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SUMMARY

I develop a mathematical model which can account for a distribution of the
number of repeated genes per chromosome under the joint effects of sister
chromatid exchange (SCE), inter-chromosomal crossing-over (ICC), and selec-
tion. The model can be applied not only to the cases of small gene clusters but
also to multigene families. Based on this model, an appropriate mathematical
formula is derived and used to obtain the equilibrium distribution. Assuming
stabilizing selection and two simple schemes concerning SCE and ICC, I
numerically calculate the equilibrium distribution and compare the result with
observations on frequencies of single and triple a-haemoglobin genes in primates.
It is also shown that if SCE and ICC occur according to the same probabilistic
law, the distinction between them does not make much sense in the equilibrium
distribution.

1. INTRODUCTION
Isozyme, restriction enzyme mapping and nucleotide sequencing techniques have been

applied to a variety of organisms. One of the most striking findings revealed thereby may
be the widespread occurrence of gene duplication, although the phenomenon has been
well-known since the early report of Bridges (1919).

Recently, Harris (1980) has examined the extensive data available on human enzymes
and concluded that at least 35 % of the enzymes studied so far are coded by multiple
loci. Gene organization of such 'multilocus enzymes' is still unclear, but it is likely that
they have emerged by gene duplication. More conclusive instances of duplicated genes
are the haemoglobin a and /? gene clusters, located on the human 16 and 11 chromosomes,
respectively (Weatherall & Clegg, 1979; Proudfoot et al. 1980). It is shown that at least
7 homologous genes, including pseudogenes, are involved in the ft cluster (Fritsch, Lawn
& Maniatis, 1980), and there are five in the a. cluster (Lauer, Shen & Maniatis, 1980).
Surprisingly, the genes in both clusters are arranged on the chromosome in the order of
their expression during development. A similar pattern of gene organization of haemo-
globin loci has been found in rabbit (Hardinson et al. 1979; Lacy et al. 1979) and mouse
(Jahn et al. 1980; Proudfoot & Maniatis, 1980). Unlike the situation in mammals,
however, adult a. and fi globin genes in Xenopus laevis are closely linked (Jeffreys et al.
1980).

To study a distribution of the number of repeated genes per chromosome, Kriiger &
Vogel (1975) have developed a model which incorporates unequal crossing-over between
homologous chromosomes at meiosis. Their model is quite similar to the present one in
this respect, but they have not considered the influence of sister chromatid exchange at
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mitosis. In addition, they have assumed that selection operates on gametes. However,
when selection acts on zygotes, their mathematical formulation to treat inter-chromosomal
unequal crossing-over must be extended in terms of zygote frequencies, since the
frequencies are not in Hardy-Weinberg proportion after selection. On the other hand,
in order to understand the evolution of 'small multigene families' such as haemoglobin
genes, Ohta (1981) has proposed two models to treat the continuous effect of unequal
crossing-over on the amount of genetic variability maintained in small multigene
families. Although the second model, referred to as the 'selection model' is more realistic
than the 'cycle' model, the application of the former is limited to the case where only
three types of chromosomes, having one, two or three repeated genes, exist in a
population. Therefore, it is necessary to generalize the selection model. It is also an
important problem in population genetics to quantitatively study how the number of
genes per chromosome is regulated by selection under the continuous effect of unequal
crossing-over, which presumably occurs during both mitosis and meiosis.

In this note, I present a mathematical formulation to treat this problem. A few
numerical results are compared with the observations by Goossens et al. (1980) and
Zimmer et al. (1980).

2. A MATHEMATICAL MODEL

Let us consider a random mating population of diploid organisms. For simplicity, I
assume that the population is so large that we can ignore the effect of random genetic
drift. If necessary, however, we can easily incorporate this effect into the following
formulation. Let At be the chromosomes carrying i repeated genes, and xt be their
frequency within a population. Likewise, I denote the individuals with A{ and Aj

