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Gradual fault detection is always an important issue in integrated navigation systems, and the
gradual fault is the most difficult fault to detect. To detect gradual faults in a timely and
precise manner in integrated navigation systems, the statistical concepts of the normalised re-
sidual mean and the sum of absolute residuals are introduced according to the characteristics
of gradual system failure in this paper. The applicability of the improved residual χ2 detection
method is discussed. Then, the gradual fault detection program based on the improved re-
sidual χ2 detection method is designed with the criterion of normalised residual mean and
the sum of absolute residual. The simulation results and vehicle tests show that: 1) The residual
of the failed sub-system can be calculated accurately with the improved residual χ2 detection
method, which has strong applicability in gradual fault detection; 2) The gradual fault can be
detected in a short time by using the normalised residual mean and the sum of absolute
residual.
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1. INTRODUCTION. Since there are many kinds of interference and disruption
underwater, navigation devices may suffer various faults. If these faults are not
detected and isolated quickly, the navigation information coupled with the faults
will be introduced into the navigation system, affecting the whole system and reducing
precision (Qin et al., 2012; Zhao et al., 2013). Therefore, the fault detection, isolation
and system reconfiguration are key issues of a high quality underwater integrated navi-
gation system (Zolghadri, 2012). However, the fault detection method for underwater
integrated navigation requires development due to the high requirements of real time
operations, the complex environment and a lack of navigation information (Zhao
et al., 2013).
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Early fault detection and diagnosis methods are mostly based on hardware redun-
dancy (Qin et al., 2012). In these methods, the hardware configuration always
exceeds the minimum necessary and a vote approach is used to detect the fault.
Thus the navigation system can still work normally and supply accurate navigation in-
formation based on the rest of the sensors when one sensor fails. However, this may
increase the volume, power consumption and cost of the navigation equipment. All
of these run counter to the requirements of modern vehicles.
The analytical redundancy method was developed following the hardware redun-

dancy method. It is based on mathematical models, which utilise the inherent relation-
ship between the inputs and outputs of the diagnostic system. The advantage of the
analytical redundancy method is that it can monitor the navigation sensors without in-
creasing the number of sensors and changing the structure of the navigation equip-
ment. However, the analytical redundancy method works normally and accurately
based on an accurate model of the monitored object, which also needs prior statistical
information of the measurement noise and the system process noise. Otherwise, it may
result in a mistaken judgment (Jin and Zhang, 1997). The residual χ2 detection method
is one of the successful applications of the analytical redundancy method.
M-estimation (Maximum Likelihood Type Estimates) is a robust estimation method

based on system models (Huber and Ronchetti, 2009). It can effectively monitor the
outlier points in the measurement and adjust the gain matrix of the filter to reduce
the influence of the outliers by monitoring the result (Zhang and Pang, 2005). In
M-estimation, the curves of the objective function differ according to the objective
function. However, they all reduce the weight when the residual becomes larger
(Wang, 2013). M-estimation has been successfully used in PHINS (An Inertial
Navigation Equipment Composed by Three Gyros and Three Accelerometers) pro-
duced by IxBlue, a French firm (IXBLUE, 2008). However, in the early stages, the
M-estimation method can only be used in a linear system. Chang et al. (2012a; 2013)
and Chang et al. (2012b) reconfigure the measurement by the Huber method and
combine the M-estimation and the Unscented Kalman Filter (UKF). This method
forms a robust non-linear Kalman filter. Although the M-estimation method does not
need to increase the amount of sensors and has a low calculation burden, it is still
based on an accurate system model and the change of the residual. Thus it can only
detect a mutant fault accurately and fails in detecting the gradual fault.
With the development of computing technology in recent years, artificial intelli-

gence, intelligent filtering and other methods have attracted experts’ attention to
improve fault detection. Genetic neural networks were applied to detect pre-treated
sensor signals, which can efficiently diagnose the sensor fault (Qian and Wang,
2009). The Levenberg-Marquardt (LM) algorithm was applied to improve the stand-
ard Back Propagation (BP) neural networks algorithm, which optimises the training
time and accuracy (Qian et al., 2009). An improved H∞multi-fading tolerant filtering
method is proposed in Chen and Yuan (2009), which solves the problem of orthogonal
detection sensitivity mismatch due to the huge magnitude of differences between the
observed values in the residual detection method. The advantages of artificial intelli-
gence are instantaneity and robustness such that the system can still work properly
even when system information is lost. So, it has a good performance in noise and is
fault tolerant. Moreover, its performance is not limited to the restriction of an accurate
mathematical model and other obstructions (Liu et al., 2009). However, all of these
methods are based on prior information of the system fault characteristics and
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types. For the underwater integrated navigation system, these methods may fail
because the system works in a complex environment and the performance of the
faults are various. Artificial intelligence and intelligent filtering always involve a
large amount of calculation. Furthermore, the dimensions of an underwater integrated
navigation model are always high. This may lead to a great calculation burden on the
navigation computer.
Given the high requirement of real-time performance, complex working environ-

