); the generated code uses a single representation. This

limitation is sensible: the pickle format is a private matter that only generated code

depends on, and using a single, fixed format helps guarantee compatibility between

programs written in different languages. The pickle format has been designed with

careful attention to performance; for example, a small integer is represented using

only eight bits. At need, a user can effectively extend the format by using a view to

replace picklers and unpicklers. No other choices are needed at program-generation

time.

4 Implementations

It is not yet known how to build a program generator that promotes reuse by making

it easy to provide multiple interfaces to generated code, in multiple languages. To

solve this problem requires not only suitable ideas and abstractions but also a suitable

internal structure for the program generator. The design of a program generator’s

intermediate representation influences its ability to support multiple languages

and multiple interfaces. This section discusses, at a high level, the intermediate

representations used in two implementations of the Toolkit and one implementation

of asdlGen. The purpose of the discussion is to identify parts of these program

generators that are not domain-specific and therefore might contribute toward a

generally useful infrastructure for building reusable program generators.

4.1 Implementations of the Toolkit

The Toolkit has two implementations. The original, official implementation is written

in Icon (Griswold & Griswold, 1996). Mary Fernández and I chose Icon because it

is an excellent match for the most difficult domain-specific problem of our original

decoder generator: writing a backtracking, heuristic search for a good decoder. As

we added support for multiple languages and for alternative interfaces, and as the

program generators grew more complex, Icon’s lack of static typing and lack of

modules made the implementation more and more unwieldy until finally it became

intractable. Icon was a poor match for handling the pragmatic aspects of program

generation, the importance of which we had underestimated.

I undertook a new implementation of the Toolkit in Standard ML, where I could

exploit static typing, polymorphism, and parameterized modules. I had two goals: to

write new, clean implementations of the algorithms, so we could add improvements,

and to build a serious infrastructure to support the pragmatic aspects of program

generation. I have used the infrastructure not only for the Toolkit, but also for the

λ-RTL project (Ramsey & Davidson, 1998).

4.2 The Icon toolkit: trees and templates

Figure 5 shows the structure of the back end of the Icon implementation of the

Toolkit. Words written in boxes depict intermediate forms, i.e. data representations
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Domain-specific
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Fig. 5. Back end of the Toolkit

(Icon implementation). Intermediate forms

are boxed; components are unboxed.

Fig. 6. Back end of the Toolkit

(ML implementation). Intermediate forms

are boxed; components are unboxed.

manipulated by the back end. Words not in boxes depict components of the back

end. By studying relationships between intermediate forms and components, we can

identify forms and components that might be reusable.

The front end of the Toolkit reads a machine description and expresses its

domain-specific knowledge in the form of equations that relate abstract machine
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procedure emit_create_instance_body(pp, cons)

a := []

every i := inputs_of(cons).name do

put(a, template_to_list("instance-assignment.t", "l", i, "r", i,

"name", Cnoreserve(cons.name)))

emit_template(pp, "create-instance-body.t",

"safename", Cnoreserve(cons.name),

"name", cons.name, "type", cons.type.name,

"args", arg_decls(cons), "assignments", a,

"class", if \indirectname then "static " else "",

"input-tests", input_width_tests(cons))

return

end

Fig. 7. Code that instantiates an encoding-procedure template.

instructions and binary representations. The encoder generator uses an equation

solver to compute the binary representation as a function of an abstraction. The

decoder generator uses the same equation solver to compute the values of pattern

variables (e.g. arguments to abstract constructors) in terms of the binary. The solver

is intended to be reusable apart from the rest of the Toolkit (Ramsey, 1996b).

The answers from the equation solver are bindings of expressions to names. Most

expressions are represented as abstract-syntax trees, but to simplify the solver, linear

combinations are represented as tables in which the keys are expressions and the

values are coefficients. This representation is used throughout the Toolkit’s back

end, which was a mistake; it would have been better to hide the table representation

inside the solver and to use only trees everywhere else. As it is, the idiosyncratic

representation of linear combinations makes it unnecessarily hard to reuse the

representation.

Expressions, statements, and declarations comprise the highest-level intermediate

form in the Toolkit. This form is independent of the target programming language.

Expressions, statements, and declarations are general-purpose ideas, but identifying

a good set of constructs for general-purpose use is a significant unsolved problem,

as is how best to extend such a set for use in any particular program generator. Even

within the Toolkit, the encoder generator and decoder generator have significantly

different needs, as some examples illustrate.

