A REMARK ON COMPLETELY REDUCIBLE NEAR-RINGS STEFANIA DE STEFANO AND SIMONETTA DI SIENO

A characterization of the completely reducible (zerosymmetric right) near-rings which are the direct sum of their socle of type 2 and of their 2-radical is given.

1. Completely reducible near-rings

Throughout this note N indicates a zerosymmetric right near-ring; terminology and notation are those of [5]. In particular a non-zero left ideal L of N will be called *minimal* if it does not contain proper left ideals of N; *simple* if the N-group L has no proper ideals; of type 2 if the N-group L is monogenic and has no proper N-subgroups.

It is well known that if the near-ring N is completely reducible that is, it is the sum of its minimal left ideals - then every minimal left ideal of N is a simple one, so that N is actually the direct sum of (a few of) its simple left ideals.

Assume that N has at least one left ideal of type 2; then the socle of type 2 - that is the sum $\zeta_2(N)$ of all left ideals of type 2 of N - is a non-zero left ideal of N and therefore is a direct summand of N (see [1], Lemma 1.3). Moreover the following result holds.

PROPOSITION 1. A completely reducible near-ring N is the direct sum of its socle of type 2 and of a left ideal which is contained in the

Received 23 July 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$A2.00 + 0.00.

annihilator of the N-group $\zeta_2(N)$.

36

Proof. The near-ring N can be written as the direct sum of $\zeta_2(N)$ and of a left ideal which is the direct sum of simple left ideals L_h $(h \in H)$ of N which are not of type 2 : $N = \zeta_2(N) \oplus \{\bigoplus_{h \in H} L_h\}$.

Now, for every $h \in H$, L_h is contained in the annihilator $(O : \zeta_2(N))$ of $\zeta_2(N)$.

Indeed let L be a simple left ideal and x an element of $\zeta_2(N)$ such that the *N*-subgroup Lx is different from zero; then Lx is simple (being *N*-isomorphic to L). On the other side, Lx is contained in $\zeta_2(N)$, since $\zeta_2(N)$ is a left ideal. Thus Lx is *N*-isomorphic to a left ideal of type 2 (see [1], Proposition 2.2) and L too must be of type 2. \Box

Looking next to the annihilator $(0:\zeta_2(N))$, it can be remarked that it is the intersection of the annihilators of the left ideals L of type 2 of N; in fact the inclusion $(0:\zeta_2(N)) \subseteq \cap(0:L)$ holds trivially, and the other is a consequence of $\zeta_2(N)$ being the direct sum of (a few of) the left ideals of type 2 and of the distributive property of direct sums.

Hence $(0 : \zeta_2(N))$ contains the intersection of the annihilators of all the N-groups of type 2, that is the 2-radical $J_2(N)$ of N.

These assertions (which are true for every zerosymmetric near-ring) can be strengthened when N is completely reducible, because every group of type 2 over such a near-ring is N-isomorphic to a left ideal of type 2 of N (see [5], Corollary 3.11). Therefore

PROPOSITION 2. If N is a completely reducible near-ring, the annihilator of $\zeta_{2}(N)$ is the 2-radical of N .

Then Proposition 1 can be rewritten as follows

PROPOSITION 3. A completely reducible near-ring N is the direct sum of its socle of type 2 and of a left ideal which is contained in the 2-radical $J_2(N)$ of N.

2. ζ_2 -decomposable near-rings

The last result leads to study the intersection between $J_2(N)$ and $\zeta_2(N)$, in order to establish conditions under which N is the direct sum of $\zeta_2(N)$ and $J_2(N)$. It seems useful to examine the question in a slightly more general context; call ζ_2 -decomposable a near-ring N which has its socle of type 2 as a direct summand, and recall that $J_2(N)$ is contained in $(O : \zeta_2(N))$.

Generally - as shown by the Counterexample 4 of Section 3 - if N is ζ_2 -decomposable but not completely reducible, $J_2(N)$ does not coincide with $(0 : \zeta_2(N))$; however they coincide restrictedly to $\zeta_2(N)$. In order to see this, let us prove

LEMMA 4. Let N be a ζ_2 -decomposable near-ring. For each left ideal C of N such that $J_2(N) \subseteq C \subseteq \{0 : \zeta_2(N)\}$, the intersection $\zeta_2(N) \cap C$ is the direct sum of all the left ideals of N which are nilpotent and of type 2.

Proof. Let $\zeta_2(N) \cap C = M$. All the nilpotent left ideals of N are contained in $J_2(N)$ and therefore in C; among them, those of type 2 are necessarily contained in $\zeta_2(N)$; hence all the left ideals of N which are nilpotent and of type 2 are contained in M. So it will be enough to show that there are nilpotent left ideals of type 2 of N whose sum is the whole M.