ment and high dimension of the integrated navigation system, the χ2 detection
method, which belongs to the analytical redundancy category, which has less calcula-
tion and is sensitive to the change of the residual, is still widely used. Traditional χ2

fault detection methods are divided into the state χ2 detection method and the residual
χ2 detection method (Brumback and Srinath, 1987; Liu et al., 2009). When there is no
update of measurement information in the recursive status process, the fault detection
sensitivity of state χ2 detection method is decreased. A method where two auxiliary
filters are alternately used to correct the navigation system was proposed in Da
(1994), which could overcome the disadvantage of the growing difference between
the real states and the recursive states and also has a fault-detect capability.
However, this method greatly increases the complexity of computation in a highly
dynamic environment and decreases the sensitivity (Da and Lin, 1995; Qiu et al.,
2005). The Residual χ2 detection method that uses the system residual information
to form the detection function can detect the faults in time with a small amount of cal-
culation as well as high real-time feature, and it is also suitable for dynamic environ-
ments. However, it does not work well in gradual fault detection (Qian, 2004).
To resolve the problem analysed above, a fast gradual fault detection method is pro-

posed in this paper. The details are as follows. According to the working properties of
the assisted navigation devices and the structure feature of the underwater integrated
navigation system 1) Normalised residual mean and the sum of absolute residual are
introduced; 2) The applicability of the improved residual χ2 detection method in
gradual fault detection is discussed; 3) The gradual fault detection program with the
criterion of normalised residual mean and the sum of absolute residual is designed.
To verify the effectiveness of the proposed method, simulation experiments and

vehicle tests are done. These experiments results show that: 1) The residual of the
failed sub-system can be calculated accurately with the improved residual χ2 detection
method and the improved residual χ2 detection method has strong applicability in
gradual fault detection; 2) The gradual fault can be detected in a short time according
to the characteristics of the normalised residual mean and the sum of absolute residual.
The rest of this paper is organised as follows. The tolerant model of the underwater

integrated navigation system and the principle of the residual χ2 detect method is
briefly described in Section 2. In Section 3, the applicability of the improved residual
χ2 detection method in gradual system fault detection is discussed and a method
which is used to detect the gradual fault is designed by using the normalised residual
mean and the sum of the absolute residual values. The reconfiguration of the inte-
grated navigation system is also described simply. In Section 4, the gradual fault detec-
tion of the integrated navigation system are simulated and analysed. In Section 5, a
land vehicle environment is used to simulate an underwater vehicle and experiments
are conducted to test the gradual fault detection method introduced in this paper.
Finally, the features of the gradual fault detection method proposed in this paper
are summarised.
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2. TOLERANT MODEL AND RESIDUAL Χ2 DETECTION METHOD FOR
INTEGRATED NAVIGATION SYSTEM

2.1. Fault detection program and information fusion model. The integrated and
information fusion model is shown in Figure 1. A Strapdown Inertial Navigation
System (SINS) known as a common reference system is considered as a reliable
system without fault in the navigation process. The assisted navigation devices are
the Doppler Velocity Log (DVL), the Magnetic Compass (MCP) and the depth-
gauge (Yang et al., 2006; Liu and Zhang, 2010; Zhang and Xu, 2012).
In the information fusion process, three separate fault detection and isolation (FDI)

modules, FDI1, FDI2, FDI3, are used to detect the faults of the three subsystems. The
subsystem will be isolated after the gradual fault detection time when the gradual fault
occurs. The isolated subsystem will be restored and the information will be fused again
when the fault is cleared.

