
J. Aust. Math. Soc. 90 (2011), 53–80
doi:10.1017/S144678871100108X

THE LOGARITHMIC RESIDUE DENSITY OF A
GENERALIZED LAPLACIAN

JOUKO MICKELSSON and SYLVIE PAYCHA ˛

(Received 18 August 2010; accepted 25 October 2010)

Communicated by V. Mathai

Dedicated to Alan Carey, on the occasion of his 60th birthday

Abstract

We show that the residue density of the logarithm of a generalized Laplacian on a closed manifold defines
an invariant polynomial-valued differential form. We express it in terms of a finite sum of residues of
classical pseudodifferential symbols. In the case of the square of a Dirac operator, these formulas provide
a pedestrian proof of the Atiyah–Singer formula for a pure Dirac operator in four dimensions and for a
twisted Dirac operator on a flat space of any dimension. These correspond to special cases of a more
general formula by Scott and Zagier. In our approach, which is of perturbative nature, we use either a
Campbell–Hausdorff formula derived by Okikiolu or a noncommutative Taylor-type formula.
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1. Introduction

The noncommutative residue on classical pseudodifferential operators introduced by
Wodzicki [14, 15] has a notable property called locality. That is, it corresponds to a
residue density resx (A) dx integrated over an n-dimensional (closed) manifold M :

res(A)=
∫

M
resx (A) dx,

resx (A) dx :=
1

(2π)n

∫
|ξ |=1

tr(σ−n(A)(x, ξ)) dξ.
(1.1)

Here σ(A)(x, ξ) denotes the local symbol of A, for a ∈ C, σa(A)(x, ξ) denotes the
homogeneous part of degree a of its symbol, with (x, ξ) varying in the cotangent
bundle of M , and tr denotes the fibrewise trace. As was observed in [7], this extends to
the logarithm A = log Q of an elliptic pseudodifferential operator Q of positive order
with appropriate spectral cut (we call such an operator admissible).

Exponentiating res(log(Q)) leads to the residue determinant,

detres(Q) := eres(log Q),
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first introduced by Wodzicki in the case of operators of order zero (see, for example,
the survey [3]) and further extended by Scott [12] to elliptic pseudodifferential opera-
tors Q with appropriate spectral cuts of positive order. Further logarithmic structures
have since been investigated in [10], in relation to topological quantum field theory.

Here, we show that the logarithmic residue density for a generalized Laplacian Q,

resx (log Q) dx :=
1

(2π)n

[∫
S∗x M

tr(σ−n(log Q)(x, ξ)) dξ

]
dx,

defines an invariant polynomial-valued form in the sense of Weyl (Theorem 3.12). It
then follows from Gilkey’s invariance theory [2] that this logarithmic residue density
can be expressed in terms of Pontryagin and Chern classes.

The presence of a logarithm makes the actual computation of a logarithmic residue
density difficult. However, observing that the symbol of a generalized Laplacian reads

σ(Q)= |ξ |2 + σ<2(Q),

where σ<2(Q) is of order smaller than two, enables us to carry out computations
by means of a noncommutative Taylor-type formula (Theorem 5.1) or a Campbell–
Hausdorff formula (Theorem 4.8), both of which provide ways to compare σ(log Q)
with log(|ξ |2).

A similar procedure applies, on the operator level, to compute the integrated
logarithmic density ∫

M
resx (σ (log Q)) dx

in the special case of the square of a twisted Dirac operator DW acting on a twisted
Z2-graded spinor bundle E = S ⊗W . Indeed, combining the Lichnerowicz formula
(7.2) (which compares D2

W with a Laplace–Beltrami operator 1E
= (∇E )∗∇E built

from the underlying connection∇E on E) with a Campbell–Hausdorff formula (which
compares log D2

W with log1E ) yields an expression for the integrated logarithmic
superresidue density sres(log D2

W ) in terms of sres(log(1E )) and a finite number of
superresidues of classical operators involving the curvature of∇E (Theorem 7.2). This
integrated logarithmic superresidue density turns out to be proportional to the index of
the chiral Dirac operator D+W (Theorem 6.3):

ind(D+)=−
1
2

∫
M

sresx (log D2
W ) dx . (1.2)

This was observed independently by Scott in [12] and the second author in some
unpublished lecture notes delivered at the University of Los Andes, Colombia. Thus,
locality in the Atiyah–Singer index theorem is closely related to the local properties of
the noncommutative residue.

We compute the index in two concrete examples. Our first example is for a
twisted Dirac operator on a flat space (Theorem 8.1), along the lines described
above using a Campbell–Hausdorff formula, and then for a pure Dirac operator in
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four dimensions, using a Taylor-type formula. For the second example, we first
derive simple formulas (see Proposition 9.3) for (super)residues of certain expressions
involving the derivatives of the Christoffel symbols, which can then be used to derive
the index in four dimensions. In this way, we recover the Atiyah–Singer index theorem
for a pure Dirac operator on a four-dimensional spin manifold.

With the perturbative approach adopted here, using either a Campbell–Hausdorff
or a noncommutative Taylor formula, we were, unfortunately, unable to derive the
general Atiyah–Singer formula due to Scott and Zagier announced in [10] and proven
in [11]. This perturbative approach, nevertheless, provides a pedestrian proof in the
cases investigated here, and useful intermediate results such as Theorem 3.12 and
Theorem 5.1, which we feel are of interest in their own right.

2. Notation

Given a real, oriented Euclidean vector space V of even dimension n = 2p, there
is a unique Z2-graded complex Clifford module S = S+ ⊕ S−, the spinor module,
such that the complex Clifford algebra C(V )⊗ C may be identified with End(S)
and dim(S)= 2p. An auxiliary linear complex space W yields a Z2-graded twisted
Clifford module E = S ⊗W .

Let
c :3V → C(V )

ei1 ∧ · · · ∧ eik 7→ c(ei1) · · · c(eik )

be the quantization map. To simplify our notation, we set γ j = c(e j ), so that the
grading operator reads

0 = i pγ1 · · · γn.

Notice that 02
= Id. The cyclicity of the trace, combined with the Clifford relations,

implies that the supertrace str := tr ◦ 0 on End(E) satisfies the following property for
a matrix M ∈ End(W ) viewed as an element of End(E):

str(Mγi1 · · · γik )= 0 if k < n, str(Mγ1 · · · γn)= (−2i)ptr(M), (2.1)

since dim End(S)= 2p. On the other hand, setting

σi j =
1
8 [γi , γ j ] =

1
4γiγ j if i 6= j, (2.2)

we have that, for any permutation τ ∈6n with signature |τ |,

str(στ(1)τ (2)στ(3)τ (4) · · · στ(n−1)τ (n))=
(−1)|τ |

4p str(γ1 · · · γn)

=
(−1)|τ |(−i)p

2p .

(2.3)

These constructions carry over to bundles, for which we abusively use the same
notation.

Let
E = S ⊗W = E+ ⊕ E−,
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with E+ = S+ ⊗W , E− = S− ⊗W , be a twisted Z2-graded spinor bundle over an
even n = 2p-dimensional closed Riemannian manifold M whose auxiliary bundle
W is equipped with a connection ∇W . Let F be a vector bundle over M , and let
C`(M, F) denote the algebra of classical pseudodifferential operators acting on the
space C∞(M, F) of smooth sections of the vector bundle F .

Let

D =
n∑

i=1

c(ei )∇
S
ei
∈ C`(M, S)

be the Dirac operator, where ∇S is the spinor connection, c stands for Clifford
multiplication and {ei : i = 1, . . . , n} is an orthonormal tangent frame on M . In local
coordinates we shall also write γi for c(ei ).

Let
∇

E
:= ∇

S
⊗ 1+ 1⊗∇W

be a connection on the twisted bundle E = S ⊗W , and let

DW =

n∑
i=1

c(ei )∇
E
ei
∈ C`(M, E)

be the corresponding twisted Dirac operator. The chiral Dirac operator D+W and its
formal adjoint D−W act from C∞(M, E+) to C∞(M, E−), and conversely.

