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TRANSITIVE ORIENTATION OF GRAPHS AND 
IDENTIFICATION OF PERMUTATION GRAPHS 

A. PNUELI, A. LEMPEL, AND S. EVEN 

1. Introduction. The graphs considered in this paper are assumed to be 
finite, with no edge joining a vertex to itself and with no two distinct edges 
joining the same pair of vertices. An undirected graph will be denoted by G 
or (F, £ ) , where V is the set of vertices and E is the set of edges. An edge 
joining the vertices i,j G V will be denoted by the unordered pair (i,j). 

An orientation of G = (V, E) is an assignment of a unique direction i —* j 
or j —> i to every edge (i,j) € E. The resulting directed image of G will be 
denoted by G~* or (V, £"*), where E~* is now a set of ordered pairs 
•E"* = {[ijj]\ (i,j) € E and i —• j } . Notice the difference in notation (brackets 
versus parentheses) for ordered and unordered pairs. Also, if [i,j] € £"*, then 

A graph G with n vertices is called a permutation graph if there exist: 
(a) A labeling vi, v2, . . . , vn of the vertices of G, and 
(b) A permutation P = [P( l ) , P(2) , . . . , P(n)] of the integers 1, 2, . . . , n 

under which vt and Vj are joined by an edge in G if and only if 

(1) (i-J)[P~1(i)-P-1(J)}<0, 

where P~1{i) is the integer which P maps onto i. 
In a recent paper [1] it was shown that permutation graphs, due to their 

special structural properties, are very helpful in modeling and solving various 
problems such as determining intersection-free layouts for connection boards 
[4] or optimal schedules for reallocation of memory space in a computer [3]. 

I t was also shown that the family of permutation graphs is embedded in a 
broader family of so-called transitively orientable graphs whose basic property 
is that they admit an orientation under which the relation —» on the set of 
vertices is transitive. That is, a graph (V, E) is transitively orientable (in 
short, TRO) if and only if there exists a directed image (V, E~*) of (V, E) 
such that for i, j , k G F, 

(2) [ij] e £T and [j, k] £ E^ imply [i, k] £ E*. 

An equivalent definition of TRO graphs is that they admit a labeling 
^ii V2, • • • , vn of their vertices under which for i < j < k the existence of an 
edge joining vt to Vj and one joining Vj to vk implies the existence of an edge 
joining vt to vk. 

This property of transitively orientable graphs, which is also shared by 
permutation graphs, led to the derivation of highly efficient procedures for 
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finding maximal cliques and minimal chromatic decompositions of TRO 
graphs. These procedures require, however, an a priori knowledge of a valid 
labeling of the vertices. In some of the mentioned applications, such a labeling 
is evident from the nature of the problem. To determine maximal cliques or 
minimal chromatic decompositions of an arbitrary given graph is still a 
formidable problem in graph theory. The efficiency by which this can be done 
for TRO and permutation graphs motivated us to look for algorithms that 
will decide whether a given graph belongs to one of these families. 

In § 2 of this paper we describe a simple iterative procedure for testing 
transitive orientability. In each iteration a certain subset of edges of the given 
graph is processed and then removed, leaving a graph with fewer edges for 
the next iteration. Whenever the graph G under test is TRO, the algorithm 
will produce a transitive orientation of G. A simple method of obtaining a 
valid labeling of the vertices is also presented. 

In § 3 we show that a graph G is a permutation graph if and only if both G 
and its complement Gc are TRO. (Gc is a graph with the same vertices as G 
and two vertices are joined by an edge in Gc if and only if there is no such 
edge in G.) Thus, by applying the TRO test to both G and GCJ we can decide 
whether either of them is a permutation graph. 

In § 4 we prove two theorems that establish the validity of the TRO 
algorithm described in § 2. 

Having completed the preparation of this report, we became aware of an 
earlier paper by Gilmore and Hoffman [2] in which a characterization of TRO 
graphs (under the name of comparability graphs) and an algorithm for tran
sitively orienting them are presented. The algorithm described in this paper 
is believed to be more efficient as it employs only one orientation rule and 
progressively reduces the size of the graph under test with each iteration. 
Naturally, the difference between the two algorithms is also reflected in their 
completely different proofs as well as in a variety of other secondary results 
pertaining to the structure of TRO graphs. 