Now, the N-group M is the sum of its simple ideals L_i since it is an ideal of the completely reducible N-group $\zeta_2(N)$ (see [5], Proposition 2.48). For each L_i it results $L_i^2 = (0)$ because $L_i \subseteq M \subseteq C \subseteq \{0 : \zeta_2(N)\} \subseteq \{0 : L_i\}$. Furthermore, each L_i is a left ideal of N (since M is a direct summand of the N-group $\zeta_2(N)$ and therefore of N) and is of type 2, as it is a simple left ideal of N contained in $\zeta_2(N)$ (see [1], Proposition 2.2).

Lemma 4 can be read as follows: in a ζ_2 -decomposable near-ring N the left ideal $M = \zeta_2(N) \cap (O : \zeta_2(N))$ coincides with $\zeta_2(N) \cap J_2(N)$. Besides, M is nilpotent of class 2 and is zero if and only if N has no nilpotent left ideal of type 2.

From this statement the announced characterization follows.

PROPOSITION 5. A completely reducible near-ring N is the direct sum of $\zeta_2(N)$ and $J_2(N)$ if and only if N has no nilpotent left ideal of type 2.

3. Examples

There are several classes of near-rings satisfying the condition expressed by Proposition 5.

EXAMPLE 1. Let N be a completely reducible near-ring with right identity; then it is easily seen that N is the direct sum of a finite number of simple left ideals, so that the intersection of all the maximal left ideals of N is zero (see [5], Theorem 2.50). Such an intersection coincides with $J_{\frac{1}{2}}(N)$, for in a near-ring with right identity the maximal left ideals coincide with the *O*-modular ones. On the other side $J_{\frac{1}{2}}(N)$ contains every left nil ideal of N (see [5], Theorem 5.37) and therefore N has no nilpotent left ideal of type 2. This proves

PROPOSITION 6. A completely reducible near-ring N with right identity is the direct sum of $\zeta_2(N)$ and $J_2(N)$.

EXAMPLE 2. Let N be a distributive near-ring completely reducible as a left N-group. Then $J_2(N) = J_1(N) = J_0(N)$ is a nilpotent ideal which is the direct sum of the annihilator A(N) of N and of the sum of the nilpotent left ideals of type 2 of N (see [2], Theorem 6.1). Therefore

https://doi.org/10.1017/S0004972700002252 Published online by Cambridge University Press

PROPOSITION 7. A completely reducible distributive near-ring N is the direct sum of $\zeta_2(N)$ and $J_2(N)$ if (and only if) $J_2(N)$ is the annihilator of N.

Observe that if the completely reducible near-ring N is distributive, then $J_2(N)$ is nilpotent. This is also true of the 2-radical of a near-ring sum of its left ideals which are N-simple as N-groups (see [4], Theorem 2), but if N is a general completely reducible near-ring, $J_2(N)$ may be non nilpotent. This can be seen in the nearrings of Example 1 or in the following

EXAMPLE 3. Let N be the (external) direct sum of a field F and of the near-ring L built over the symmetric group S_3 denoted by (1) in [5], p. 410.

Since the near-ring L has no proper left ideal, the only left ideals of $N = F \oplus L$ are F (which is the socle of type 2 of N) and L, which is the 2-radical of N and non nilpotent because it contains idempotent elements.

Finally we show that there exist $(\zeta_2$ -decomposable) near-rings N such that $J_2(N)$ is properly contained in $(O : \zeta_2(N))$.

EXAMPLE 4. Consider the dihedral group of order 12, $D_{12} = \{a, b \mid 6a = 2b = 0, a+b = b+5a\}$ and let N be the distributive and commutative near-ring built over D_{12} denoted by N_{4} in [4]. The only ideal of type 2 of N is $A = \{0, 3a\}$, so that $\zeta_{2}(N) = A$ and $(O : \zeta_{2}(N)) = \{0, 2a, 4a, b, b+2a, b+4a\}$. Moreover $N = \zeta_{2}(N) \oplus (O : \zeta_{2}(N))$; hence N is ζ_{2} -decomposable.

However $J_2(N) = \{0, 2a, 4a\}$.

References

 [1] Stefania De Stefano and Simonetta Di Sieno, "On the type v socles of a near-ring", Arch. Math. (Basel) 42 (1984), 40-44.

- 40 Stefania De Stefano and Simonetta Di Sieno
- [2] Stefania De Stefano and Simonetta Di Sieno, "Quasi-anelli distributivi completamente riducibili", Rend. Istit. Lomb. Acc. Sci. Lett. Cl. Sci. Ser. A (to appear).
- [3] P. Lanusse Jones, "Distributive near-rings" (Thesis, University of Southwestern Louisiana, Louisiana, 1976).
- [4] A. Oswald, "Completely reducible near-rings", Proc. Edinburgh Math. Soc. 20 (1976-77), 187-197.
- [5] G. Pilz, Near-rings (North-Holland, Amsterdam, 1983).

Dipartimento di Matematica dell'Università di Milano, Via Saldini, 50, I-20133 Milano M1, Italy.