3. The logarithmic residue density as an invariant polynomial

Following Gilkey’s notation (see [2, (2.4.3)]), for a multi-index α = (α1 . . . αs), we
introduce formal variables gi j/α = ∂αgi j for the partial derivatives of the metric tensor
g on M and the connection ω on the external bundle. Let us set

ord(gi j/α)= |α| = α1 + · · · + αs; ord(ωi/β)= |β|.

Inspired by Gilkey (see [2, (1.8.18) and (1.8.19)]), we give the following definition.

DEFINITION 3.1. We call a classical operator A ∈ C`(M, E) of order a geometric if,
in any local trivialization, the homogeneous components σa− j (A) are homogeneous
of order j in the jets of the metric and of the connection.

REMARK 3.2. A differential operator

A =
∑
|α|≤a

cα(x)∂
α
x ∈ C`(M, E)

is geometric if cα(x) is homogeneous of order j = a − |α| in the jets of the metric and
of the connection ∇W . Here we use the standard notation ∂x

α
= ∂α1 . . . ∂αs .
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EXAMPLE 3.3. The Laplace–Beltrami operator

1g =−
1
√

g

n∑
i=1, j=1

∂i (
√

ggi j∂ j )

is geometric.
More generally, [2, (2.4.22)] shows that

1p = dp−1δp−1 + δpdp

on p-forms, where
δk = (−1)nk+1 ?n−k dn−k−1?k+1,

is a geometric operator. Indeed, each derivative applied to ? reduces the order of
differentiation by one and increases the order in the jets of the metric by one.

EXAMPLE 3.4. The square of the twisted Dirac operator

D2
W =−

∑
i j

gi j
(
∇

E
i ∇

E
j +

∑
k

0k
i j∇

E
k

)
+

∑
i< j

c(dx i )c(dx j )[∇E
i , ∇

E
j ]

is a geometric operator.

Geometric operators form an algebra.

LEMMA 3.5. The product of two geometric operators A and B in C`(M, E) is again
a geometric operator.

PROOF. Since the product AB has symbol

σ(AB)∼
∑
α

(−i)|α|

α!
∂αξ σ(A)∂

α
x σ(B),

we have

σa+b−k(AB)=
∑

|α|+i+ j=k

(−i)|α|

α!
∂αξ σa−i (A)∂

α
x σb− j (B)

where a is the order of A and b is the order of B and where σ(C) denotes the symbol
of the operator C . Thus, if the homogeneous components σa−i (A) and σb− j (B)
have degree i and j , respectively, in the jets of the metric and of the connection, the
homogeneous component σa+b−k(AB) is homogeneous of degree i + j + |α| = k. 2

Following [1], we call a second order differential operator acting on C∞(M, E)
with leading symbol |ξ |2 a generalized Laplacian on E . Since generalized Laplacians
are expected to be geometric (see the examples in Section 1), we assume that gener-
alized Laplacians are geometric without further specification. Note that a generalized
Laplacian is admissible (see Appendix A). The following result provides a way to
build families of geometric operators. See Appendix A for details on spectral cuts.

PROPOSITION 3.6. Let Q ∈ C`(M, E) be a generalized Laplacian with spectral cut
θ . Then, for any geometric operator A ∈ C`(M, E), the family A(z) := AQz

θ is a
family of geometric operators.
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PROOF. By Lemma 3.5, it is sufficient to prove the result for A = I . For convenience,
we drop the explicit mention of the spectral cut.

Since

Qz
=

1
2iπ

∫
0

λz(Q − λ)−1 dλ,

where 0 is a contour described in Appendix A (see formula (A.2)), we need
to investigate the resolvent R(Q, λ)= (Q − λ)−1, the homogeneous components
σ2− j (R(Q, λ)) of the symbol of which are defined inductively on j by

σ−2(R(Q, λ))= (σ2(Q))
−1,

σ−2− j (R(Q, λ))=−σ−2(R(Q, λ))

×

∑
k+l+|α|= j,l< j

(−i)|α|

α!
Dα
ξ σ2−k(Q)D

α
x σ−2−l(R(Q, λ)).

(3.1)

Using (3.1), one shows, by induction on j , that σ−2− j (R(Q, λ)) is a finite sum of
expressions of the type

(−i)|α|(|ξ |2 − λ)−1−k Dα1
ξ Dβ1

x σ2−l1(Q) · · · D
αk
ξ Dβk

x σ2−lk (Q),

with |l| + |α| = j , |α| = |β|. Substituting this into

σ2z− j (Q
z)(x, ξ)=−

1
2iπ

∫
0

λzσ−2− j (R(Q, λ))(x, ξ) dλ, (3.2)

and applying repeated integrations by parts to compute the Cauchy integrals,

1
2iπ

∫
0

λz(|ξ |2 − λ)−k−1 dλ= (−1)k
z(z + 1) · · · (z + (k − 1))

k!
|ξ |2(z−k),

leads to a combination of symbols of the type

|ξ |q(z−k)Dα1
ξ Dβ1

x σq−l1(Q)(x, ξ) · · · D
αk
ξ Dβk

x σq−lk (Q)(x, ξ), (3.3)

with |l| + |α| = j and |α| = |β|. Since σ2−l(Q) is homogeneous of order l in the jets
of the metric and of the connection, it follows that, for any complex number z, the
symbol σ2z− j (Qz) is homogeneous of order j as it is a linear combination of products
of homogeneous expressions of order ji in the jets of the metric and of the connection
such that j1 + · · · + jk = j . 2

The notion of a geometric operator extends to logarithms of admissible operators
as defined in Appendix A.

DEFINITION 3.7. We say that the logarithm logθ A (see formula (A.4) in Appendix A)
of an admissible operator A ∈ C`(M, E) of order a with spectral cut θ is geometric
if, in any local trivialization, the homogeneous components σ− j,0(logθ A) (see
Appendix A) are homogeneous of order j in the jets of the metric and of the
connection.
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REMARK 3.8. This can be generalized to any log-polyhomogeneous operator A of
order a and logarithmic degree k, by requiring that all the coefficients σa− j,l(A)
(see Appendix A) for l ∈ {0, . . . , k} in the logarithmic expansion of the symbol are
homogeneous of order a − j in the jets of the metric and of the connection.

COROLLARY 3.9. The logarithm of a generalized Laplacian is a geometric operator.

PROOF. Again, we drop the explicit mention of the spectral cut. Differentiating (3.3)
with respect to z at zero shows that σ− j,0(log Q)(x, ξ) is a linear combination of
symbols of the type

|ξ |−2 k Dα1
ξ Dβ1

x σ2−l1(Q)(x, ξ) · · · D
αk
ξ Dβk

x σ2−lk (Q)(x, ξ),

with |l| + |α| = j , and |α| = |β|. Hence, the symbol σ− j,0(log Q) is homogeneous of
order j as it is a linear combination of products of homogeneous expressions of order
ji (with j1 + · · · + jk = j) in the jets of the metric and of the connection. 2

REMARK 3.10. This is a particular instance of a more general result, namely that
the derivative A′(0) at zero of a holomorphic germ A(z) ∈ C`(M, E) of geometric
operators around zero is also geometric. This follows from the expression (see, for
example, [9])

(σ (A′(z)))α(z)− j = ∂z(σα(z)− j (A(z)))

of the homogeneous components of the symbol of the derivative A′(0) in terms of the
derivative of the homogeneous components of the symbol of A(z). Here α(z) is the
order of A(z).