Like expressions, statements are represented as abstract-syntax trees. The encoder

generator uses relatively few kinds of statements: sequence, conditional (for con-

ditional assembly), case statement (for analyzing abstract effective addresses), and

token emission. It also uses statements that announce errors and emit relocation

information. The decoder generator uses more kinds of expressions, statements,

and miscellaneous constructs. Additions include range tests, blocks with local vari-

ables, assignments, declarations of initialized data (arrays of names of instructions

matched), comments, and line-number directives (#line). Many of these constructs

would be useful in a general-purpose infrastructure for program generation; some

would not. Thus, although the Toolkit’s expression, statement, and declaration

trees could be reused in another program generator, they include Toolkit-specific
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constructs that would be useless in another setting, and we must assume that they

lack domain-specific constructs that would be needed in another setting.

The Icon implementation of the Toolkit does not use an abstract-syntax tree

to represent a procedure definition or a compilation unit. Instead, it uses a

“prettyprinting template,” which is a combination of a prettyprinting string and

a template. A prettyprinting string is a string that contains special markup that

controls insertion of indentation and line breaks. A template is a string that contains

“holes” that can be filled with other strings. A prettyprinting template, then, is a

prettyprinting string that contains “holes” that can be filled with other prettyprinting

strings.

As an example, here is the prettyprinting template for an applicative encoding

procedure, which returns a value of an abstract type representing an “instance” of

an instruction. The name of this template is create-instance-body.t.

%{class}%{type}_Instance %safename(%args) {$t

%{type}_Instance _i = { %{name}_TAG };

%{input-tests}%{assignments}return _i;$b

}

This template at once selects a style of interface, a target language, and concrete

syntax. The % signs mark holes that are to be instantiated; the marks $t (tab) and

$b (backtab) are escape sequences that control prettyprinting.

Figure 7 shows the code that uses the template to emit an encoding procedure.

The parameter pp is a prettyprinting stream, which is like an output stream,

except that it recognizes escape sequences and converts them to suitable indentation

and line breaks. The cons parameter contains information about the constructor

being emitted. Each assignment to an instance variable is created by instanti-

ating the template named instance-assignment.t, which contains the string

“_i.u.%name.%l = %r;.” The functions template to list and emit template

instantiate templates; they are generated automatically by a single-use program

generator. They are represented in figure 5 by the words “Template Instantiator.”

The function Cnoreserve mangles the name of the instruction to ensure that it

doesn’t collide with any of C’s reserved words. The flag indirectname controls the

visibility of the generated procedure. If the encoding procedure is intended to be

called indirectly, through a function pointer, it is given storage class static, so it

won’t be visible outside the generated compilation unit. Otherwise, it is given the

empty storage class and so is visible to other units.

Because emit template is passed a prettyprinting stream, when it instantiates

the template it passes the resulting prettyprinting string on to the prettyprinter. As

suggested in figure 5, the output from the prettyprinter is nicely indented concrete

syntax.

To embed an expression or statement into a procedure, the Toolkit renders the

expression’s or statement’s abstract-syntax tree into a prettyprinting string, then

uses the prettyprinting string to fill a hole in a template. The rendering necessarily

depends on the target programming language, because the prettyprinting string

contains concrete syntax in that language. The Icon implementation of the Toolkit
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includes two language-specific renderers: a C renderer that is 330 lines of Icon and

a Modula-3 renderer that is 243 lines.

The template instantiator and the prettyprinter are reusable components. They

have simple internal interfaces, and I have reused them in several program generators.

The language-specific renderers are also reusable components, at least in principle,

but their utility is limited because the input language they accept – the abstract

syntax of expressions, statements, and declarations – is not really reusable.

Despite the presence of several reusable components, the structure of the Icon

implementation, as shown in figure 5, is not very good from the point of view of the

requirements in section 1.2. There are two significant faults:

• Knowledge of the target programming language is too widely distributed. To

support a new programming language, we must write not only a new renderer

but also new prettyprinting templates.

• Because templates are source code, each template determines the language of,

the interface to, and the internal structure of the generated code. If any one

of these things varies, we have to write new templates. The encoder generator,

which supports only C, uses about 20 templates, which are 1–5 lines of code

each.8 As users demand more and more variations in the generated code,

templates are too difficult to maintain.