2. An algorithm for transitive orientation. The algorithm described in 
this section decides whether a given graph is TRO and in all affirmative 
cases produces a transitively directed (in short, TRD) image of the graph 
under test. The key device of the algorithm is an orientation rule which 
applies to a pair of adjacent edges (i,j) and {j,k) when there is no edge 
joining vertices i and k. To facilitate future reference to such pairs of edges, 
we associate with every graph (F, E) a symmetric and irreflexive relation T 
on E which is defined as follows. 

li i 9* k and (i,j), (j, k) £ E, then 

(3) (i,j) r (j, k) if and only if (i, k) g E. 

Note that only pairs of edges sharing a common vertex should be considered 
when looking for T-related pairs. 
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To describe the orientation rule, we need some further definitions involving 
partially oriented graphs; i.e., graphs such that some (possibly all or none) 
of their edges are directed. 

Let G* or (F, E*) denote a partially oriented graph. An edge in G* is called 
an implicant if it is directed and T-related to at least one undirected edge in G*. 
A graph G* is said to be stable if it contains no implicants; otherwise G* is 
called unstable. 

All statements made in the following description of the algorithm are 
proved in § 4. 

To test a given undirected graph G for transitive orientability, start by 
arbitrarily choosing and directing one edge of G. If the resulting partially 
directed graph is unstable, proceed according to the following orientation rule 
as long as it is applicable. 

The Y-implied orientation rule. Choose an implicant edge [i,j]. Then, to 
every undirected edge (i,if) such that [i,j] T (i,i') assign the direction 
i—»i', and to every undirected edge (j,f) such that [i,j] V (j,f), assign 
the direction / —> j . 
It is clear that repeated application of the above rule will result, eventually, 

in a stable graph G which is either fully oriented or has none of its undirected 
edges being T-related to a directed one. 

Next, consider separately the subgraphs Gd* and Gw* of G* which are formed 
by the directed and undirected edges of G*, respectively. First apply the 
following test to determine whether Gd* is TRD. 

TRD test j or directed graphs. Let (F, E~*) be a directed graph. For every 
i Ç V form the subset 

(4) v(i) = ye v\[i,j\eE*\. 
Then (7 , ET) is TRD if and only if for all i G F, 

(5) V(i) D W(i) = U 70"). 
KV(i) 

The validity of this test is evident directly from the definition of TRD graphs. 
If Gd* fails to be TRD, then the given graph G is not TRO. If G / turns out 

to be TRD, repeat the whole procedure for the remaining undirected graph Gu*. 
The cycle described above will be referred to as a phase of the algorithm. 

Thus, a phase starts by choosing and directing arbitrarily one edge of the 
undirected graph at hand and terminates with the TRD test of the directed 
subgraph of a stable graph. The result of the TRD test at any phase is in
dependent of the order in which the implicants are chosen during the iterative 
orientation process at that phase. Successive phases start with smaller sub
graphs of the given graph G and the algorithm terminates either with the 
first failure of the TRD test and the conclusion that G is not TRO, or with a 
fully oriented TRD image G~* of G. 

The following is a formal summary of the TRO algorithm. Initially, let G' 
be the given graph G and proceed as follows. 
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(A) Choose and direct arbitrarily an edge in G''. If the resulting graph is 
unstable, go to (B); if it is stable, go to (C). 

(B) Apply repeatedly the r-implied orientation rule until no implicants 
are left. Then go to (C). 

(C) Apply the TRD test to the subgraph formed by the directed edges. 
If the test fails, go to (F); otherwise, go to (D). 

(D) If there are no more undirected edges, go to (S); otherwise, let G be 
the remaining undirected subgraph and go back to (A). 

(F) Stop. The given graph G is not TRO. 
(S) Stop. The given graph G is TRO and the assigned orientation is 

transitive. 
In § 4 we establish the validity of this algorithm by proving the following 

two theorems. 