00

chromosomes by AtAj and their frequency by y^. Thus, xt = Z 2/y- The number
of repeated genes per chromosome increases or decreases primarily due to sister
chromatid exchange (SCE) and inter-chromosomal crossing-over (ICC). Initially, I
assume that SCE between A( sister chromatids occurs at a rate ftt per generation while
ICC between Ai and Ak chromosomes at meiosis occurs at a rate ~/jk. The subscripts of
P and y indicate that the rates may depend on the number of repeated genes on a
chromosome. Once SCE and ICC occur, two new chromosomes emerge according to
certain probability laws. Suppose that a new chromosome At is produced by SCE between
Aj sister chromatids with probability /j.y, and by ICC between A} and Ak chromosomes
with probability Qt j+k. By definition, the number i cannot exceed 2j or j + k, i.e. the
transition probabilities are concentrated on [0, 2j] or [O,j + k]. To show the situation
explicitly, let us introduce the following function

for 0 ^ i < n
otherwise.

Although I have assumed a random mating population, when selection is taken into
account it is necessary to consider the zygote frequency of AtAj individuals at meiosis.
In other words, we cannot expect that the frequency of A(Aj is in Hardy-Weinberg
proportion when ICC occurs. Let wi} be the relative fitness of AtAj individuals. I also
assume that selection acts on individuals before SCE occurs in a germ line. Then, we have

00 00

after selection, where w = £ Z wijllip a nd */y = xlxi holds at the stage
i—Oj—0

of fertilization.
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Using the transition probability Pt^j, SCE changes the zygote frequency y'(j in (1) to

y't, = (1 -pt) (1 -Pi)y'ti+ I Pj,2kB(j, 2k) (1 -pt)Pky'tk
fc-0

00

fc-0

or approximately

fc-0

With these frequencies of AiAi, ICC occurs at meiosis and we get the frequency x\ of
At chromosomes in the next generation

00 00 00

The formulae (1) to (3) provide the basic equations to treat the present problem.
In the following discussion, I assume that selection is 'multiplicative', i.e. w(j = wtWj,

and that wt = 1 — s(i — nop)
2 for \i — nop\ < 1/V* and otherwise 0, where s is the selection

coefficient, and nop is the optimum number of repeated genes on a chromosome (Kruger
& Vogel, 1975). This type of stabilizing selection was first proposed by Kimura (1965)
to study the maintenance of genetic variability in quantitative characters, although he
assumed that wi} = 1 — s(i +j — 2nop)

2 (see also Crow & Kimura, pages 295-296). Note that
if selection is not multiplicative we must use (1) to (3).

Under the above assumptions, the change of frequency of Ai chromosomes
00

xt = ]£ ytj per generation is approximately given by
.7-0

1 / 1 °° \ 1
Axt = --[pt+- I ytjwjx})wtxt + -w]-o

Wi — W

jwkx}xk + —=—xi (4)
^ _ o f c o W

neglecting the higher order terms of Pifij, PiJtj and so on. In the above equation, W = w2

oo

and w = 2 W{Xt.
i-0

To demonstrate the continuous effect of SCE and ICC, I assumed here pi = /? and
Jt) = 7 where /? and y are constants, and two types of transition probabilities. In the
first model, the transition probabilities are

p and <*«•'•* = J i (5)

that is, that crossing-over takes place uniformly for all possible pairings between two
chromosomes. In the other model, they are

and Qij+k =

2 2( j-\-k)
where c = -—- for even j + k and . for odd j + k. In the second model, crossing-over

j ~T fc [j -l~ /c) — 1
is most frequent at the centre of repeated gene clusters.
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3. RESULTS AND DISCUSSION
Based on the formulae (4) to (6), I numerically calculated the equilibrium distribution

of the number of repeated genes per chromosome. Note that the equilibrium distribution
can always exist under the present selection model because it is assumed that all
individuals are lethal if the number of repeated genes on one of their two chromosomes
is larger than nop+l/-\/s, or smaller than nop—l/y/s. The results for small multigene
families assuming nop = 2 or 10 are presented in Table 1. The equilibrium distributions
in both models are rather similar but the distribution in the first model is slightly broader
than that in the second model, if the rates /? and y are the same (see the column headed

Table 1. Equilibrium, frequencies of chromosomes with repeated genes. Here it is
assumed that /? = 10~4 and y = 5 x 10~4

(The mean and variance of the number of repeated genes per chromosome are indicated by
M and V).