2.2. Residual χ2 detection method. In Figure 1, the discrete random linear model
without controlling terms of the subsystem is described as

X̂k=k�1 ¼ fk=k�1X̂k�1 þWk�1

Zk ¼ HkX̂ k�1 þ Vk�1

(
ð1Þ

where the subscript k denotes the kth time-step, X̂ is the state vector, Z represents the
measurement vector, ϕk/k − 1 stands for the transition matrix of the dynamic model,H is
the measurement model matrix,W∼N(0,Q) is the process noise, and V∼N(0,R) is the
measurement noise. Q and R are the variance matrix of the process noise and the mea-
surement noise, separately.
Kalman filters are widely used in integrated navigation systems. They are also fun-

damental in the residual χ2 detection method. The basic Kalman filter equations of the
random linear discrete system are as follows.
One step prediction of the state is

X̂k,k�1 ¼ fk,k�1X̂k�1 ð2Þ

The state estimation is

X̂k ¼ X̂k,k�1 þ Kk Zk �HkX̂k,k�1
� � ð3Þ

The gain matrix, Kk of the filter is

Kk ¼ Pk,k�1HT
k HkPk,k�1HT

k þ Rk
� ��1 ð4Þ

The error variance of the one step prediction, Pk,k−1, is

Pk,k�1 ¼ fk,k�1Pk�1f
T
k,k�1 þ τk,k�1Qk�1τ

T
k,k�1 ð5Þ

The error variance of the state estimation is

Pk ¼ I � KkHk½ �Pk,k�1 I � KkHk½ ��1þKkRkKT
k ð6Þ

In a standard Kalman filter, the process noise and the measurement noise are assumed
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to satisfy the following assumptions

E½Wk� ¼ 0,E½WkWT
j � ¼ Qkδkj

E½Vk� ¼ 0,E½VkVT
j � ¼ Rkδkj

E½WkVT
j � ¼ 0

8><
>: ð7Þ

The local filters in Figure 1 also comply with the above equations. Then, the residual of
each local Kalman filter is

rk ¼ Zk �HkX̂k=k�1 ð8Þ
where, rk is the residual of the local filter.
When no fault occurs, the residual of the local filter is part of the white noise. Such as

rk ∼ Nð0,AkÞ ð9Þ
Equation (9) means rk has zero mean and its variance is

Ak ¼ HkPk=k�1H
T
k þ Rk ð10Þ

If the auxiliary navigation equipment fails, the statistical characteristics of the mea-
surement noise will change. Then, the residual rk is no longer part of the white noise.
Of course, the mean of the residual rk is no longer equal to 0, which can be used to
detect the occurrence of the mutant fault. The specific method is described as follows.
Firstly, a binary hypothesis to rk is made as
H0 denotes no fault where

Efrkg ¼ 0, EfrkrTk g ¼ Ak,

H1 denotes the existence of fault where

E rkf g ¼ μ, E rk � μð Þ rk � μð ÞT
n o

¼ Ak:

Then, the fault detection function is

γk ¼ rTk A
�1
k rk ð11Þ

Figure 1. SINS/DVL/MCP/Depth-gauge integrated navigation system.
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where γk obeys the χ
2 distribution and its degree of freedom is m, i.e. γk∼ χ2(m), and

m is the dimension of observations vector Zk.
The fault detection criteria is

if γk > TD, some faults occur
if γk < TD, no fault occurs

�

where the threshold TD determines the performance of the fault detection method.
According to the Neyman-Pearson criterion, when the false alarm rate is defined as
Pf = α, the threshold TD can be worked out through solving the equation Pf = P[γk
> TD / H0] = α. And the undetected rate is reduced to the lowest. Here Pf is

Pf ¼∫
∞
TD

χ2ðγ,nÞdγ ¼ 1� ∫
TD

0 χ2ðγ,nÞdγ ð12Þ
From Equations (8), (10) and (11), we can conclude that if the fault is serious

enough, then the value of the fault detection function γk will be bigger than the thresh-
old TD. While the gradual fault information is always so faint that γk is far less than TD,
X̂k,k�1 will trace the gradual fault information which helps the γk remain smaller than
TD. Then, the residual χ2 detection method is invalid in gradual fault detection. To
avoid the tracking capability of X̂k,k�1 and the invalidity of the residual χ2 detection
method in gradual fault detection, two improvements are introduced and the
gradual fault detection scheme is designed in the next section.

3. A FAST GRADUAL FAULT DETECTION. According to the above analysis,
the traditional residual χ2 detection method fails in detecting the gradual system fault.
This section aims to explore this problem and introduces the applicability of the
improved residual χ2 detection method in gradual fault detection, the statistical char-
acteristics of the gradual fault information and the gradual fault detection program
with the criterion of normalised residual mean and the sum of absolute residual.