Adopting Gilkey’s notation (see [2, Section 2.4]) let us denote by P g,∇W

n,k,p (which

we write P g
n,k,p if E = S) the linear space consisting of p-form-valued invariant

polynomials that are homogeneous of order k in the jets of the metric and of the
connection ∇W . Note that, by invariant, we mean that the polynomials agree in any
coordinate system around x0 which is normalized with respect to the point x0, that is,
such that gi j (x0)= δi− j and ∂k gi j (x0)= 0. Also, the order in the jets of the metric is
defined to be ord(∂αx gi j )= |α|.

EXAMPLE 3.11. The scalar curvature rM belongs to P g
n,2,0 since it reads

rM = 2
∑
i, j

(∂2
i, j gi j − ∂

2
i,i g j j )

in the Riemannian normal coordinate system.

THEOREM 3.12. The logarithmic residue density of a generalized Laplacian Q on E,

Rn(x, Q) := resx (logθQ) dx

:=
1

(2π)n

[∫
S∗x M

tr(σ−n,0(logθQ)(x, ξ)) dξ

]
dx,

(3.4)
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is an invariant polynomial in P g,∇W

n,n,n , and Rn(x, Q) is therefore expressed in terms of
Pontryagin forms of the tangent bundle and Chern forms on the auxiliary bundle.

PROOF. By Proposition 3.6 the logarithm (we drop the spectral cut) log Q is
geometric, so that σ−n(log Q)(x, ξ) is homogeneous of degree n in the jets of the
metric and of the connection. Integrating this expression in ξ on the unit cosphere

shows that the residue density lies in P g,∇W

n,n,n .

The result follows since P g,∇W

n,n,n is generated by Pontryagin forms on the tangent
bundle (see [2, Theorem 2.6.2]) and Chern forms on the auxiliary bundle. 2

REMARK 3.13. The logarithmic residue density is clearly additive on direct sums
E1 ⊕ E2 of vector bundles over a closed manifold M ,

Rn(x, Q1 ⊕ Q2)= Rn(x, Q1)+ Rn(x, Q2),

but there is, a priori, no reason why it should be multiplicative on tensor products
E1 ⊗ E2→ M1 × M2 of vector bundles Ei over closed manifolds Mi .

4. The logarithmic residue density via the Campbell–Hausdorff formula

The Campbell–Hausdorff formula provides a first approach to computing a local
logarithmic residue density. By the results of Okikiolu [6], for two admissible classical
pseudodifferential operators with scalar leading symbols A and B in C`(M, E), and,
under suitable technical assumptions on their spectrum to ensure that their logarithms
are well defined,

log(AB)∼ log A + log B +
∞∑

k=2

C (k)(log A, log B). (4.1)

Here, C (k)(log A, log B) are Lie monomials given by

C (k)(P, Q) :=
∞∑
j=1

(−1) j+1

( j + 1)

∑ (AdP)
α1(AdQ)

β1 · · · (AdP)
α j (AdQ)

β j

(1+
∑ j

l=1 βl)α1! · · · α j !β1! · · · β j !
(Q), (4.2)

which vanish if β j > 1, or if β j = 0 and α j > 1, and where the inner sum runs over

j-tuples of pairs (αi , βi ) such that αi + βi > 0 and
∑ j

i=1 αi + βi = k. In
formula (4.2), AdP(Q)= [P, Q] and the symbol ∼ means that, for any integer N ,
the difference

FN (A, B) := log(AB)− log A − log B −
n+1∑
k=2

C (k)(log A, log B) (4.3)

is of order smaller than −N . The fact that the leading symbols are scalar ensures that
the order of C (k)(log A, log B) decreases as k increases. Hence, it provides a good
control on the asymptotics since the adjoint operations adlog A and adlog B decrease the
order by one unit.
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PROPOSITION 4.1 (See [6]). Let A, B ∈ C`(M, E) be invertible elliptic operators
with scalar leading symbols such that A, B and their product AB have well-defined
logarithms. Then Fn(A, B), defined as in (4.3), where n is the dimension of the
underlying manifold M, is a trace-class operator and hence its Wodzicki residue
vanishes. Both its trace and its residue vanish (see also [12]),

res(log(AB)− log A − log B)= 0. (4.4)

The proof in [6] is based on an expansion on the level of symbols which we now
describe for future use. We consider the algebra F S(U ) of formal symbols on an open
subset U of Rn , equipped with the symbol product ? given by

σ1 ? σ2(x, ξ)=
∑
α∈Nn

(−i)|α|

α!
∂αξ σ1(x, ξ)∂

α
x σ2(x, ξ).

Let {σ, τ }? := σ ? τ − τ ? σ denote the associated star bracket.

EXAMPLE 4.2. If σ is polynomial, then this formal power series of symbols with
decreasing order becomes a finite sum, as in the following example which is of interest
to us:

{|ξ |2, τ }? = (Lx +1x )τ,

where we define

Lx := −2i
n∑

a=1

ξa∂xa and 1x := −

n∑
a=1

∂2
xa
. (4.5)

We define ad∗kσ by induction on k, setting ad∗0σ (τ )= τ and ad∗(k+1)
σ (τ ) :=

{σ, ad∗kσ (τ )}.

EXAMPLE 4.3. ad∗k
|ξ |2
(τ )= (Lx +1x )

kτ is a symbol of order ord(τ )+ k.

Here is another example of interest to us.

EXAMPLE 4.4.

{log |ξ |2, τ }? =
∞∑
|α|=0

(−i)|α|

α!
∂αξ log |ξ |2∂αx τ(x, ξ)

=−2i
n∑

j=1

ξ j

|ξ |2
∂x j τ(x, ξ)−

n∑
i=1

1

|ξ |2
∂2

xi
τ(x, ξ)

+ 2
n∑

i, j=1

ξi , ξ j

|ξ |4
∂2

xi x j
τ(x, ξ)+ · · · .

(4.6)

We now specialize to the algebra F Scl(U ) of polyhomogeneous formal symbols.
The resolvent of a polyhomogeneous formal symbol σ of order a,

r?(σ, λ)= (λ− σ)
?−1
, (4.7)
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as a solution to (λ− σ) ? r = 1, has homogeneous components σa− j (r?(σ, λ)) of
degree a − j in (ξ, λ1/a) defined, inductively on j , by

σ−a(r?(σ, λ))= (σa − λ)
−1,

= σ−a− j (r?(σ, λ))=−σ−a(r?(σ, λ))

×

∑
k+l+|α|= j,l< j

(−i)|α|

α!
Dα
ξ σa−k(σ )D

α
x σ−a−l(r?(σ, λ)).

(4.8)

DEFINITION 4.5. We call a formal symbol σ in F Scl(U ) admissible with spectral
cut θ if, for every (x, ξ) ∈ T ∗U − {0}, the leading symbol matrix σ L(x, ξ) has no
eigenvalue in a conical neighbourhood of the ray Lθ = {reiθ

: r ≥ 0}. In particular,
such a symbol is elliptic.

The logarithm of an admissible formal polyhomogeneous symbol σ is defined by
(see, for example, [6]):

log?(σ ) :=
i

2π

(
∂z

∫
0

λz (λ− σ)?
−1

dλ

)
|z=0

,

for a contour 0 which encloses the eigenvalues of the leading symbol of σ . The
Campbell–Hausdorff formula for admissible formal polyhomogeneous symbols σ
and τ with scalar leading symbols reads (see [6, Lemma 2.7]):

log?(σ ? τ)∼ log?σ + log?τ +
∞∑

k=2

C (k)
? (log?σ, log?τ), (4.9)

where C (k)
? (log?σ, log?τ) are Lie monomials defined as in (4.2), and adP(Q) is

replaced by
ad?p(q) := {p, q}? := p ? q − q ? p.

The beginning of the expansion in equation (4.1) reads:

log?(σ ? τ)∼ log?σ + log?τ +
1
2 {log?σ, log?τ }?

+
1

12 {log? σ, {log?σ, log?τ }?}?

−
1

12 {log? τ, {log?σ, log?τ }?}?

−
1

24 {log?τ, {log? σ, {log?σ, log?τ }?}?}? · · · .