S = 001

S = 01

nop = 10

<S = 0001

<S = 001

S = 01

Model
1
2
1
2

Model

1
2
1
2
1
2

*o

00029
0

00002
0

X,

00071
00118
00007
00012

4-3 x 10~5

7.2 xlO"5

* i

00118
00147
00011
0-0013

00277
00505
00028
00053

2-6 x 1(T4

4-9 x l<r4

x2

0-9709
0-9710
0-9975
0-9973

* 1 0

0-9138
0-8676
0-9917
0-9855
0-9994
0-9989

x3

00117
00142
00011
00013

xn

00277
0-0501
00028
00053

2-6 x 10"4

4-9 x 10~4

00028
6-3 x 10"5

00002
3-9 x 10"'

£.
X12

00071
00117
00007
00012

4-3 x 10"5

7-2 x 10~5

M
20
2 0
20
20

M

100
100
100
100
100
100

V
00476
00295
0-0048
00030

V

0-5685
0-5312
00543
00539
00123
00072

V of Table 1). However, they are somewhat different from the Gaussian distribution with
the same values of mean (M) and variance (V) of repeated genes per chromosome
obtained from (4). The frequencies of chromosomes two or three steps apart from nop
are considerably higher than those expected from the Gaussian distribution. As noted
in the previous section, the selection model used here is different from that of Kimura
(1965) and Crow & Kimura (1970), but we can expect a Gaussian distribution even in
the present model if we take their approach. Therefore, the discrepancy must come from
the over-simplification in treating the process of crossing-over as a diffusion type,
particularly when nop is small.

In the case of nop = 2, the equilibrium frequencies are given approximately by

and zl = x3 = 4s

for both models, when s > /? + y (see (7) in Ohta, 1981). Using (7) and the data on the
frequency of triple a chromosomes in human populations observed by Goossens et al.
(1980), I estimated the selection coefficient s as about 50 times larger than the crossing-over
rate fi + y. If the crossing-over rate fi+y is of the order of 10~3 or 10~4 (Ohta, 1981), the
selection coefficient against single and triple a becomes 005 or 0005. However the
observations of the much higher frequency of the single a globin gene compared with
the triple a. gene in human populations (Goossens et al. 1980), and a high frequency of
the triple a gene in chimpanzee (Zimmer et al. 1980), suggest that the selection coefficient
s may be asymmetic to the dosage. Another possible explanation may be that random

https://doi.org/10.1017/S0016672300020437 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300020437


Short papers 101

genetic drift, neglected here, is responsible for high frequencies of such chromosomes in
these populations.

In a recent lucid paper, Schimke (1980) has suggested that SCE in mammalian cells
occurs at a considerable rate, and has shown that we can easily select cultured cells with
more repeated genes when we artificially shift the optimum number of repeated genes
per chromosome towards a larger value. If crossing-over spontaneously occurs at a rate
as high as 10~4, and the selection coefficient s against less fit chromosomes is about 10~2,
as predicted in the case of haemoglobin genes, the fittest chromosomes with duplicated
genes must have spread in a population very rapidly during the course of evolution.

In the above analyses, I tacitly assumed that the pattern of SCE is essentially the same
as that of ICC. In other words, the transition probability of SCE is assumed to be the
same function as that of ICC in each model (see (5) and (6)). To evaluate relative effects
of SCE and ICC on the equilibrium distribution, I calculated some other cases in which
each value of/? and y is changed but the total rate ft + y is kept constant. So long as
fl+y remains unchanged, I found no significant difference in the patterns of the
equilibrium distribution. This in turn indicates that it is at least theoretically unnecessary
to distinguish SCE from ICC if they do occur in the same way. However, this assumption
may not be warranted in reality, and the distinction between SCE and ICC would become
important. As there is no evidence for models (5) and (6), they might be unrealistic, but
formula (4) will be still appropriate even when we know more precisely the mechanisms
of SCE and ICC. In particular, pt and yy might depend heavily on the repeated number
per chromosome. At any rate, the present formulation is potentially useful for studying
the distribution of the number of repeated genes per chromosome under the joint effects
of SCE, ICC and selection.

I would like to thank Dr T. Ohta for her stimulating discussions. I am much indebted
to an anonymous referee for his many useful comments in improving the manuscript.
This is Contribution no. 1361 from the National Institute of Genetics, Mishima, Japan.
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