4.3 The ML Toolkit: a more reusable design

Rewriting the Toolkit in ML provided an opportunity to design more reusable in-

termediate forms. In the new implementation, there are no language-dependent tem-

plates; the domain-specific control works only with language-independent abstract-

syntax trees, as shown in figure 6. In addition to expressions and statements,

the ML implementation uses an explicit representation of the types to be used in the

generated code. To replace templates, it uses compilation units, which generalize

the declarations used in the Icon implementation. All four kinds of abstract-syntax

tree can be divided into two classes: one for general purposes and one specific to

the Toolkit:

• The general-purpose types are integers (signed and unsigned, and of arbitrary

widths), Booleans, strings, characters, records, arrays, both safe and unsafe

unions, functions, pointers, named abstract types, a unit type (equivalent to

C’s void), and objects with inheritance. This large type system is intended to

cover many target languages.

The Toolkit-specific types are effective addresses and instances of machine

instructions. There is also a Toolkit-specific type constructor, which can make

integer types “relocatable”; values of relocatable types have later binding times

than values of ordinary integer types.

8 The decoder generator, which supports both Modula-3 and C, uses only abstract-syntax trees, not
templates.
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• The general-purpose expressions include introduction and elimination oper-

ations for the general-purpose types, as well as typical integer and Boolean

operations. There is also an expression construct that suppresses algebraic

simplification; this construct is used to make generated code more readable.

The Toolkit-specific expressions include introduction and elimination oper-

ations for the Toolkit-specific types. They also include a variety of operations

for narrowing and widening (sign-extending) integer values and for testing

whether a value n can fit in k bits.

Unlike the Icon representation, the ML representation of expressions is not

warped by the equation solver. Although the equation solver requires ordered

linear combinations (Derman & Van Wyk, 1984), they are used only within

the solver, which uses about 30 lines of code to convert back and forth.

• The general-purpose statements include assignments, conditionals, case state-

ments, block comments and commented statements, nested blocks with local

variables, return statements, and an empty statement. The Toolkit-specific

statements include a statement that emits a token, one that discriminates on

an abstract instruction, one that branches to an arm of a matching statement,

and so on.

• Compilation units include general-purpose constructs, which can declare and

define procedures, types, variables, constants, and exceptions. Declarations are

collected into interfaces; definitions are collected into implementations, which

import and export interfaces. Both interfaces and implementations can be

parameterized. The interface abstraction has a few Toolkit-specific values that

represent hand-written code, including an encoding library, standard I/O,

support for emitting assembly language, a sign-extension routine, and other

miscellany.

The representations of types, expressions, statements, and compilation units

comprise the intermediate form of the Toolkit. As does the original, this intermediate

form mixes general-purpose constructs with Toolkit-specific constructs, making the

infrastructure more difficult to understand and reuse.

Figure 6 shows that eliminating templates simplifies the back end. The domain-

specific control manipulates only abstract-syntax trees, from which a language-

specific renderer produces prettyprinting strings, from which a prettyprinter produces

concrete syntax.

Because the new intermediate form can express many kinds of compilation units,

it is more reusable than code templates. The increased generality of the new form

has a cost, however. The language-specific renderers for C and for ML are about

600 and 800 lines respectively, or about double the size of the renderers in the

Icon implementation. These numbers are probably affected most by the change

of implementation language, by the larger domain of the new emitters (not just

expressions and statements but also types, interfaces, and implementations), and by

the elimination of templates, which can emit prettyprinted code very concisely.
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Fig. 8. Back end of asdlGen. Intermediate forms are boxed; components are unboxed.

4.4 Intermediate forms in asdlGen

AsdlGen uses a different design to support multiple languages. Compared to the

Toolkit, asdlGen is clearly better at supporting multiple languages; it supports

seven, not two or three. I cannot make detailed comparisons that show exactly how

asdlGen achieves its superiority: although my knowledge of the Toolkit is intimate,

my knowledge of asdlGen is limited by what I can learn from the code. Even a

relatively high-level view of asdlGen, however, can suggest how to use intermediate

forms to make a program generator reusable.