THEOREM 1. If the TRO algorithm terminates in state (5), the resulting directed 
graph is TRD. 

THEOREM 2. If the graph under testis TRO, the algorithm will terminate instate (S). 

The two possible terminations of the algorithm are illustrated by the 
following examples. 

Example 1. Consider the graph G shown in Figure 1(a). Let us start (A) by 
choosing the direction 1 —> 2 for (1,2). Since [1,2] is T-related to both 
(2, 3) and (1, 5), we proceed to (B) and assign the directions 3 —» 2 and 1 —» 5. 
We have [3, 2] Y (3, 4) which implies 3 -> 4 and then [3, 4] r (4, 5) which 
implies 5 —* 4. At this stage there are no more implicants and we proceed to 
(C). The edges directed so far form the subgraph Gd* shown in Figure 1(b). 
Inspection of Gd* readily reveals that it is not TRD because of 1 —» 5, 5 —-> 4, 
and no edge from 1 to 4. Also, according to the formal TRD test, condition (5) 
is violated for i = 1. Thus, we have reached state (F) and we conclude that G 
is not TRO. 

Example 2. Consider the graph G of Figure 2(a). Starting (A) with 1 —» 2, 
the algorithm proceeds as follows. 

(B) [1, 2] => [3, 2] => [3, 4], [5, 2], 
[3, 4] => [5, 4] => [5, 1] =*• (C). 

(C) The directed subgraph Gd* is shown in Figure 2(b). Applying the 
TRD test we obtain: 

7(1) = {2}, 7(2) = 7(4) = 0, 7(3) = {2, 4}, and 7(5) = {1,2,4}. 

Hence, W(i) = 0 for all i = 1, 2, 3, 4 and W(5) = {2} C 7(5). Thus, 
Gd* is TRD and we proceed to (D) and from there back to (A) with 
the subgraph Gw* shown in Figure 2(c). 

(A) 1 - 6 = > ( B ) . 
(B) [1, 6] => [2, 6], [3, 6], [4, 6], [5, 6] => (C). 
(C) =*(D) . 
(D) =* (S). 
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Having reached s ta te (S) we decide t h a t G is T R O . T h e obtained T R D 
image of G is shown in Figure 2 (d ) . 

FIGURE 1. The graphs of Example 1 

(a) (b) 

FIGURE 2. The graphs of Example 2 
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We conclude this section by describing how to achieve a labeling vu V2, • • • , % 
for the vertices of a TRD graph (F, E~*) under which [vuv3] 6 E~* implies 
i < j . One readily observes that, by the transitivity of (F, E~*), such a labeling 
for V is equivalent to the one mentioned in the introduction, following the 
definition of TRO graphs. The procedure described below is, essentially, an 
embedding of a partially ordered set in a linearly ordered one and it applies 
to every directed graph which contains no directed circuits. (A circuit is said 
to be directed if the directions of all the edges forming the circuit are confluent.) 

First, we observe that every TRD graph is free of directed circuits, for the 
existence of a directed circuit with k edges in a TRD graph would imply, by 
transitivity, the existence of one with k — 1 edges. Since there can be no 
directed circuit with only two edges, there can be no one at all. 

It is also clear that if (F, E~*) contains no directed circuit then it must 
contain at least one sink; that is, a vertex with no outgoing edges. Removal 
of a sink and all its incoming edges from (F, E~*) leaves a graph which is also 
free of directed circuits. 

Now, let G~*n = (F, E~*) be a graph with n vertices and with no directed 
circuits. A labeling vi, v2, . . . , vn of the vertices of G~*n is called valid if and 
only if i < j for all [vu vf\ £ E"*. One easily verifies that the following procedure 
results in a valid labeling for G~*n. 

Valid labeling procedure. Choose a sink in G*n and label it vn. Remove vn 

and all its incoming edges from G~*n and call the resulting graph G~*n_i. 
Repeat the same with G^n_i using the label vn-i and so forth until a single 
vertex is left and label it v±. 
For example, a valid labeling for the graph of Figure 2(d) would be: 6̂ = 6, 

v5 = 4, v± = 2, z>3 = 3, v2 = 1, and vi = 5. 