3.1. The applicability of the improved residual χ2 detect method. The reasons why
the traditional residual χ2 detection method failed in gradual system fault detection
should be analysed. As we know, one-step prediction of the state in a conditional
Kalman filter is

X̂k=k�1 ¼ fk=k�1X̂k�1 ð13Þ
where

X̂k�1 ¼ X̂k�1=k�2 þ Kk�1½Zk�1 �Hk�1X̂k�1=k�2�
¼ fk�1=k�2X̂k�2 þ Kk�1½Zk�1 �Hk�1fk�1=k�2X̂k�2�
¼ ½I � Kk�1Hk�1�fk�1=k�2X̂k�2 þ Kk�1Zk�1

ð14Þ

Supposing that a continuous and stable fault occurs at the (k− 1)th time-step,
according to Equation (14), it can be seen that the observation vector Zk− 1 is
already corrupted by the fault information at this step. As a result, X̂k�1 contains
the failure information. After going through one recursive step as per Equation (13),
X̂k=k�1 contains the failure information, too. While in the low dynamic environment,
there is no great difference between the observation vectors Zk and Zk− 1, due to the
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continuity and stability of the fault. If we still use rk ¼ Zk �HkX̂k=k�1 to calculate the
residuals, the output of fault detect function γk will be less than the threshold, TD. As a
consequence, the fault detection system will mistakenly think the fault has disap-
peared. Then, the failed subsystem will be continuously combined with the other
normal subsystem, and the fault information will pollute the whole integrated naviga-
tion system. According to the analysis above, it can be seen that the result of the fault
detection function will be less than TD because of the predicted value X̂k=k�1 which
tracks the fault information of the failed subsystem by a Kalman filter when a con-
tinuous and stable mutant fault occurs. Then, the fault detection fails. The result of
the fault detection function will not hop and exceed the threshold TD until the fault
disappears. Meanwhile, the fault detection system makes a misjudgement.
So, the first improvement in this paper is that we change the traditional residual

equation into Equation (15).

rk ¼ Zk �Hkfk=k�1
X̂g k�1ð Þ
X̂L k�1ð Þ

" #
ð15Þ

where X̂gðk�1Þ is the common state of each subsystem which is obtained directly by the
main filter of the federated Kalman filter. X̂Lðk�1Þ denotes the special subsystem states

that only belong to this subsystem in X̂k�1.
When a continuous and stable fault that is big enough to occur at the kth time-step

occurs, γk hops and becomes bigger than TD immediately. The failed subsystem is then
isolated by the Fault Detection and Isolation (FDI) module. The fault information of
the failed subsystem is stopped from being fused with the other normal subsystem at
the (k−1)th time-step. So, the predicted common state vector X̂g is not affected by
the failure subsystem based on Figure 1, and X̂g will not trace the fault information.
Then γk remains bigger than TD until the fault disappears.
While a gradual fault always changes slowly in a short time and is much smaller than

the system noise, a period of time to detect and isolate this fault is needed. As shown in
Equation (14), before the gradual fault system is isolated, the residual contains the
gradual failure information. When the fault is detected, it can stop the last step
where interference of the gradual fault is generated. Comparing with Equation (8) it
can be seen that the subsequent calculations of the residual by Equation (15) are not
corrupted by the gradual fault because of using the predicted state of the main filter,
X̂g. In conclusion, the improved residual χ2 detection method has a strong applicability
in gradual fault detection.

3.2. The statistical characteristics of the gradual fault information. Since the
change of the gradual fault is slow in the adjacent survey cycles and always much
smaller than the system noise, there is no obvious difference between the observation

vector Zk− 1 and Hkfk=k�1
X̂g k�1ð Þ
X̂L k�1ð Þ

" #
. The fault detection function γk is much lower

than the threshold TD. As a result, the gradual fault could not be detected and the
failed subsystem could not be isolated by the improved residual χ2 detection
method. Some statistical characteristics can still be concluded from γk. Here, we intro-
duce two statistical concepts, the residual mean and the sum of the absolute residual,
basing on moving window technology to identify the gradual fault.
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To simplify the analysis, a ramp fault is considered and awhite noise is attached. The
fault is