Figure 8 shows the intermediate forms used in the back end of asdlGen; it should

be compared with figures 5 and 6. Compared to the Toolkit, asdlGen achieves

its multiple-language support by using more layers of intermediate form and by

dividing its functionality into more components, which do simpler jobs. In the most

https://doi.org/10.1017/S0956796802004628 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004628


636 N. Ramsey

general case, which is shown by the left path through Figure 8, asdlGen instantiates

itself for a target language by composing three components: a paradigm-specific

emitter, a language-specific translator, and a language-specific renderer:

• A paradigm-specific emitter makes high-level decisions about how to map

ASDL’s type system onto types in the target language. Supported paradigms

include an algebraic paradigm, of which languages Haskell, Objective Caml,

and Standard ML are instances, an Algol-like paradigm, of which C is an

instance, a dynamically typed paradigm, of which Icon is an instance, an object-

oriented paradigm, of which C++ and Java are instances, and a miscellaneous

paradigm, which appears to provide some support for expressing ASDL pickles

as HTML or XML documents. An example of a decision based on paradigm is

that the algebraic paradigm maps an ASDL sum type to an algebraic datatype,

the object-oriented paradigm maps a sum type to a class with subclasses, and

the Algol-like paradigm maps a sum type to a tagged union.

Each paradigm comes with an emitter and an abstract-syntax representation

which are specialized to the paradigm but are independent of the particular

language used within the paradigm. Emitters range in size from 170–353 lines

of Standard ML.

• A language-specific translator maps a paradigm’s abstract syntax onto

language-specific abstract syntax. There is at most one translator for each

language. As an example, the translator for C is 263 lines of Standard ML.

• A language-specific renderer converts a language’s concrete syntax to a pretty-

printing abstraction. This abstraction, which represents prettyprinted concrete

syntax, is analogous to the Toolkit’s prettyprinting string; it is based on work

by Wadler (1999). There is at most one renderer for each language. As an

example, the renderer for C is 389 lines of Standard ML.

• For some languages, the translator and renderer are combined into a single

component, as shown by the right-hand path through figure 8. As examples,

each of the algebraic languages Haskell, Objective Caml, and Standard ML

uses such a combined component. These components range in size from 206–

254 lines of Standard ML.

To add support for a new language, one must design an abstract syntax and write

a renderer for it. One must also select an appropriate paradigm and write a translator

from that paradigm into the abstract syntax of the new language. Alternatively, the

translator and renderer can be combined into one component, in which case no new

abstract syntax is needed. If no existing paradigm is suitable for the translation, a

new one must be designed, and an emitter for the new paradigm must be written.

The appropriate place to compare the Toolkit and asdlGen is at the mapping

from language-dependent information to a prettyprinting abstraction representing

concrete syntax. The Toolkit performs this mapping in a single step: the step labelled

“language-specific renderer” in figures 5 and 6. AsdlGen performs the analogous

mapping in three steps: the emitter, translator, and renderer shown in figure 8.

AsdlGen can perform the mapping in two steps if the renderer and translator are

combined. When renderer and translator are not combined, the language-specific
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abstract syntax and language-specific renderer are very likely to be reusable, because

they are mostly independent of the specifics of asdlGen. Even when renderer and

translator are combined, asdlGen’s design makes the implementor’s job easier,

because the emitter can operate without concern for low-level details of the concrete

or abstract syntax of the target language.

5 Conclusions, speculation, and lessons learned

Authors of program generators should explore not only the design space of possible

generated code but also the design space of possible interfaces to that code. In other

words, authors should consider interfaces, not just implementations, when modeling

the domain for which code is to be generated. Were I to attempt another reusable

program generator, I would undertake discount usability tests (Nielsen, 1993) with

potential users. (“Please write on the board the code you would like to use to exploit

my new frobozz generator.”) Until then, it is possible to speculate about better ways

of specifying interfaces and to draw a few conclusions about implementations.

5.1 Lessons for controlling interfaces and internals

The Toolkit uses three mechanisms to control interfaces to generated code. To

specify the interface to a decoder, the programmer puts a matching statement at an

appropriate place in the program; the syntax of the target language is effectively

extended with matching statements. To specify the interface to an instruction stream,

the programmer provides code templates, which are instantiated by the program

generator. To specify the interface to an encoding procedure, the programmer

chooses a set of command-line options. The first two mechanisms are easy and

pleasant to use. Because there are too many variations (applicative vs. imperative,

direct vs. indirect, objects vs. closures, etc.), the third mechanism makes a mess of

documentation and intimidates users. Because the need for simple, clear mechanisms

to control interfaces may be the most pressing problem identified in this paper, it

may be worthwhile to speculate about a new mechanism.