3. Identification of permutation graphs. Let G be a permutation graph 
with n vertices. A labeling vi, v2, . . . , vn for the vertices of G is called admissible 
if there exists a permutation P on N = {1, 2, . . . , n} under which the in
equality (1) is satisfied if and only if (vu Vj) is an edge in G. Consider a per
mutation graph (V, E) with an admissible labeling and a corresponding 
permutation P. If (F, Ec) is the complement of (Vy E)y then it is clear that 
for the same labeling and permutation, (vu Vj) 6 Ec if and only if the reversed 
inequality, that is 

(6) (i-j)[P-1(i)-P-1U)]>0, 

is satisfied. 
A graph G is called complete if every pair of distinct vertices is joined by 

an edge in G. Thus, if (F, Ec) is the complement of (Vf E)y then (F, EKJ Ec) 
is complete. 

THEOREM 3. A graph G = (V, E) is a permutation graph if and only if both G 
and its complement Gc = (F, Ec) are TRO graphs. 
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Proof.] Assume that G is a permutation graph. Then there exist a labeling 
vu v2y . . . , vn and a permutation P on N under which inequalities (1) and (6) 
are satisfied for G and Gc, respectively. Orient G and Gc so that all of their 
edges are directed from low to high. That is, let 

(7) E* = {[vi9 Vj]\ (vit Vj) G E and i < j) 

and 

(8) E"% = {[vi9 vj]\ (vu vj) e Ec and i<j}. 

We claim that G~" = (F, E*) and G*c = (F, E~>c) are both TRD. For, suppose 
that [vu Vj] and [vjt vk] belong to G~*. Then i < j < k and, by inequality (1), 
P - 1(^) > P - 1 0 ) > P~1(k). Hence inequality (1) is also satisfied for i and &, 
which means that [vu vk] belongs to G~*. A similar argument applies to G^c. 
This proves the "only if" part of the theorem. 

Assume now that G and Gc are both TRO and let G~* = (F, E~*) and 
G-^ = (F, £"%) be a pair of corresponding TRD images. Consider the directed 
complete graph H~* — (F, £~* U E~*c). First, we claim that H~* contains no 
directed circuits. For, if it does, let i\ —» i2 —> 23 —* . . . —> ^ —> ii be a directed 
circuit in JET* which contains the minimum possible number of edges. It is 
clear that k ^ 3. If k > 3, then since IT* is complete, there must be an edge 
joining ii and i%. This edge, regardless of its direction, violates the minimality 
assumption with regard to the length of the chosen circuit. Therefore, we 
must have k = 3. However, two of the three edges i\ —> i2, i2 —> i%, and iz —* i\ 
must belong either to E~* or to E~%. Since (F, E) and (F, Ec) are both TRD, 
the graph that contains two of those edges must contain the third one, but 
with an opposite direction. This contradiction rules out the possibility of 
having a directed circuit in H^. 

Now, let G*~ = (F, E*~) be the graph obtained by reversing the direction 
of every edge in G~* = (F, E~*). That is, 

(9) E*={[i,j\\[j,i\SE*}. 

One easily verifies that G*~ is also a TRD image of G and, hence, also the 
complete graph R~* = (F, E*~ \J E~*c) is free of directed circuits. Thus, we 
may apply the valid labeling procedure, defined in § 2, to both H~* and i T \ 
Let hi, h2y . . . , hn be the labeling of F obtained by applying the procedure 
to H~* and let ri, r2l . . . , rn be the labeling obtained with respect to R~*. Every 
element of F now has two labels, an h-label hi and an r-label rj. Let L denote 
the set of the n label pairs Qiu rj) associated with the elements of F, and let 
for all i, j 6 N = {1, 2, . . . , n}, 

(10) P{j) = i if and only if (hu r,) € L. 

I t is clear that P = [P( l ) , P(2) , . . . , P(«)] is a permutation on iV and we 
will show now that under this permutation, inequality (1) holds for i, j £ N 
if and only if the vertices with /^-labels hi and hj are joined by an edge in 

fA weaker theorem, tha t involves a prescribed labeling of the vertices, has been proved in 

m. 
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G = (V, E). To this end, consider the two label pairs which contain ht and hj. 
Let these pairs be (hit rs) and (hjt rt). Then P{s) = i, P(t) = j , and 

(11) P~l(i) -P~l{j) = s - t . 