(4.10)

REMARK 4.6. If τ is classical, then C (k)
? (log |ξ |2, τ ) is classical since the bracket

{log |ξ |2, σ }? with a classical symbol σ is classical.

REMARK 4.7. If τ has negative order, then the order αk of C (k)
? (log |ξ |2, τ ) is

negative and decreases with k. Indeed, αk+1 corresponds either to the order of

{log |ξ |2, C (k)
? (log |ξ |2, τ )}?,

which, by (4.6), is αk − 1, or to the order of {τ, C (k)
? (log |ξ |2, τ )}?, which is ord(τ )+

αk and, hence, smaller than αk .
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THEOREM 4.8. The logarithmic residue density (3.4) of a generalized Laplacian Q
on E is a finite sum of residue densities of classical symbols:

resx (log Q)= resx (log?(|ξ |
−2 ? σ(Q)(x, ξ)))+

n∑
j=1

(−1) j

( j + 1)!

×

n∑
k=2

resx (C
(k)
? (log |ξ |2, (|ξ |−2 ? σ<2(Q)(x, ξ))

∗( j+1))),

=

n∑
j=1

(−1) j

( j + 1)!
resx ((|ξ |

−2 ? σ<2(Q)(x, ξ))
∗( j+1))

+

n∑
j=1

(−1) j

( j + 1)!

×

n∑
k=2

resx (C
(k)
? (log |ξ |2, (|ξ |−2 ? σ<2(Q)(x, ξ))

∗( j+1))),

(4.11)

where we have set
σ(Q)(x, ξ)= |ξ |2 + σ<2(Q)(x, ξ).

PROOF. We write
σ(Q)(x, ξ)= |ξ |2 ? (1+ |ξ |−2 ? σ<2(Q)(x, ξ)).

Applying the Campbell–Hausdorff formula (4.9) to σ = |ξ |2 and
τ = 1+ |ξ |−2 ? σ<2(Q)

yields
σ(log Q)(x, ξ)∼ log?σ(Q)(x, ξ)

∼ 2 log |ξ | + log?(|ξ |
−2 ? σ(Q)(x, ξ))

+

∞∑
k=2

C (k)
? (log |ξ |2, log?(1+ |ξ |

−2 ? σ<2(Q)))

∼ 2 log |ξ | +
n∑

j=1

(−1) j

( j + 1)!
(|ξ |−2 ? σ<2(Q)(x, ξ))

∗( j+1)

+

∞∑
k=2

C (k)
? (log |ξ |2, log?(1+ |ξ |

−2 ? σ<2(Q))).

This shows that
log?σ(Q)− log |ξ |2

is a classical symbol since the logarithm,

log?τ ∼
∞∑
j=1

(−1) j

( j + 1)!
(|ξ |−2 ? σ<2(Q)(x, ξ))

∗( j+1),

is classical and, hence, the corresponding Lie monomials are classical by Remark 4.6.
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Applying Remark 4.7 to

τ = log?(1+ |ξ |
−2 ? σ<2(Q)),

which has negative order, shows that

C (k)
? (log |ξ |2, log?(1+ |ξ |

−2 ? σ<2(Q)))

has order smaller than −k. Since the residue vanishes on symbols of order smaller
than −n, and

(|ξ |−2 ? σ<2(Q)(x, ξ))
∗( j+1)

has order no larger than −( j + 1), implementing the residue yields

resx (log Q)= resx (log?(|ξ |
−2 ? σ(Q)(x, ξ)))

+

n∑
k=2

resx (C
(k)
? (log |ξ |2 ? log?(1+ |ξ |

−2 ? σ<2(Q)))).

Replacing
log?(|ξ |

−2 ? σ(Q)(x, ξ))= log?(1+ |ξ |
−2 ? σ<2(Q))

by its expansion yields the result. 2

5. The logarithmic residue density via a noncommutative Taylor expansion

A noncommutative Taylor-type formula provides an alternative way to express
logarithmic residue densities. We extend the formulas for noncommutative Taylor
expansions derived in [8] to formal polyhomogeneous symbols.

Given an analytic function,

φ(z)= φ0 + φ1z + φ2z2
+ · · · ,

and an admissible symbol σ in F Scl(U ), we write

8?(σ )=
1

2iπ

∫
0

r?(λ, σ )φ(λ) dλ, (5.1)

where the resolvent, r?(λ, σ ), is defined by (3.1) and 0 is a contour which encloses the
eigenvalues of the leading symbol of σ . Applying this to the higher derivative, φ(k),
yields

8(k)? (σ )=
1

2iπ

∫
0

(λ− r?(λ, σ ))φ
(k)(λ) dλ

=
k!

2iπ

∫
0

(λ− σ)?(−k−1)φ(λ) dλ.
(5.2)

If σ = |ξ |q + σ<q , with σ<q of order smaller than q , then the ?-resolvent reads

r?(λ, |ξ |
q
+ σ<q)= r?(λ, |ξ |

q)+

∞∑
n=1

r?n(λ, |ξ |
q)(σ<q)

⊗n, (5.3)
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where, for symbols τ1, . . . , τn in F Scl(U ), we have set

r?n(λ, |ξ |
q)(τ1 ⊗ · · · ⊗ τn)

=

∞∑
|k|=0

(k1 + · · · + kn + n − 1)!
k!(k1 + 1)(k1 + k2 + 1) · · · (k1 + · · · + kn−1 + n − 1)

· ad(k1)
|ξ |q (τ1) ? ad(k2)

|ξ |q (τ2) ? · · · ? ad(kn)
|ξ |q (τn)(λ− |ξ |

q)−|k|−n−1,

(5.4)

with |k| = k1 + · · · + kn and k! = k1! · · · kn!.
Second quantized functionals are defined on tensor products of symbols in terms

of Cauchy integrals, by analogy with ordinary functionals on symbols (see (5.1)), but
using quantized resolvents, r?n , instead of the ordinary resolvent, r?.

To an analytic function φ(z) and an admissible symbol σ , we assign a map called
the second quantization of 8(x), defined on (F Scl(U ))⊗n by

8?n(σ ) : (F Scl(U ))
⊗n
→ F Scl(U )

τ1 ⊗ · · · ⊗ τn 7→
1

2iπ

∫
0

r?n(λ, σ )(τ1 ⊗ · · · ⊗ τn)φ(λ) dλ.

One easily derives the following noncommutative Taylor-type formula from (5.4):

8?n(σ )(τ1 ⊗ · · · ⊗ τn)

=

∞∑
|k|=0

ad?k1
σ (τ1) ? · · · ? ad?kn

σ (τn)

k!(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · · + kn + n)
8(|k|+n)(σ ).

(5.5)

Applying (5.3) to σ = |ξ |2 + σ<2, where σ<2 has order smaller than two, we
have

8?(σ )=8?(|ξ |
q)+

∞∑
p=1

8?p(|ξ |
q)(σ

⊗p
<2 ). (5.6)

Applying this with φ = log yields

log?(σ )− log?(|ξ |
2)

=

∞∑
p=1

∞∑
|k|=0

(−1)|k|+p−1(|k| + p − 1)

·

ad?k1
|ξ |2
(σ<2) ? ad?k2

|ξ |2
(σ<2) · · · ? ad

?kp

|ξ |2
(σ<2)

k!(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · · + kp + p)
|ξ |−2(|k|+p).

(5.7)

Finally, implementing the noncommutative residue leads to the following formula for
the logarithmic residue density.
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THEOREM 5.1. The logarithmic residue density of a generalized Laplacian Q on E
is a finite sum of residues of classical symbols:

resx (log(Q))=
n∑

p=1

n−p∑
|k|=0

(−1)|k|+p−1(|k| + p − 1)!