F ¼ Ktþ white− noise ð16Þ
where F is the gradual fault, K is the changing trend of the gradual fault and it is very
small, t is the duration time of the fault. white − noise denotes the white noise.
Supposing that a gradual fault occurs at the (k)th time step, then Equation (15)

becomes

rk ¼ Zk þ K �1�Δt þ white � noise�Hkfk=k�1
X̂gðk�1Þ
X̂Lðk�1Þ

" #
ð17Þ

where, rk is the residual with one step measurement error. Zk is the supposed normal
measurement, Δt is the cycle of the filter.
If there is no fault in the subsystem, the residual γk obtained by Equation (15) obeys

the normal distribution, rk∼N(0,M). While the residual rk obtained by Equation (17)
no longer obeys the normal distribution and contains the information of
K � 1 � Δt þ A � white � noise. Then Equation (3) changes into

X̂k ¼ X̂k,k�1 þ Kk Zk þ K �1�Δt þ white� noise�HkX̂k,k�1
� � ð18Þ

where X̂k contains the fault information of the kth time-step, K �1�Δt þ white� noise.
Then the common states in X̂k are to be fused with the other normal subsystems
and X̂g obtained from the main federated filter also contains the fault information
K �1�Δt þ white � noise of the kth time-step. If the fault information remains the
same as that in the kth time-step, then the residual obtained from the (k+ 1)th

time-step will obey the normal distribution again. However, the fact is that the
measurement changes in the next filter cycle because of the gradual fault and it is

Zkþ1 ¼ Zk þ K �2�Δt þ white� noise ð19Þ

Because of the outputs of the main filter of federal Kalman filter, X̂g only contains
fault information K �1�Δt þ white � noise in the kth time-step, the residual rk+ 1 at
this moment is

rkþ1 ¼ Zk þ K �2�Δt þ white� noise�Hkfk=k�1
X̂gðk�1Þ
X̂Lðk�1Þ

" #
ð20Þ

So, the residual rk+ 1 is mainly composed of K �1�Δt þ white� noise. The residual
rkþiði ¼ 3,4 � � �Þ in the following are the same as rkþ1.
According to the above analysis, the statistical characteristics in a moving window

are proposed as follows.
Firstly, the length of the moving window and the fault detection time should be

determined according to the application environment. If the length of the moving
window is too short, the statistical features will be corrupted by the measurement
noise or system noise. If the length of the gradual fault detection time is too long,
more fault information will be fused in the integrated navigation system, the precision
of the integrated navigation will also be reduced even if the gradual fault subsystem is
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isolated in the end. In the simulation environment, the length of the moving window is
set at 20 and the fault detection time is set as 30 s.
Then we calculate the residual mean and the sum of the absolute residual. The

details of the moving window are shown in Figure 2.
At the kth time-step the residual mean of the moving window is

�rk ¼
Xn
i¼1

rk�20þi

 !�
n ð21Þ

where �rk is the residual mean of the moving window and n is the length of the moving
window.
The sum of the absolute residual is

s rkj j ¼
Xn
i¼1

rk�20þij j ð22Þ

where, s|rk| is the sum of the absolute residual.
As the fault information is only contained in the last element of the window,

Equations (20) and (21) can be rewritten as

�rk ¼ white� noise1 þ white� noise2 þ � � � þ
white� noise19 þ k�Δtþ white� noise20

� ��
20 ð23Þ

s rkj j ¼ white� noise1j j þ white� noise2j j
þ � � � þ white � noise19j j þ kΔtþ white � noise20j j ð24Þ

It is known that the white-noise obeys the normal distribution and kΔt is faint. Then, it
can be concluded that �rk almost equals to 0.
As the fault lasts and the window moves, the fault information becomes the main

parts of the window. Then at the (k + i)th (i≥ 20) time-step, the residual mean and
the sum of the absolute residual of the moving window is

�rkþi ¼ k�Δtþ white � noise1 þ k�Δtþ white� noise2
þ � � � þ k�Δtþ white� noise20

� ��
20 ð25Þ

s rkþij j ¼ k�Δtþ white� noise1j j þ k�Δtþ white � noise2j j
þ � � � þ k�Δtþ white� noise20j j ð26Þ

Then �rkþi almost equals to k�Δt. By comparing Equations (26) and (24), we can con-
clude that when the gradual fault occurs, the sum of the absolute residual is bigger than
the sum of the absolute residual when there is no fault.