The left-hand side of inequality (1) is therefore given by 

(12) m = (i -j)(s - t). 

Since only the edges belonging to E have opposing directions in HP and iT*, it 
is evident that m is negative if and only if the edge that joins the vertex 
whose label pair is (hu rs) to the vertex whose label pair is (hj, rt) belongs to E. 

The proof of Theorem 3 suggests the following procedure for identifying 
permutation graphs. 

(P.l) Apply the TRO algorithm to the given graph (V, E) and to its 
complement (V, Ec). If any of these graphs fails to be TRO, then 
neither is a permutation graph. If both are TRO, let (V, £"*) and 
(V,E*e) be the corresponding TRD images and go to (P.2). 

(P.2) Construct the graphs HT = (F, E* \J E^c) and i T = (7 , E~ \J £"%), 
where E*~ is the set defined by (9), and apply the valid labeling 
procedure to obtain a labeling hlt h2, . . . , hn for H~* and a labeling 
ru r2, . . . , rn for R~*. The ^-labels provide an admissible labeling for 
both (7 , E) and (7 , Ec). The corresponding permutation for (V, E) 
is the one defined by (10). If P is the permutation for (7 , £ ) , then 
the permutation Pc for (V, Ec) is given by 

(13) Pc(i) = P(n+ 1 - * ) , i £ i V = {1,2, . . . , » } . 

Verification of the validity of (13) is left to the interested reader. 

Example 3. In Example 2 we found that the graph G of Figure 2(a) is TRO. 
Its complement Gc consists of only four edges (1, 3), (1, 4), (2, 4), and (3, 5), 
which may be transitively oriented as 1 —> 3, 1 —» 4, 2 -* 4, and 5 —» 3. 
Adding these directed edges to G~* of Figure 2(d) and to its reversal G*~, we 
obtain the complete graphs iT* and K*, shown in Figures 3(a) and 3(b), 

FIGURE 3. The graphs H~*(a) and R~*(a) for Example 3 
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respectively. The label pairs (hu rf) obtained by applying the valid labeling 
procedure are: 1 t=> (h2j rz), 2 «=> (A4, r2), 3 <=> (A3, r6) ,4 <=» (A5, r4), 5 <=» (/zi, r5), 
and 6 <=> (&6> fi). Hence, an admissible labeling for G and Gc is given by 1 = /z2, 
2 = A4, 3 = hz, 4 = fe5, 5 = hi, and 6 = h&; the corresponding permutation 
for G is P ( l ) = 6, P(2) = 4, P(3) = 2, P(4) = 5, P(5) = 1, and P(6) = 3, 
and the permutation for Gc is P c ( l ) = 3, P c(2) = 1, P c(3) = 5, P c(4) = 2, 
P e(5) = 4, and Pc(6) = 6. 

4. Proof of the TRO algorithm. The following notation and définitions 
will be useful in proving the TRO algorithm. Let (F, E) be a graph. For 
A C E let F(^4) denote the subset of V which consists of all the vertices 
which belong to at least one edge in A. The graph (V(A), A) will be referred 
to as the edge-section of (V, E) spanned by A C E. For X C V let E(X) 
denote the subset of E which consists of all the edges that have both of their 
vertices in X. The graph (X, E(X)) will be referred to as the vertex-section of 
( 7 , E ) spanned by X C V. 

Notice that V(E(X)) C X for all X C F, while E(V(A)) D 4 for all 
ACE. 

For X, F C V let (X, F) denote the set of all unordered vertex pairs 
formed by one vertex from X and one from F. That is, 

(X, F) = {(x,y)\xe X,y G F } . 

The notation [X, F] will be used for ordered vertex pairs. 
We define now an equivalence relation f on E which is the closure of the 

F-relation defined in (3). The relation F is defined as follows: 

((a) e F e for all e Ç E\ 
(14) U b ) Il ex Y e2, then ^ f e 2 ; 

' (c) If ei F e2 and 2̂ F e3, then ei F e3. 