×
resx ((Lx+1x )

k1(σ<2(Q))· · ·(Lx+1x )
kp (σ<2(Q))|ξ |−2(|k|+p))

k!(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · · + kp + p)
,

(5.8)

where k! := k1! · · · kp! and |k| = k1 + · · · + kp. Here we have set

σ<2(Q)(x, ξ) := σ(Q)(x, ξ)− |ξ |
2

and, as before, Lx := −2i
∑n

a=1 ξa∂xa and 1x := −
∑n

a=1 ∂
2
xa

.

PROOF. By (5.7), combined with Example 4.3, we have

σ(log(Q))(x, ξ)∼
∞∑

p=1

∞∑
|k|=0

(−1)|k|+p−1(|k| + p − 1)!·

(Lx +1x )
k1(σ<2(Q)) · · · (Lx +1x )

kp (σ<2(Q))|ξ |−2(|k|+p)

k!(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · · + kp + p)
,

which is a formal power series of symbols σk of decreasing order −(|k| + p). Since
the noncommutative residue vanishes on symbols of order smaller than −n, we have
|k| + p ≤ n which implies that only terms with p ≤ n and |k| ≤ n − p survive after
applying the residue. 2

6. The index as a logarithmic (super)residue

We recall results from [9, 12] (see also [10]). Let Q ∈ C`(M, E) be an admissible
(and hence invertible, see Appendix A) classical pseudodifferential operator of positive
order q .

For any differential operator A ∈ C`(M, E), the noncommutative residue density

resx (A log Q) dx := −
1

(2π)n

(∫
|ξ |=1

tr(σ−n(A log Q)(x, ξ)) dSξ

)
dx (6.1)

is a globally defined n-form on M (see [7] for the case A = I , [9] for the general case),
which integrates over M to the noncommutative residue

res(A log Q) := −
1

(2π)n

∫
M

(∫
|ξ |=1

tr(σ−n(A log Q)(x, ξ)) dSξ

)
dx . (6.2)

Here tr corresponds to the fibrewise trace on End(E).
The residue, furthermore, relates to the Q-weighted trace TrQ(A) of A by (see [12]

when A = I and [9] for the general case)

TrQ(A) := fpz=0 Tr(AQ−z)=−
1
q

res(A log Q), (6.3)
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where fpz=0 stands for the finite part at z = 0 and Tr for the trace on trace-class
operators. Here, dSξ is the volume form on the unit sphere induced by the canonical
measure on Rn , where σ−n stands for the positively homogeneous component of
degree −n of a log-polyhomogeneous symbol σ .

REMARK 6.1. One checks that

res(A log(Q + R))= res(A log Q)

for any smoothing operator R.

EXAMPLE 6.2. Setting A = I in formula (6.3) yields

ζQ(0)=−
1
q

res(log Q), (6.4)

where ζQ(z) is the zeta function associated to Q. This corresponds to the logarithm,

res(log Q)= log detres(Q),

of Scott’s residue determinant [12].

Let E = E+ ⊕ E− be any Z2 graded vector bundle over M and let

D+ : C`(M, E+)→ C`(M, E−)

be an elliptic operator in C`(M, E∗+ ⊗ E−). Its (formal) adjoint,

D− := (D+)∗ : C`(M, E−)→ C`(M, E+),

is an elliptic operator in C`(M, (E−)∗ ⊗ E+). The operator, 1=1+ ⊕1−, where
we define 1+ := D−D+, 1− := D+D−, is a nonnegative (formally) self-adjoint
elliptic operator.

The following theorem, which combines formulas due to McKean and Singer [5]
and Seeley [13], expresses the index of D+,

ind(D+) := dim(Ker(D+))− dim(Ker(D−)),

in terms of the superweighted trace of the identity. Let π1 denote the orthogonal
projection onto the kernel of 1, which is finite-dimensional as M is compact.

THEOREM 6.3. The superresidue

sres(log(1)) := −
1

(2π)n

(∫
|ξ |=1

str(σ−n,0(log(1))(x, ξ)) dSξ

)
dx

is a globally defined n-form and we have

ind(D+)= str1+π1(I )=−
1

2 ord(D)
sres(log(1+ π1)), (6.5)

where π1 is the orthogonal projection onto the kernel of 1 and ord(D) is the order
of D. Here str denotes the supertrace on the graded fibres of E.
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REMARK 6.4. In view of Remark 6.1, one can drop the explicit mention of π1 and
write sres(log1), since the projection π1 is smoothing and the residue is invariant
under translation by a smoothing operator.

PROOF. We first observe a property of the spectrum of 1:

Spec(1+)− {0} = Spec(1−)− {0}.

Indeed,

1+u+ = λ
+u+ H⇒1−(D

+u+)= λ
+D+u+ ∀u+ ∈ C∞(M, E+)

so that an eigenvalue λ+ of 1+, with eigenvector u+, is an eigenvalue of 1−, with
eigenvector D+u+, provided that the latter does not vanish. The converse is proved
similarly.

Let us denote by {λ+n : n ∈ N}, the set of discrete eigenvalues of 1+ and, similarly,
by {λ−n : n ∈ N}, the set of discrete eigenvalues of 1−. For any complex number z,

str((1+ π1)−z)=
∑
n∈N

(λ+n + δλ+n )
−z
−

∑
n∈N

(λ−n + δλ−n )
−z

=

∑
λ+n 6=0

(λ+n )
−z
−

∑
λ−n 6=0

(λ−n )
−z
+ dim Ker1+ − dim Ker1−

= ind(D+).

Taking the finite part at z = 0, therefore, yields

ind(D+)= str1+π1(I )=− 1
2 sres(log(1)).

This concludes the proof. 2

EXAMPLE 6.5. With the notation introduced at the beginning of the paper, for a Dirac
operator,

D+W : C
∞(M, S+ ⊗W )→ C∞(M, S− ⊗W ),

on the Z2-graded spinor bundle S = S+ ⊕ S− over an even-dimensional spin
manifold M ,

ind(D+W )=−
1
2

sres(log(D2
W ))=−

1
2

∫
M

sresx (log(D2
W )) dx . (6.6)

The remainder of this paper deals with the computation of the logarithmic density of
the square, D2, of the Dirac operator D acting on spinors.

7. A formula for the index via the Lichnerowicz formula

We first recall the Lichnerowicz formula (see, for example, [1, Theorem 3.52]) or,
equivalently, the general Bochner identity (see [4, Theorem 8.2]), which relates the
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square D2
W of the twisted Dirac operator DW to the Laplace–Beltrami operator

1E
=−tr(∇T ∗M⊗E

∇
E )

=−

n∑
i=1

(∇T ∗M⊗E
∇

E )ei ,ei

=−

n∑
i=1

(∇E
ei
∇

E
ei
−∇

E
∇E

ei
ei
)

(7.1)

associated with the superconnection ∇E on E . Here, ∇T ∗M⊗E is the connection
induced on the tensor product bundle, T ∗M ⊗ E , by the Levi-Civita connection on M
and the connection ∇E on E . In addition, {ei : i = 1, . . . , n} is a local orthonormal
tangent frame.

PROPOSITION 7.1. We have

D2
W =1

E
+ RE

=1E
+ RW

+
rM

4
, (7.2)

where rM stands for the scalar curvature on M and

RE
:=

∑
i< j

c(ei )c(e j )(∇
E )2ei ,e j

, RW
:=

∑
i< j

c(ei )c(e j )(∇
W )2ei ,e j

. (7.3)

In particular, for a flat auxiliary bundle,

D2
W =1M +

rM

4
,

where 1M is the Laplace–Beltrami operator on the Riemannian manifold M.