Figure 2. Moving window.
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According to the above statistical characteristics of the gradual fault, the gradual
fault detection method is proposed in next section.

3.3. A scheme of gradual fault detection. A diagram of our gradual fault detection
method is shown in Figure 3, where the normalisation of �rk is performed as

signð�rkÞ ¼ �rk= �rkj j ð27Þ
where, signð�rkÞ denotes the normalisation of �rk.
Because of the features of gradual faults the mean of the residual could not have a

great fluctuation during the adjacent periods. Meanwhile, the normalised residual
means are equal in the adjacent periods. The sum of absolute residual is bigger than
that when no fault occurs. There are rare differences between the sums of absolute
residual in adjacent cycles, the absolute subtraction of them will be lower than the
threshold TL which is equal to 0·04 in this paper. According to our design, if there is
no great difference between each mean of residuals and all normalised residual
means are equal and the differences of residual mean in adjacent cycles are less than
TL in 30 consecutive updates, the gradual fault will be recognised, and the fault
subsystem will be isolated immediately.
According to Figure 3, the gradual fault detection and system restored steps in this

paper are as follows.

1) Initialisation. The length of a statistical cycle is set to be 20 s, which means the
length of moving window equals 20 and each element in the window is assigned
a value of 0;

2) Statistical calculations. Clean the counter (here we use CNT to denote the
counter). Move each element left by one bit, calculate the current residual and
put it into the last bit in the window at each update of the integrated navigation.
Then, calculate the residual mean, the normalised residual mean and the sum of
absolute residual of the window.

3) Gradual fault detection. If in 30 consecutive updates, (30 s is the gradual fault
detection time in this paper), there is no great difference between each mean of
residual and all the normalised residual means are equal, the difference of sum
of the absolute residual in adjacent cycles is lower than the threshold TL (in
this paper, TL < 0·04), then, it is recognised that a gradual fault has occurred.
Or, return to step 2.

4) Isolation. If a gradual fault is recognised in step 3, isolate the faulty subsystem.
5) System restoration. Take DVL as an example. When the fault disappears, there

will be another hop in fault detection function. At this time, if the upward vel-
ocity is equal to the rate of the depth-gauge change, it means that the SINS/
DVL system works properly again, and this subsystem should restored. This res-
toration time lasts 10 s in this paper.

6) To avoid the misjudgement of the fault diagnosis system, which is caused by the
oscillation of system in the restoring process of the aided navigation system, all
the fault diagnosis systems stop working for 30 s right after the gradual fault is
restored.

4. SIMULATION EXPERIMENT
4.1. Simulation conditions. The gyro constant drift is 0·04°/h with its random drift

0·04°=
ffiffiffi
h

p
; the accelerometer constant bias is 50 μg (g = 9·8 m/s2) with its random bias
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50 μg; the geographical position is 118° east longitude, 32° north latitude; and the carrier
maintains its state to be uniform in a straight line with its east and north velocity com-
ponents both constant at 0·5 m/s. To simplify the integrated navigation system model,
the measurement errors of DVL, depth-gauge andMCP are set aswhite noise with amp-
litude of 0·02 m/s, 5 m and 0·2° respectively, and the information of all these aided navi-
gation devices are updated at a frequency of 1 Hz. The integrated navigation system
information fusion circle is set to be 1 s and the whole simulation time is 1000 s.
This paper takes DVL as an example to illustrate the working process of the gradual

fault detection system. In the experiment, ramp function which is δV= (0·02*T)m/s
and T as the gradual fault duration are attached to the output velocity of the DVL
in the period of 200 s∼ 600 s, which simulates the gradual DVL fault.
To avoid navigation output fluctuation and a fault detection system misjudgement

caused by filter instability during the start up of the integrated navigation system, in
the first 10 s, outputs of the integrated navigation are only the SINS solution
without feedback correction.