The speculative idea follows the model of the matching statement; imagine

expressing every capability of a program generator as an extension to the syntax

of the target language. In the case of the Toolkit, for example, we might add these

productions (and many more) to the grammar for C:

〈definition〉 ::= 〈definition of encoding procedure〉
〈definition of encoding procedure〉 ::=

〈return type〉 〈name of procedure〉 (〈arguments〉) { 〈body〉 }

〈structure member〉 ::= 〈definition of encoding procedure as function pointer〉
〈definition of encoding procedure as function pointer〉 ::= . . .

After extending the grammar in this way, we could specify the structure of generated

code by writing a collection of sentential forms in the extended programming
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language. Instead of using a command line such as

tools -indirect sparcbin:sparc -encoder sparcindir ...

a user might write the following sentential form:

sparcindir.h:

struct sparc {

〈definitions of encoding procedures as function pointers〉
};

extern struct sparc *sparcbin;

As another example, a user of asdlGen might use a sentential form to control

the names given to types in generated code. We might express the default naming

scheme by writing

〈name of generated type〉 ::= 〈name of ASDL module〉 〈name of ASDL type〉 ty

A user who had no fear of name collisions and wanted shorter, more idiomatic

names could drop the prefix and suffix by writing

〈name of generated type〉 ::= 〈name of ASDL type〉

Although a sentential form is more verbose than a command-line option, it is

easier for a user to tell what generated code is specified by a sentential form, because

the sentential form makes the structure of the generated code obvious in a way that

keywords such as -indirect and -encoder do not. Because we expect users to write

these specifications rarely, we value clarity over brevity. Using sentential forms would

enable us to exploit a user’s ability to recognize an extended version of his or her

favorite implementation language, and we can expect a typical user’s “recognition

vocabulary” to be large.

If a user has difficulty producing new sentential forms, we can provide a language-

based editor. Such an editor is an excellent tool for creating phrases in an unfamiliar

language, essentially by direct manipulation. Direct manipulation works well for

novice users, and because a program generator is not likely to be needed more than

once for any particular application, every user is a novice user.

Of course, these claims are speculative. The idea of using extended sentential

forms for program generation would need considerable development before it could

even be evaluated, let alone deployed.

5.2 Lessons for prettyprinting

Prettyprinting engines are well studied; optimal methods that use dynamic program-

ming have long been known (Oppen, 1980), and the problem is a favorite of func-

tional programmers (Hughes, 1995; Wadler, 1999). The maturity of this technology

might lure an implementor into thinking it is easy to apply, but in practice there seems

to be no well-established body of knowledge on how to exploit prettyprinting engines

to produce readable, idiomatic concrete syntax for commonly used programming

languages. I have found little discussion of techniques or alternatives, although
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Baecker & Marcus (1990) do survey previous work and present suggestions for C,

and Blaschek & Sametinger (1989) present a prettyprinter designed to be adapted

to different conventions.

The difficulty of producing readable output can be exacerbated by idiosyncratic

characteristics of automatically generated code. For example, an RTL-creation

procedure, such as fdivd on pages 609–609, requires function calls that are nested

more deeply than calls C programmers typically write by hand, and the prettyprinted

code can be very difficult to read.

Because prettyprinting is so difficult, it makes sense to have a single back-end

component that concentrates on prettyprinting and ignores other issues. The input

to such a component would be a form that represents the abstract syntax of the

target language. Such a component and intermediate form would be highly likely to

be reusable. There may also be other advantages; for example, type checking in the

program generator might prevent one from generating syntatically incorrect code,

as Thiemann (2000) demonstrates for HTML.

Some existing prettyprinting engines are limited in ways that preclude their use

for program generation. For example, the original Toolkit’s prettyprinter required

a special hack to enable it to insert #line in column 1. One reason the original

Toolkit does not emit macros for encoding is that its prettyprinter cannot easily

escape internal newlines with backslashes.

5.3 Lessons for intermediate representations

This paper concludes with lessons learned about intermediate forms for reusable

program generators. Although the answers are not definitive, these lessons address

the following questions:

• Should an intermediate form represent the intersection of the target

languages and interfaces, the union of the target languages and interfaces,

or some abstraction of the target languages and interfaces? Or perhaps a

combination?