PROOF. We choose a local orthonormal tangent frame {ei : i = 1, . . . , n} at the point
x ∈ M such that (∇E

ei
)x = 0 for all i ∈ {1, . . . , n}. Since DW =

∑n
i=1 c(ei )∇

E
ei

at x ,

D2
W =

n∑
i, j=1

c(ei )∇
E
ei

c(e j )∇
E
e j

=

n∑
i, j=1

c(ei )c(e j )[(∇
E )2ei ,e j

+∇
E
∇ei e j
]

= −

n∑
i=1

(∇E )2ei ,ei
+

∑
i< j

c(ei )c(e j )[(∇
E )2ei ,e j

− (∇E )2e j ,ei
]

=1E
+

∑
i< j

c(ei )c(e j )(∇
E )2ei ,e j

=1E
+ RE .

The curvature term, (∇E )2 ∈�2(M, End(E)), decomposes into

(∇E )2 = (∇S)2 ⊗ 1+ 1⊗ (∇W )2

https://doi.org/10.1017/S144678871100108X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871100108X


70 J. Mickelsson and S. Paycha [18]

so that
RE
=

∑
i< j

c(ei )c(e j )(∇
S)2ei ,e j

+ RW .

A careful computation (see, for example, the proof of [1, Theorem 3.52]) shows that∑
i< j

c(ei )c(e j )(∇
S)2ei ,e j

=
rM

4
.

This concludes the proof. 2

Combining the Lichnerowicz formula with the Campbell–Hausdorff formula yields
a formula for the index.

THEOREM 7.2. In even dimensions, n = 2p,

ind(D+W )=−
1
2

sres(log(D2
W ))

=−
1
2

sres(log(1E ))+

n−1∑
k=1

(−1)k

2k
sres([(1E )−1 RE

]
k).

(7.4)

Inside the residue expansion we use the shorthand (1E )−1 for (1E
+ π1)

−1, since
the residue is insensitive to the smoothing operator π1.

PROOF. By equation (7.2),

D2
W + πD2

W
=1E

+ π1E + RE
+ πD2

W
− π1E

= (1E
+ π1E )(1+ (1E

+ π1E )
−1(RE

+ πD2 − π1E )),

so that by (4.4), we obtain

sres(log(D2
W ))= sres(log(1E ))+ sres(log(1+ (1E )−1(RE )))

= sres(log(1E ))+

∞∑
k=1

(−1)k+1

k
sres([(1E )−1(RE )]k)

= sres(log(1E ))+

∞∑
k=1

(−1)k+1

k
sres([(1E )−1RE

]
k).

Here, we have used the fact that the noncommutative residue vanishes on smoothing
operators. Also, for an operator B ∈ C`(M, E) with negative order,

sres(log(1+ B))=
∞∑

k=1

(−1)k+1

k
sres(Bk),

which is actually a finite sum since the residue vanishes for operators of order smaller
than minus the dimension of the underlying manifold. Since B = (1E

+ π1)
−1 RE

has order −2, the sum stops at p = n/2. 2

8. The Atiyah–Singer index theorem for a twisted Dirac operator on a flat space

We derive the Atiyah–Singer index formula for a twisted Dirac operator on a flat
space from (7.4). We use the notation introduced at the beginning of the paper.
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We denote the components of the connection ∇E in a given local trivialization of
E by ∂i + Ai . We take local coordinates xi on M such that the metric Christoffel
symbols vanish. By the Lichnerowicz formula,

DW
2
=1E

+ RE
=

∑
i

(∂i + Ai )
2
+

∑
i< j

γiγ j Fi j ,

where we have set
Fi j = ∂i A j − ∂ j Ai + [Ai , A j ]

to be the 2-form components of the curvature, (∇E )2.

THEOREM 8.1. If the Riemann metric on M is flat, then

ind(D+W )=
∫

M
tr(ei(F/2π)).

PROOF. As before, n = 2p denotes the dimension of M . By Theorem 7.2,

sres log(DW
2)= sres(log1E )+

n−1∑
k=1

(−1)k+1

k
sres([(1E )−1 RE

]
k).

The first term on the right-hand side vanishes. Indeed, at a given point x ∈ M and, for
fixed ξ ∈ T ∗x M , the −nth homogeneous component of the symbol, σ(log1E )(x, ξ),
of log1E is an endomorphism of the fibre Wx of the auxiliary vector bundle W .
By (2.1), the fibrewise supertrace therefore vanishes on the −nth homogeneous
component of the symbol and, hence, so does the residue density sresx (log1E ) dx . It
follows that sres(log1E )= 0.

We now investigate the second term on the right-hand side. On the one hand, all the
expressions

sres log([(1E )−1 RE
]
k)

inside the sum vanish for k > p. Whenever the operators [(1E )−1 RE
]
k are of order

smaller than −n, their residues vanish.
On the other hand, the expressions inside the sum also vanish for k < p. Indeed,

at a point x ∈ M and, for fixed ξ ∈ T ∗x M , the symbols in the variables (x, ξ) inside
the residues are of the form Mγi1γi2 · · · γik for some matrix M ∈ End(Wx ) and
proper subsets {i1, . . . , ik} of {1, . . . , n}. Their supertraces, which arise inside the
superresidue, therefore vanish by (2.1).

The remaining term in the sum at k = p corresponds to the residue of an operator of
order−n. It only involves the leading symbol σL(1

E )= |ξ |2 of1E . Thus, we obtain

sres log(DW
2)=−

(−1)p

p
sres([(1E

+ π1E )
−1 RE

]
p)

=−
(−1)p

p
sres(|ξ |−n(tr(RE ))p)

=−
(−1)p

p

∫
M

sresx

(
|ξ |−n

(∑
i< j

γiγ j Fi j

)p)
dx by (7.3)
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=−
(−1)p2p(Sn−1)

(2π)np

∫
M

str
(∑

i, j

σi j Fi j

)p

dx by (2.2) and (1.1)

=−2
i p

(4π)pp!

∑
τ∈6n

(−1)|τ |
∫

M
Fτ(1)τ (2) · · · Fτ(n−1)τ (n) dx

by (2.3) and (8.1)

=−2
i p

(2π)pp!

∫
M

tr(F∧p) dx

=−2
∫

M
tr(ei F/2π ).

In the above calculation, we have used the identity

vol(Sn−1)=
2πn/2

0(n/2)
=

2π p

(p − 1)!
. (8.1)

This concludes the proof. 2

9. The curvature tensor in normal coordinates

We recall a few properties of the curvature in a normal local coordinate system,
that is, a coordinate system defined by the exponential map at a point, so that rays
emanating from the origin in the tangent space at this point are mapped to geodesics
on the manifold emanating from this point. Let us recall that, in Riemannian normal
coordinates (see, for example, [1, Proposition 1.28]),

gi j = ∂i j −
1
3

Rik jl x
l xk
+

∑
|α|≥3

∂αgi j
xα

α!
. (9.1)

LEMMA 9.1. We have

(Ria jk + Rik ja)σk j =
3
2 Ria jkσk j ,

where σi j was defined in (2.2).

PROOF. Using the first Bianchi identity,

R[i jk]l = 0,

we write Ri jka =−Rki ja − R jkia which, combined with the antisymmetry of σi j in i
and j , and the (anti)symmetry properties of the curvature tensor

Ri jkl =−R j ikl =−Ri jlk = Rkli j ,

yields

(Ria jk + Rik ja)σk j = Ria jkσk j + Ri jkaσ jk

= (Ria jk + Rki ja + R jkia)σk j

= (2Ria jk − Rik ja)σk j .
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Consequently,

(Ria jk + Rik ja)σk j =
1
2 [(Ria jk + Rik ja)σk j + (2Ria jk − Rik ja)σk j ]

=
3
2 Ria jkσk j .

This concludes the proof. 2

PROPOSITION 9.2. At the centre of a normal coordinate system,

∂a0
k
i jσk j =

1
2 R jkiaσk j , (9.2)

so that ∂i0
k
i jσk j = 0.

PROOF. By (9.1), the Christoffel symbols 0k
i j =

1
2 gkl(∂ j gil + ∂i g jl − ∂l gi j ) vanish at

the centre of the normal coordinate system, where we have

∂a0
k
i j =

1
3 (Ria jk + R jaik).