4.2. Simulation results and analysis. The monitoring result of the traditional re-
sidual χ2 detection andM-estimation methods when the SINS/DVL subsystemmeets a
gradual fault are shown in Figures 4 and 5.
In order to avoid the mistaken judgment of FDI result from the unstable outputs of

the filter in the beginning, the fault detection function is not calculated until the inte-
grated navigation system has worked for 50 seconds. So the start point 0 s in Figure 4 is
the 50 s point to the integrated navigation system.
From Figure 4, it can be concluded that the value of the fault detection function

which is used to detect the occurrence of the fault by traditional residual χ2 detection
method does not obviously change when the gradual fault occurs at 200 s. This leads
the traditional residual χ2 detection method to fail in detecting the gradual fault. When
the gradual fault disappears at 600 s, the value of the fault detection function increases

Figure 3. The gradual fault detection scheme.
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greatly which is bigger than the threshold TD. Then the fault detection and isolation
system mistakenly determines that the SINS/DVL subsystem meets a fault.
Meanwhile, the fault detection and isolation system also isolates this subsystem
which stops the SINS/DVL from being fused; this makes the accuracy of the integrated
navigation system worse. From Figure 5 it can be concluded that the phenomenon of
the residual in M-estimation is the same as that in Figure 4 by the traditional residual
χ2 detection method. Thus we can conclude that the traditional residual χ2 detection
method and the M-estimation both fail to detect the gradual fault.
To certify the effectiveness of the fault detection method proposed in this paper,

three cases are discussed which are shown in Table 1.
Figures 6 to 8 show the attitude errors, velocity errors and position errors of the inte-

grated navigation system for the three cases. Figure 9 shows the mean values of system
vertical velocity component residuals.

Figure 4. The detection function value of the traditional residual χ2 detection system.

Figure 5. The residual of SINS/DVL by the M-estimation method.
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Figure 6(a) and 6(b) show that, when a gradual fault occurs in DVL without
isolation, the horizontal attitude errors have constant values. While if the gradual
fault of DVL is detected quickly and the subsystem SINS/DVL is isolated immediately,
the horizontal attitude errors can be reduced to a certain extent. The horizontal con-
stant attitude errors disappear when the gradual fault disappears and the subsystem

Table 1. Three cases.

Case 1 Fault detection by the method proposed in this paper
Case 2 Fault detection by traditional residual χ2 detection method
Case 3 Without fault detection and isolation

Figure 6. The integrated navigation system attitude errors curve whenDVL fails with a gradual fault.
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SINS/DVL is then restored. The traditional residual χ2 detection method fails to detect
the gradual fault of the subsystem; it even results in an error of judgment when the
gradual fault disappeared and mistakenly isolates the subsystem. From Figure 6 it
also can be concluded that an accurate speed provided by DVL can effectively
correct the horizontal attitudes of the integrated navigation.
From Figure 7 we can conclude that, in Cases 2 and 3, the integrated navigation

system output velocity could track the gradual fault and velocity errors between the
integrated navigation system and reference system and are equal to the fault informa-
tion. In Case 1, the fault diagnosis system proposed in this paper can detect the SINS/
DVL subsystem gradual fault in 30 s and isolate this failing subsystem quickly. Then
the integrated navigation system with residual normal navigation devices continues to
work properly, and the output navigation information is not polluted by the fault.
When the gradual fault disappears, the velocity is integrated normally in Cases 1
and 3. However the integrated navigation velocity solution is still quickly divergent
for the mistaken isolation in Case 2.
Comparing the results shown in Figure 8, it can be seen that a gradual fault could

result in a great horizontal position error compared with the system without fault.
However, if the gradual fault is detected quickly and isolated in time, the horizontal
position error could be reduced to a great extent. The mistaken isolation in Case 2
can result in an intolerable error to the integrated navigation system.
In Figure 9(a) the mean of the upward velocity residual is identical to −0·02, the

amplitude of which is equal to the change rate of the gradual fault. The normalised
residual mean is identical to −1. In Figure 9(b) the gradual fault is detected at 233 s
and the SINS/DVL subsystem is isolated immediately. The mean of the upward vel-
ocity residual begins to increase greatly.

5. TESTING INAVEHICULAR ENVIRONMENT. The gradual fault detection
method proposed was verified by car test to simulate the manoeuvre of an underwater
vehicle. The prototype of a fibre optic gyroscope strapdown inertial navigation system
was used in the experiment. The gyro constant drift is 0·006°/h, and its random drift is
0·005°=