• How many layers of intermediate representation should be inserted between

the program-generation algorithm and the eventual emission of code?

• What intermediate representations can usefully be shared among program gen-

erators? What data or code in the program generator should be parameterized

by the client’s needs? How should these parameters be expressed?

• What are the relative merits of templates and trees as a basis for an inter-

mediate representation?

• When trees are used, should there be many kinds of nodes or only a few?

Union languages versus intersection languages

The Toolkit’s intermediate form is a “union language;” it contains all the features

that might be used from each target language. This design makes it easy for the front

end to choose an idiomatic representation of generated code, but this benefit comes
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at a significant cost: both the intermediate form and the renderers are large and

complex. Another cost is that a transducer may be needed to match the intermediate

form to the target language. For example, the Toolkit’s intermediate representation

includes record-valued expressions and safe unions. Because these constructs cannot

be expressed in C, they must be rewritten in terms of record variables and unsafe

unions; the transducer that does this rewriting is 300 lines of ML. To emit ML, the

Toolkit uses a different transducer, which helps convert case statements to pattern

matches.

An intersection language has the advantage of simplicity. Because an intersection

language is a subset of every target language, it is easy to write emitters. If the source

language is an intersection language, as is ASDL, it is easy for users to predict the

results of program generation. But an intersection language may make it harder to

generate idiomatic, readable code; natural idioms in the target language may not

be expressible directly in the intersection language. This situation also requires a

transducer; for example, the translator component of asdlGen’s back end may be

considered a transducer. Another problem with an intersection language as source

language is that the restrictions it imposes may annoy users. For example, one of

my biggest frustrations in using ASDL was not having Booleans or characters built

in; other users report similar frustrations.9 While the author of a program generator

may use multiple-language support as an argument for restriction, any single user

may be interested in just one target language and may want the full capability of

that target language.

In one small area, I think the tension between union languages and intersection

languages can be resolved in favor of union languages. Polymorphic types are just

too useful to leave out of a program generator, even if the target language is a

monomorphic language such as C. For example, ASDL supports fully polymorphic

list and option type constructors; the key is that asdlGen emits code only for

fully instantiated monotypes. This policy could easily be extended to ASDL’s

algebraic types, and for languages that support polymorphic types, the restriction

to monomorphism could be relaxed. As another example, λ-RTL supports a “bit

vector” type constructor that is polymorphic in its width (the number of bits).

The λ-RTL translator enforces a similar restriction; in the semantics of any

particular machine instruction, all the widths must be known, i.e. the types must be

monomorphic.

Experience with both the Toolkit and with asdlGen suggests that transducers may

be a fact of life when supporting multiple target languages; neither an intersection

language nor a union language can be a good fit with all targets. It may be possible

to make a virtue of necessity by using transducers to get many of the benefits of

both union and intersection languages. In a future design, I would try to use a

small intersection language inside the implementation, while using a transducer to

reduce the mismatch between the intersection language and the target language of

the user’s choice.

9 Private communication from Dan Wang, May 2000.
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Many forms versus few forms

The original Toolkit tried to minimize the number of different intermediate repres-

entations used in the program generators. A single representation of expressions is

used to solve equations, to simplify expressions, and to emit code. That representation

is mapped directly to strings with prettyprinting escapes; the only language-specific

intermediate representation is essentially concrete syntax. These choices made it

difficult to adjust the output of the program generator, and they make it unlikely

that any of the code can be used in another program generator. Most of the choices

have been repeated in the second implementation, with similar results.

Learning from asdlGen, in a future design I would use an explicit, abstract

representation of each target language, and I would create prettyprinters to work

with those representations, not with my general-purpose intermediate form. No

matter what the merits of the rest of the design, the prettyprinters would be almost

guaranteed to be reusable.

Mixing general-purpose and domain-specific constructs

Section 4.3, which describes the Toolkit’s intermediate form, identifies many general-

purpose language constructs which might profitably be used in other program

generators. Unfortunately, the Toolkit’s implementation carelessly mixes these con-

structs with special-purpose constructs. In a future design, I would aim for a single,

extensible representation for general-purpose constructs, which would then be exten-

ded with special-purpose constructs. Not only the intermediate-tree datatype but also

the language-dependent emitters should be extensible. Two-level types, as described

by Steele (1994) and Sheard (2001), might be a good mechanism for extensibility.