Indeed, differentiating (9.1) twice yields

∂a0
k
i j =

1
2δ

kl(∂a∂ j gil + ∂a∂i g jl − ∂a∂l gi j )

=−
1
6 (Riak j + Ri jka + R jaki + R j ika − Ria jk − Rik ja)

=
1
3 (Ria jk + R jaik).

It follows from Lemma 9.1 that ∂a0
k
i jσk j =

1
2 Ria jkσk j , and hence, in particular, that

∂i0
k
i jσk j =

1
2 Ria jkσk j = 0

at the centre of the normal coordinate system. 2

The following result is useful when computing the index.

PROPOSITION 9.3. In four dimensions,

sresx (|ξ |
−4∂xa0

k
i j∂xa0

n
im σk jσnm) dx =

1

32π2 tr(R ∧ R) (9.3)

and

sresx

(
ξaξb

|ξ |6
∂xa0

k
i j∂xb0

n
im

)
dx =

1

4× 32π2 tr(R ∧ R). (9.4)

PROOF. The result in four dimensions is a consequence of the following formula
in n = 2p = 4q dimensions. At the centre of a normal coordinate system, we show
that

sresx (|ξ |
−2p∂xa1

0
k1
i1 j1
∂xa1

0
n1
i1m1
· · ·

× ∂xap
0

kq
iq jq
∂xaq

0
nq
iq mq

σk1 j1σn1m1 · · · σkq jqσnq mq ) dx

=
1

0(p)23p−1π p
(tr(R ∧ R))q .

(9.5)
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The proof follows by combining (9.2) with (6.1) and the formula for the volume of the
unit sphere Sn−1 in n dimensions given by (8.1):

sresx (|ξ |
−2p∂xa1

0
k1
i1 j1
∂xa1

0
n1
i1m1
· · · ∂xaq

0
kq
iq jq
∂xaq

0
nq
iq mq

σk1 j1σn1m1 · · · σkq jqσnq mq )

=
1

22q
sresx (|ξ |

−2p Ri1a1 j1k1 Ri1a1m1n1 · · · Riq aq jq kq Riq aq mq nq

× σk1 j1σn1m1 · · · σkq jqσnq mq )

=
(−i)p

4p

∑
τ∈6n

(−1)|τ | resx
(
|ξ |−2p Ri1a1τ(1)τ (2) · · · Riq aqτ(n−3)τ (n−2)

× Riq aqτ(n−1)τ (n)
)

=
1

0(p)22n−1π p

∑
τ∈6n

(−1)|τ |Ri1a1τ(1)τ (2) · · · Riq aqτ(n−3)τ (n−2)Raq iqτ(n−1)τ (n)

by (9.2), (2.1) and (2.3). On the other hand,

(tr(R ∧ R))q

=
1

2p

∑
τ∈6n

(−1)|τ |Ri1a1τ(1)τ (2)Ra1i1τ(3)τ (4) . . . Riq aqτ(n−3)τ (n−2)

×Raq iqτ(n−1)τ (n) dx,

which yields

sresx (|ξ |
−2p∂xa1

0
k1
i1 j1
∂xa1

0
n1
i1m1
· · · ∂xaq

0
kq
iq jq
∂xaq

0
nq
iq mq

σk1 j1σn1m1 · · · σkq jqσnq mq ) dx

=
1

0(p)23p−1π p
(tr(R ∧ R))q .

This proves the first part of the statement.
We prove the second part similarly. We first observe that, using the symmetries of

the sphere, ∫
|ξ |=1

ξiξ j

|ξ |n+2 dξ = δi− j

∫
|ξ |=1

ξ2
i

|ξ |n+2 dξ

=
1
n
δi− j

∫
|ξ |=1

∑n
i=1 ξ

2
i

|ξ |n+2 dξ

=
δi− j

n

2πn/2

0( n
2 )
.

(9.6)

Thus, in four dimensions, we obtain

sresx

(
ξaξb

|ξ |6
∂xa0

k
i j∂xb0

n
im

)
dx =

1

4× 32π2 tr(R ∧ R).

This concludes the proof. 2
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10. The Atiyah–Singer index formula in four dimensions

The square of a Dirac operator D acting on pure spinors is the prototype of a
generalized Laplacian. In local coordinates, its symbol reads

σ(D2)= |ξ |2 + 0k
i jσk jξi + ∂i0

k
i jσk j + 0

k
i j0

n
imσk jσnm + s = |ξ |2 + σ<2(D

2),

where
σ<2(D

2) := 0k
i jσk jξi + ∂i0

k
i jσk j + 0

k
i j0

n
imσk jσnm + s, (10.1)

and s denotes the scalar curvature.
We use (6.6) to compute the index of D+,

ind(D+)=−
1
2

∫
M

sresx (log D2) dx,

in terms of the logarithmic (super)residue density, which we explicitly derive in four
dimensions.

Since the residue does not depend on the choice of local coordinates, we choose
to derive the residue density in a normal coordinate system. We therefore need to
compute

sresx (log D2)= sresx (log?(|ξ |
2
+ σ<2(D

2))),

where log? is the logarithm on symbols. There are at least two methods to compute the
logarithm of |ξ |2 + σ<2(D2). These are the Campbell–Hausdorff formula (4.9) and a
Taylor-type formula as in (5.8).

In the following, we let σ<k denote the part of the symbol σ of order smaller than k.
Using the first method, we obtain the following expansion in four dimensions:

sresx (log(D2))

= sresx (log?(|ξ |
−2 ? σ(D2)))

+
1
2

2∑
j=0

(−1) j

( j + 1)!
sresx ((log |ξ |2 ? (|ξ |−2 ? σ<2(D

2)

× (x, ξ))∗( j+1))<− j−1)

+
1
12

1∑
j=0

(−1) j

( j + 1)!

· sresx ((log |ξ |2 ? (log |ξ |2 ? (|ξ |−2 ? σ<2(D
2)

× (x, ξ))∗( j+1))<− j−1)<− j−2)

−
1

12
sresx ({|ξ |

−2 ? σ<2(D
2), (log |ξ |2 ? (|ξ |−2 ? σ<2

× (D2)(x, ξ)))<−1}?).

(10.2)

As this requires the computation of various terms in the above sums, it is lengthier
than the second method, which we shall adopt.
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Replacing the residue by a superresidue in (5.8) yields the following description of
the logarithmic superresidue density of D2, in which the sum over p reduces to one
term.

PROPOSITION 10.1. The logarithmic superresidue density of the squared Dirac
operator is a finite sum of superresidues of classical symbols:

sresx (log(D2))

=

n/2∑
|k|=n/4,ki∈{1,2}

(−1)|k|+q−1(|k| + q − 1)!
k!(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · · + kp + p)

× sresx ((Lx +1x )
k1(σ<2(D

2)) · · · (Lx +1x )
kq (σ<2(D

2))|ξ |−2(|k|+q))

where, as before, we have set q = n/4. It is of the form

sresx (log(D2))=
∑

s+t=q

αs,t sresx ((L
2
xσ<2(D

2))s(1xσ<2(D
2))t |ξ |−2(3s+2t)),

with 1xσ<2(D2) and L2
xσ<2(D2) contributing, respectively, by

1x (0
k
i j0

n
lm)σ jkσmn =−

1
2 R jkia Rnmiaσk jσnm (10.3)

and
L2

x (0
k
i j0

n
lm)σ jkσmn =−R jkia Rmnibσ jkσmnξaξb. (10.4)

PROOF. Applying (5.8) to Q = D2 yields an expression which involves terms of the
form

(Lx +1x )
ki (σ<2(D

2)),

each of which differentiates σ<2(D2) at least ki times. We have ki ≤ 2. Indeed, since
sresx (log?(D

2)) is proportional to a Pontryagin form, it only involves curvature terms,
and so only first-order derivatives of the Christoffel symbols can arise. The product
term, 0k

i j0
n
im , can only involve partial differential operators of order at most two. Since

the superresidue density sresx (log D2) dx is proportional to a Pontryagin form, there
is no contribution from the scalar curvature, so that terms σ<2(D2) corresponding to
zero powers ki make no contribution.

