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Maintaining the stratification of the ocean requires deep mixing. Part of the energy
that provides this mixing is transferred over topography from the surface tides into the
internal tides. Numerous theoretical, numerical and experimental studies have aimed at
quantifying the energy transfer of this conversion mechanism. Maas (J. Fluid Mech.,
this issue, vol. 684, 2011, pp. 5–24) constructs model topographies with localized
response and no energy transfer into the propagating internal tide, a surprising result
that raises questions about models of tidal conversion.
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1. Introduction

The Moon is receding from the Earth at a rate of 38 mm/year. This could be
called the most accurately known constant in physical oceanography: the motion of
the Moon leads to an energy loss of ∼3.7 TW from the Earth–Moon system through
tidal dissipation that mostly takes place in the ocean. This is responsible for the
maintenance of oceanic stratification, along with energy input from the winds (Munk
1997). Munk & Wunsch (1998) calculated that, to maintain the abyssal stratification,
mechanical energy is needed to drive mixing and evaluated the origins of this mixing,
bringing to the fore the role of tides. Estimates of the flux are 3.5 TW in the surface
tide of which 2.6 TW goes to mixing the shallow bottom boundary layer and 0.9 TW
goes into the internal tide. For comparison, the wind is estimated to produce 1.2 TW,
combining with the internal tide to produce 2.1 TW of deep-ocean mixing.

The dissipation of tides by bottom drag in shallow regions was well known to
Taylor (1919) and Jeffreys (1920). A simple estimate of the power input or energy
flux is P ∼ 0.0025ρ0u3 (W m−2), where ρ0 and u are representative values for the
density of seawater and the tidal velocity respectively. The energy budget was closed
by dissipation over continental shelves. The advent of satellite oceanography has
transformed our understanding of tides in the ocean. Ray & Mitchum (1997) showed
direct evidence of the coherent internal tide radiating away from the Hawaiian Ridge.
Assimilating numerical tidal models have shown where energy loss from the global
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tide occurred: Egbert & Ray (2000) produced maps showing that in fact dissipation
was occurring in the deep ocean over topographic features such as mid-ocean ridges.

This effect had previously been estimated to be small (e.g. Baines 1973). The
underlying mechanism is that the usual surface tide moves deep stratified fluid over
topography and in so doing generates internal waves, which are called the internal tide.
The power dissipation scales like P ∼ ρ0u2N` (W m−2), where N is the buoyancy
frequency at the ocean floor and ` is a length scale related to the topography. Since
Munk & Wunsch (1998) there has been a great deal of interest in the tidal conversion
problem: how the internal tide is produced by the interaction of the barotropic tide
with topography. The Hawaii ocean mixing experiment (HOME), an oceanographic
measurement programme, measured the mixing produced by the sharp bathymetry of
the Hawaiian Island chain. Numerical calculations were carried out to obtain estimates
of the conversion rates. Theoretical investigations probed the underlying physics of the
problem. Laboratory experiments measured conversion rates in controlled conditions.
The literature is now extensive; links and overviews are given in Garrett (2003)
and Garrett & Kunze (2007). A review of internal tides in general can be found
in Vlasenko, Stashchuk & Hutter (2005). The new study by Maas (2011) suggests
that something is missing from the current understanding of the tidal conversion
problem: Maas provides a constructive fashion of generating bathymetries that exhibit
no conversion, yet clearly resemble the model bathymetries that have been employed
in theoretical and laboratory studies (e.g. the idealized ‘Luzon Strait’ double-ridge
shown in the figure by the title). Dai et al. (2011) have used the same method to
obtain wave-like solutions.

2. Overview

Internal tides are internal gravity waves (IGWs). The dispersion relation of a
plane internal gravity wave propagating in a Boussinesq, inviscid fluid with constant
buoyancy frequency N can be written as ω/N = cos θ , where θ is the angle the
wavevector of the wave makes with the horizontal. Hence rays propagate at constant
angle to the horizontal and the frequency is independent of wavenumber. In addition,
the phase velocity and group velocity are perpendicular. These properties of the
dispersion relation are responsible for some of the more unusual properties of these
dispersive waves. In particular, reflection is not specular; rather, reflected waves make
the same angle with the horizontal as the incoming wave.