Templates versus trees

In rewriting the Toolkit, I stopped using code templates because I thought a tree

representation would be more abstract, language-independent, and easier to port.

I expected easier porting because the effort required to build a new emitter should be

proportional to the number of constructs in the abstract tree representation, whereas

the effort required to rewrite all the templates is proportional to the number of uses

of those constructs. Trees also reduce the cost of changing a program generator,

because a change in the generated code can be effected by changing only one tree,

whereas such a change might require changing multiple templates: at least one per

target language supported.

I overlooked two problems with abstract tree representations. The first problem

is that in the implementation of a program generator, code that emits code is much

harder to read, understand, and change than are code templates. Sometimes this

problem can be mitigated by crafting syntax of the emitting code to reflect the

syntax of the emitted code. For example, it is possible to define a binary function

in ML that builds syntax for a left-shift expression, to name that function /<</,

and to make that name an infix operator. There are frustrating limitations to this

technique; for example, it is impossible to model all of C’s infix operators in this
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way, because C’s operators have fourteen levels of precedence, and ML permits infix

operators to be assigned at most ten distinct levels of precedence.10

The second problem I overlooked is that it is hard to design a tree abstraction that

works well for multiple target languages. As discussed above, it seems impossible to

avoid transducers in an implementation that supports multiple languages.

In a future design, I would try harder to find an implementation technique that

offered more of the clarity and simplicity of templates, even if the number of lines of

code to be ported were greater. Inventing such a technique might be an interesting

problem for those interested in the design of functional languages. Some work in

this area has already been done:

• Standard ML of New Jersey provides a mechanism for quotation and antiquo-

tation, which makes it possible to use Standard ML as a metalanguage for any

object language. The work may be a step in a useful direction, but it suffers

from several problems: syntax in the object language must be represented as

strings in the metalanguage; ML values inserted into an object-language term

must all have the same type; unspecified “tricks” are needed to write object-

language parsers; and terms written using the mechanism are not noticeably

more readable than terms written using straight ML. It’s unsurprising that

this mechanism is not widely used or imitated.

• MetaML uses ML as both metalanguage and object language (Sheadr et

al., 2000). It enables experiments in program generation, type systems, type-

directed staging, etc. MetaML can infer and check types of terms in the

object language, an appealing feature that is well beyond the capability of any

program generator discussed in this paper. It is too early to say what ideas

from MetaML might be generalizable to a setting with more than one object

language.

Rich trees versus spartan trees

If a program generator represents an intermediate form as a tree, it needs to walk

that tree both in ways that are unaware of the semantics of particular operators

(e.g. to find free variables) and in ways that are aware of the semantics of par-

ticular operators (e.g. to perform algebraic simplification). In today’s programming

languages, it is difficult to choose a representation that makes both kinds of tree

walks simple. There appear to be two alternatives: a “rich” representation that uses

a different kind of node for each operator and a “spartan” representation that uses

a single “apply” node for all operators. For example, to implement left shift, a

rich representation might define a special LSHIFT node of type exp * exp -> exp,

where a spartan representation might simply define a left-shift operator and use it

with an APPLY node of type operator * exp list -> exp.

It is unclear which representation would better support an infrastructure for

building reusable program generators. The rich representation makes it easier to

10 An easy fix would be to extend ML so that the precedence of an infix is specified using a real-number
literal. λ-RTL uses such a scheme, and the implementation is straightforward.
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match particular operators but harder to walk trees; the spartan representation

makes it easier to walk trees but harder to match particular operators. I have

used both alternatives, and in both cases I have felt it necessary to mitigate the

problems by using a special-purpose program generator to generate code for the

more awkward tree operations,11 but the results are unsatisfying.

I do not see how to resolve the conflict without some form of language extension.

Perhaps an extension to pattern matching could make code clearer when using a

spartan representation, or maybe some kind of generic or polytypic programming

could be used to write tree walks over a rich representation. This problem warrants

further investigation.

5.4 Conclusion

Reusability of a program generator is likely to be determined by the care with

which its design addresses the pragmatic aspects of program generation, not only

the domain-specific aspects. The most important pragmatic aspects appear to be

support for multiple languages and specification of interfaces to and internals

of generated code. The experience described in this paper has uncovered a few

rudimentary techniques that may help, but substantial work remains to be done

before we understand how to make program generators reusable.
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