We now analyse the contribution of terms involving powers ki = 1, that is,
expressions of the type (Lx +1x )σ<2(D2). By (10.1), the terms 1xσ<2(D2) can
only contribute by

1x (0
k
i j0

n
im)σk jσnm =−2∂a0

k
i j∂a0

n
imσk jσnm

=−
1
2 R jkia Rnmiaσk jσnm .

(10.5)

Let us now see how the terms Lxσ<2(D2) contribute. We have

Lxσ<2(D
2)=−2i(∂a0

k
i jσk jξiξa + ∂a∂i0

k
i jσk jξa

+ (∂a0
k
i j0

n
lm + 0

k
i j∂a0

n
im)σk jσnmξa + ∂asξa),

https://doi.org/10.1017/S144678871100108X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871100108X


[25] Logarithmic residue density of a generalized Laplacian 77

which, at the centre of a normal coordinate system, reads

Lxσ<2(D
2)=−2i(∂a0

k
i jσk jξiξa + ∂a∂i0

k
i jσk jξa + ∂asξa).

The only possible contribution can come from

Lx (0
k
i jσk jξi )=−2i∂a0

k
i jσk jξiξa =−i R jkiaσk jξiξa, (10.6)

which vanishes by antisymmetry of R. There is therefore no contribution from terms
of the type Lxσ<2(D2).

When ki = 2 we obtain terms of the form

(Lx +1x )
2σ<2(D

2)= L2
xσ<2(D

2)+ 2Lx1xσ<2(D
2)+12

xσ<2(D
2),

and only L2
xσ<2(D2) contributes. This introduces terms of the type

L2
x (0

k
i j0

n
imσk jσnm)=−4∂a0

k
i j∂b0

n
imσk jσnmξaξb

=−R jkia Rmnibσ jkσmnξaξb.
(10.7)

In summary, we only have contributions from 1xσ<2(D2) and L2
xσ<2(D2) via

products

(L2
xσ<2(D

2))s(1xσ<2(D
2))t with p = s + t and |k| = 2s + t.

Since the residue picks the −nth power in |ξ |, we have 2s − 2(|k| + q)=−n which
implies that 2s + 2t = n/2 and, hence, q = n/4. This is confirmed by counting the
Clifford coefficients, since (2.1) implies that

2q = 2s + 2t =
n

2
.

Our result now follows from the above computations, together with (10.5)
and (10.7). 2

EXAMPLE 10.2. When n = 4, in which case q = 1, we have s + t = 1 so that we need
to consider two types of terms: 1xσ<2(D2) and L2

x (σ<2(D2)).
Proposition 10.1, combined with Proposition 9.3, yields

sresx (log(D2))

=−
1
2

sresx (1x (σ<2(D
2))|ξ |−4) (when s = 0, t = 1, k1 = 1)

+
sresx (L2

x (σ<2(D2))|ξ |−6)

2× 3
(when s = 1, t = 0, k1 = 2)

= sresx (|ξ |
−4∂a0

k
i j∂a0

n
imσk jσnm) by (10.5)

−
4
3

sresx (|ξ |
−6∂a0

k
i j∂b0

n
imσk jσnmξaξb) by (10.7)
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=

(
1−

1
3

)
sresx (|ξ |

−4∂a0
k
i j∂a0

n
imσk jσnm) by (9.4)

=
1

48π2 tr(R ∧ R) by (9.3).

Once integrated over the manifold M , this yields the well-known formula

ind(D)=
∫

M
Â H⇒

sres(log(D2))=−2
∫

M
Â =

1

48π2 tr(R ∧ R),
(10.8)

since
Â = 1−

1

24(2π)2
tr(R ∧ R)+ · · · .

Appendix A. Complex powers and logarithms

An operator A ∈ C`(M, E) has principal angle θ if, for every (x, ξ) ∈ T ∗M − {0},
the leading symbol, (σA(x, ξ))L , has no eigenvalue on the ray Lθ = {reiθ

: r ≥ 0}; in
that case A is elliptic.

DEFINITION A.1. We call an operator A ∈ C`(M, E) admissible with spectral cut θ
if A has principal angle θ , and the spectrum of A does not meet Lθ = {reiθ

: r ≥ 0}.
In particular, such an operator is invertible and elliptic. Since the spectrum of A does
not meet Lθ , θ is called an Agmon angle of A.

Let A ∈ C`(M, E) be admissible with spectral cut θ and positive order a. For
Re(z) < 0, the complex power Az

θ of A, first introduced by Seeley [13], is defined by
the Cauchy integral

Az
θ =

i

2π

∫
0r,θ

λz
θ (A − λ)

−1 dλ, (A.1)

where λz
θ = |λ|

zei z(arg λ) with θ ≤ arg λ < θ + 2π . In particular, for z = 0, we have
A0
θ = I .
Here,

0r,θ = 0
1
r,θ ∪ 0

2
r,θ ∪ 0

3
r,θ , (A.2)

where

01
r,θ = {ρeiθ

: ∞> ρ ≥ r},

02
r,θ = {ρei(θ−2π)

: ∞> ρ ≥ r},

03
r,θ = {rei t

: θ − 2π ≤ t ≤ θ}

is a contour along the ray Lθ around the nonzero spectrum of A. Here, r is any small
positive real number such that 0r,θ ∩ Sp(A)= ∅.

The definition of complex powers can be extended to the whole complex plane
by setting Az

θ := Ak Az−k
θ for k ∈ N and Re(z) < k. This definition is independent of
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the choice of k in N and preserves the usual properties, that is, Az1
θ Az2

θ = Az1+z2
θ and

Ak
θ = Ak, for k ∈ Z.
The complex powers of an admissible operator, A ∈ C`(M, E) with zero order

and spectral cut θ , give rise to a holomorphic map z 7→ Az
θ on the complex plane

with values in B(H s(M, E)) for any real number s, where H s(M, E) denotes the
H s-closure of the space C∞(M, E) of smooth sections of E (see, for example, [2]).
The logarithm of A is the bounded operator on H s(M, E), defined in terms of the
derivative at z = 0 of this complex power,

logθ A := (∂z Az
θ )|z=0

=
i

2π

(
∂z

∫
0r,θ

λz
θ (A − λI )−z dλ

)
|z=0

=
i

2π

∫
0r,θ

logθ λ(A − λI )−z dλ,

with the notation of (A.1).
The notion of logarithm extends to an admissible operator A with positive order a

and spectral cut θ in the following way. For any positive ε, the map z 7→ Az−ε
θ of order

a(z − ε) defines a holomorphic function on the half plane Re(z) < ε with values in
B(H s(M, E)) for any real number s. Thus we can set

logθ A = Aεθ (∂z(A
z
θ − ε))|z=0

= Aεθ

(
∂z

(
i

2π

∫
0r,θ

λz−ε
θ (A − λ)−1 dλ

))
|z=0

.
(A.3)

For any positive ε, the operator

logθ AA−ε = A−ε logθ A

lies in B(H s(M, E)) for any real number s. It follows that logθ A, which is clearly
independent of the choice of ε > 0, defines a bounded linear operator from H s(M, E)
to H s−ε(M, E) for any positive ε. We have

σ(logθ A)= a log |ξ | + σ0(logθ A)

where σ0(logθ A) is a classical symbol whose asymptotic expansion

σ0(logθ A)∼
∞∑
j=0

σa− j,0(logθ A)

has homogeneous components of the form

σ− j,0(logθ A)(x, ξ)= |ξ |− j∂z

(
σ(Az

θ )α(z)− j

(
x,

ξ

|ξ |

))
|z=0

. (A.4)
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