The relation F induces a partition of £ into equivalence classes which will 
be referred to as the F-classes of (V,E). The set whose elements are the 
F-classes of a graph (V, E) will be denoted by Ë. Thus, the elements of E are 
disjoint subsets of £ , every edge in E belongs to some F-class A G Ë, and all 
edges belonging to the same A G Ë are equivalent under F. For example, if 
(F, E) is a complete graph, then no two edges of (V, E) are T-related and, 
therefore, every edge forms a F-class of its own. 

The proof of Theorem 1 is quite simple and is presented below in one 
continuous argument. The proof of Theorem 2 is more complicated and is 
preceded by a series of lemmas which, besides leading toward the final argu
ment, also reveal the specific structure of TRO graphs and some far-reaching 
aspects of the relation T with regard to arbitrary graphs. 

Proof of Theorem 1. The proof is by induction on the number of phases it 
takes to reach state (S). If state (S) is reached after one phase, then the 
resulting directed graph is obviously TRD. Assume that the theorem is true 
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when the number of phases is k or less, and consider a graph (F, E) whose 
test runs through k + 1 phases and terminates in state (S) with the directed 
graph (F, E~*). If A~* C E~* is the set of edges oriented in the first phase and 
B~> = E~* - 4~>, then, by the inductive hypothesis, both (F, A~*) and (F, S""*) 
are TRD because the first graph results after one phase and the second graph 
after k phases of the TRO algorithm. It is also clear that the set of edges 
oriented in the first phase is always a T-class of the graph under test. Now, 
assume i —>j and j —> k in (F, £"*). If both edges belong to A"* or both belong 
to 2T*, then also i —» k in (V, E~*) because each of (V, A^) and (V, B"*) is 
TRD. If [i,j] G A^ and [j,k] G B~*, then these edges belong to different 
f-classes of (V, E) and we must have (i, k) G E. If (t, &) G A, then i —» & in 
(F, JET*), or else (F, 4"*) is not TRD. If (i, k) £ B we must also have i —> k 
in (F, E"*), or else (V, B~*) is not TRD. A similar conclusion is reached if 
we assume [i,j] G B~* and [j, k] G A~*. 

We proceed now with a series of lemmas which lead to the proof of 
Theorem 2. The first six lemmas deal with the interconnections among edge 
and vertex sections of an arbitrary graph which are determined by the T-
relation of the graph. The next six lemmas deal with subgraphs of a TRO 
graph which preserve the TRO property. 

LEMMA 1. For every Y-class A G Ë, the edge section (V(A), A) of (F, E) is 
connected. 

Proof. The connectedness of (V(A), A) is an immediate consequence of the 
fact that any twTo T-related edges have a common vertex. 

LEMMA 2. For every A G Ë, if x G V(A), y G V — V(A), and (x, y) G E, 
then (V(A),y) C E. 

Proof. Assume that (x,y) G E with x G V(A) and y G V — V(A). Let 
X = {x G F ( 4 ) | (s, y) G £ } . If X ^ F ( 4 ) , then by Lemma 1 there exists 
an edge (x', z) G A such that x' G X and z G V(A) — X. From the con
struction of X it follows that (z, y) & E and (x', 3O G £• Therefore, 
(x',z) V (x',y), and since (x',z) G 4 we must have (x',y) G A. This, how
ever, contradicts the assumption that y G F — F ( 4 ) and, hence, we must 
haveJf = V(A). 

The property established in Lemma 2 is now defined in general as follows. 
A non-empty subset X of F in a graph (F, E) is said to be uniformly hinged 

on another non-empty subset F of F if 
(i) X and Y are disjoint; 

(ii) (X, F) C E; 
(iii) x Ç I , x' G F — Xy and (#, x') G E imply x' G F. 
From Lemma 2 it follows that if (F, £ ) is connected, then for every A G Ë 

either F ( 4 ) = F or there exists a set Y C V - V{A) such that V(A) is 
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uniformly hinged on F. For an appropriate choice of A G E this conclusion 
may further be strengthened as follows. 