We consider a two-dimensional problem: the barotropic tide ‘sloshes’ with velocity
U0 cos(ωt) back and forth over the seafloor z = H(x). The quantity α = tan θ can
be thought of as the slope of the rays, and the ratio of α to the slope of the
bathymetry, s, is critical in determining the nature of the conversion process. The limit
s� α is the weak topography approximation (WTA) investigated by Bell (1975). This
formulation has been used in conjunction with oceanic bathymetric surveys (St Laurent
& Garrett 2002) and has been extended to three dimensions (Llewellyn Smith &
Young 2002). Bathymetries with s < α are termed subcritical. When there are regions
of the seafloor with s > α, the bathymetry is supercritical. Llewellyn Smith & Young
(2003) calculated the conversion from a knife-edge ridge and showed that there was no
singularity in the conversion rate.

Maas considers the time-harmonic subcritical problem in a two-dimensional channel
and rescales variables so that the ray slope is 45◦. The underlying governing equation
for the streamfunction, ψ(x, z), is

ψxx − ψzz = 0, (2.1)
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with boundary conditions ψ = 0 on z = 0 and ψ = Q on z = H(x). Equation (2.1) is
the Poincaré equation, that is, the wave equation but in two spatial variables. This is
unusual: similar boundary-value problems are usually elliptic rather than hyperbolic.
Maas then introduces a mapping ξ, ζ , and points out that if ξ(x, z) and ζ(x, z) satisfy
the hyperbolic Cauchy–Riemann equations (Motter & Rosa 1998)

ξx = ζz, ξz = ζx, (2.2)

equation (2.1) is unchanged. Maas maps the flow domain into a channel with
(constant) depth h in the (ξ, ζ ) plane, for which the solution to (2.1) is

ψ =
Qζ

h
+

∞∑
n=−∞

ψ̂n sin
nπζ

h
einπξ/h. (2.3)

The first term Qζ/h gives a non-radiating response. For the mapping to be single-
valued, the Jacobian J = ξxζz − ζxξz must not vanish, i.e. the topography is subcritical.

Using the boundary conditions, the problem reduces to the choice of a single
function f (q) with the bottom z= H(x) determined by −h= f (x + z)− f (x − z). Maas
then constructs non-radiating solutions to the conversion problem. He recovers the
wedge solution of Wunsch (1968) and then obtains mappings that, in the physical
plane, resemble the usual hump shape as well as a smooth change in depth like a
continental shelf. By construction, these solutions are bounded in space and do not
radiate. For the shelf profile, Maas compares the theoretical results to a numerical
solution of the underlying fluid equations: the numerical solution for his bathymetry is
indeed non-radiating while a calculation with similar bathymetry radiates.

3. Future

The intuition that has been developed using theoretical models of internal conversion
seems at odds with the non-conversion results of Maas. It is natural to inquire whether
the approximations being used are at fault or whether this is a physical as opposed
to mathematical result. Of the approximations used, the Boussinesq approximation and
the use of Cartesian geometry do not raise any flags, and adding rotation would not
change the underlying structure of the equations. The neglect of viscosity seems
like an obvious candidate to explain the results, but the fact that the numerical
simulations mentioned by Maas show very reduced conversion suggest this is not
an artifact of the inviscid approximation. Finally, working in two dimensions is
crucial for the transformation to work and for (2.2) to hold. It is well known that
the wave equation has rather different properties in two and three dimensions, so
one might wonder whether this is a two-dimensional result. Previous work in tidal
conversion has not found significant differences between two- and three-dimensional
situations. The search for time-harmonic solutions is undoubtedly a possible reason
for the apparent paradox: a full initial-value calculation would show what wave field
was actually produced over any given topographic feature. Theoretical studies have
naturally considered the periodic problem for tides.