ffiffiffi
h

p
, the accelerometer constant bias is less than 50 μg. The reference navigation

data came from the loose couple of PHINS developed by French firm IXBLUE and the
FlexPark6 GNSS receiver developed by the NovAtel firm. The velocity vector projec-
tion in the carrier coordinate can be obtained by using the reference system’s attitude
matrix. White noise with amplitude of 0·02 m/s is attached to the obtained velocity to
simulate a DVL output. Also, white noise is added to the heading information and
height information of the reference system, with amplitude to be 0·2° and 5 m, so
that it can simulate MCP and Depth-gauge output respectively. The navigation
system information update frequency is 1 Hz, and the information fusion cycle of the
integrated navigation system is 1 s. PHINS and the inertial measurement unit are
fixed on the same mounting plate shown in Figure 10. Figure 11 shows the navigation
experimental car with a red circle in Figure 11 to mark the GNSS receiver antenna.
In the real environment, the gradual fault always changes slowly and is hard to

detect. The interruption of the noise increases the difficulty of gradual fault detection.
In this paper a ramp function (δV= (0·02*T)m/s, T is the gradual fault duration) is
attached to the output velocity of the DVL in the period of 200 s∼ 500 s, which simu-
lates the gradual faults of the DVL. The gradual fault detection time is set to 60 s.
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The attitude errors, velocity errors and position errors of the integrated navigation
systems under three conditions: fault-free, fault without isolation and fault with isola-
tion, are shown in Figures 12 to 14. Figure 15 demonstrates the navigation trajectory
from the experimental prototype. Figure 16 is the navigation trajectory from the refer-
ence systems and Figure 17 is the actual road map used for experiments.
Figure 12 implies that the pitch error, roll error and heading error are nearly the

same under the two conditions of fault-free and fault with isolation. Only a few

Figure 7. The integrated navigation system velocity errors curve when DVL fails with a gradual
fault.

Figure 8. The integrated navigation system position errors curve when DVL fails with a gradual
fault.
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hops whose values are less than 1° exist when the SINS/DVL subsystem is restored.
Plenty of large fluctuations are apparent when a gradual fault exists and without
isolation.
Figure 13 indicates that the output velocity of integrated navigation tracks the

gradual fault from 200 s to 260 s. The fault detection method introduced in this
paper can identify the gradual fault as long as the fault lasts for 60 s and isolates
the failed subsystem, SINS/DVL subsystem, immediately. In the low dynamic environ-
ment, the velocities will not change very much. According to the previous 100 s results
of the navigation system we have recorded, we take the mean of the first 30 s velocities
as the current velocities. Then the velocities are mainly provided by SINS and show a
certain tendency to diverge, but the divergent rate is much smaller than those under the
condition that a fault occurs without isolation.

Figure 10. Installation diagram.

Figure 11. Experimental car.

Figure 9. The mean of the upward velocity residual of SINS/DVL.
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Figure 14 shows that under the conditions of fault-free, fault without isolation and
fault with isolation, the attitude errors are 0·0016°, 0·0060°, 0·0014°, respectively. The
longitude errors are 0·00091°, −0·0098°, −0·0063°, respectively. When DVL meets the
gradual fault and the SINS/DVL subsystem is isolated successfully, the integrated navi-
gation system output velocity errors increase accordingly, which results from the lack
of DVL velocity correction. After the system is stable, the output latitude errors and
longitude errors continue. The position errors still increase. Therefore, it can be con-
cluded that the gradual fault detection method introduced in this paper can stop the
interruption caused by the gradual fault, and the accurate DVL output velocity

Figure 12. The attitude error curves of the integrated navigation system.

Figure 13. The velocity error curves of the integrated navigation system.
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Figure 15. Trace of integrated navigation system.

Figure 16. Reference trace route.

Figure 14. The position error curves of the integrated navigation system.
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information can inhibit the position error effectively and efficiently. The statistical
results of Figures 15 and 16 are summarised in Table 2.

6. CONCLUSION. Owing to the fact that the residual χ2 detection method fails to
detect the gradual fault, the improved residual χ2 detection method is only used to
calculate the residual values in this paper. In the proposed method, the normalised
residual and the sum of absolute residual are considered as the determinants of the
gradual fault. If there is no great difference between each mean of residual, all the
normalised residual mean values are equal, and the difference of adjacent periods is
less than the threshold TL in gradual fault detection time, a gradual fault is recognised
and the faulty subsystem is isolated immediately. The simulation results and the vehicle
tests show that the residual of the failed sub-system can be calculated accurately with
the improved the residual χ2 detection method and the improved residual χ2 detection
method has a strong applicability in gradual fault detection. Therefore, the gradual
fault can be detected in a short time with the normalised residual mean and the sum
of absolute residual. The gradual fault detection method proposed in this paper is
effective in low dynamic environments.
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