The related problem of internal wave attractors in an enclosed domain has been
extensively studied by Maas and co-workers (see e.g. Lam & Maas 2008) although
the problem goes back to John (1941). The peculiar nature of the Poincaré equation
leads to the existence of wave attractors, which are seen in experiments (Maas et al.
1997; Hazewinkel et al. 2010). To quote the title of one such paper, these problems
are linear yet nonlinear: the field equations are linear but the boundary conditions
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on finite topography lead to nonlinear problems. More work is needed to understand
the relevance of non-converting topographies to the ocean. The fundamental question
appears to be how one can physically pick the solution in the (ξ, ζ ) variables to be
non-propagating. What happens to perturbations of such a solution, either in terms of
topography or when small amounts of propagating modes are added?

References

BAINES, P. G. 1973 The generation of internal tides by flat-bump topography. Deep-Sea Res. 20,
179–205.

BELL, T. H. 1975 Lee waves in stratified flows with simple harmonic time dependence. J. Fluid
Mech. 67, 705–722.

DAI, D., WANG, W., ZHANG, Q., QIAO, F. & YUAN, Y. 2011 Eigen solutions of internal waves over
subcritical topography. Acta Oceanol. Sin. 30, 1–8.

EGBERT, G. D. & RAY, R. D. 2000 Signification dissipation of tidal energy in the deep ocean
inferred from satellite altimeter data. Nature 405, 775–778.

GARRETT, C. 2003 Internal tides and ocean mixing. Science 301, 1858–1859.
GARRETT, C. & KUNZE, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech.

39, 57–87.
HAZEWINKEL, J., TSIMITRI, C., MAAS, L. R. M. & DALZIEL, S. B. 2010 Observations on the

robustness of internal wave attractors to perturbations. Phys. Fluids 22, 107102.
JEFFREYS, H. 1920 Tidal friction in shallow seas. Phil. Trans. R. Soc. Lond. 221, 239–264.
JOHN, F. 1941 The Dirichlet problem for a hyperbolic equation. Am. J. Math. 63, 141–154.
LAM, F.-P. A. & MAAS, L. R. M. 2008 Internal wave focusing revisited: a reanalysis and new

theoretical links. Fluid Dyn. Res. 40, 95–122.
LLEWELLYN SMITH, S. G. & YOUNG, W. R. 2002 Conversion of the barotropic tide. J. Phys.

Oceanogr. 32, 1554–1566.
LLEWELLYN SMITH, S. G. & YOUNG, W. R. 2003 Tidal conversion at a very steep ridge. J. Fluid

Mech. 495, 175–191.
MAAS, L. R. M. 2011 Topographies lacking tidal conversion. J. Fluid Mech. 684, 5–24.
MAAS, L. R. M., BENIELLI, D., SOMMERIA, J. & LAM, F.-P. A. 1997 Observation of an internal

wave attractor in a confined, stably stratified fluid. Nature 388, 557–561.
MOTTER, A. E. & ROSA, M. A. F. 1998 Hyperbolic calculus. Adv. Appl. Clifford Alg. 8,

109–128.
MUNK, W. 1997 Once again: once again – tidal friction. Prog. Oceanogr. 40, 7–35.
MUNK, W. & WUNSCH, C. 1998 Abyssal recipes. Part II. Energetics of tidal and wind mixing.

Deep-Sea Res. I 45, 1977–2010.
RAY, R. D. & MITCHUM, G. T. 1997 Surface manifestations of internal tides in the deep ocean:

observations from altimetry and island gauges. Prog. Oceanogr. 40, 135–162.
ST LAURENT, L. & GARRETT, C. 2002 The role of internal tides in mixing the deep ocean. J. Phys.

Oceanogr. 32, 2882–2899.
TAYLOR, G. I. 1919 Tidal friction in the Irish sea. Phil. Trans. R. Soc. Lond. 220, 1–93.
VLASENKO, V., STASHCHUK, N. & HUTTER, K. 2005 Baroclinic Tides: Theoretical Modelling and

Observational Evidence. Cambridge University Press.
WUNSCH, C. 1968 On the propagation of internal waves up a slope. Deep-Sea Res. 15, 251–258.

4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

30
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.301

	A conundrum in conversion
	Introduction
	Overview
	Future
	References