LEMMA 3. If (F, E) is connected, then there exists a Y-class A G Ë such that 
either V(A) = V or V(A) is uniformly hinged on V — V(A). 

Proof. If there exists no A G Ë such that V(A) = V, letB G Ë be a T-class 
for which V(B) contains the maximum possible number of vertices over all 
A G Ë. Consider the set YB C V on which V(B) is uniformly hinged. If 
YB = V - V(B) there is nothing to prove. Assume that YB j* V — V(B) 
and let ZB = V - (V(B) U YB). Note that there is no edge in (F, E) which 
joins a vertex of ZB to one of V(B). Since (F, E) is assumed to be connected, 
there must exist an edge (y, z) G E such that y Q. YB and z Q. ZB. Observing 
that for all x G V(B) we have (x,y) G £ while (x, z) $ E, it follows that 
(x,y) T (y,z) for all x G F ( 5 ) . Consider now the f-class A G Ë which 
contains the edge (y, z). We have just shown that in addition to (y, z), A also 
contains the set (V(B),y). This implies that V(B) C V(A), and since 
z G V(A) but z & V(B), V(B) ^ V(A). Thus, 7 ( 4 ) contains more vertices 
than V(B) does, which contradicts the maximality of V(B) and invalidates 
the assumption with regard to YB. Hence, YB = V — V(B) which completes 
the proof. 

A graph (F, E) is said to be Y-connected if there exists a T-class A G Ë 
such that V(A) = F. 

The next three lemmas deal with T-connected graphs. The f-class which 
meets all the vertices in such a graph (F, E) will be denoted by R and the 
edges belonging to R will be called red. U E ^ R, let B = E — R and call 
the edges belonging to B blue.\\ 

LEMMA 4. A Y-connected graph (F, E) contains no circuit which is formed 
by only one red and the rest blue edges. 

Proof. Suppose that there exists a circuit in (F, E) which contains only one 
red edge. Among all such circuits consider one with the smallest possible 
number of edges. Let the edges of this circuit be (iu i2), fe, '̂3), . . . , (4-i , 4 ) , 
(ijt, ii) and let (ii, i2) be the only red edge. Clearly, k ^ 3. If k 9^ 3, then 
since (ii, i2) is red and (i2, iz) is blue, we must have (ii, i3) G E. This edge 
(ii, iz) cannot be red because then we would have a circuit formed by 
(ii, iz), (iz, i±), • • • , (4-i , ijc), (in, i\) with only (iu iz) being red and with one 
edge less than the assumed shortest circuit of this type. Thus, (ii, iz) must 
be blue and, therefore, k = 3. Now consider the triangle formed by (ii, i2) G R 
and (i2, iz), (ii, iz) G B. By Lemma 1, (F, R) is connected and we must have 

ft Anticipating the result of Lemma 4, we refer to R as " the" T-class for which V(R) = V. 
The uniqueness of such a T-class in every T-connected graph is an immediate consequence of 
Lemma 4. 
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a red edge which meets vertex iz, say (iz, r) , and it is clear that r is distinct 
from both ii and i2. Since all the edges of R are equivalent under T, there 
must be a T-chain (i.e., a sequence of T-related edges) leading from (ii, 2*2) to 
(i3, r). If there are other triangles in (V, E) which violate the lemma, assume 
that the one under consideration was chosen among all such triangles to have 
the shortest possible T-chain from the red edge to the vertex shared by the 
two blue ones. Consider the edge next to (ii, i2) in a shortest T-chain leading 
to (iz, r). This edge is either (iu s) or (i2, s) for some s G V. The two cases 
are completely symmetric and we may assume (ii, i2) V (i2, s) to be the first 
link in the chain. Therefore, (i\, s) (£ E, and since (i2, iz) is blue and (i2f s) 
is red we must have (iz, 5) G £ . Furthermore, since (ii, i3) is blue, also (iz, 5) 
must be blue because (ii, 5) g £ implies (iu iz) V (iz,s). Thus, s 9^ r and 
we have now another violating triangle with one red edge (i2, s) and two blue 
edges (i2, iz) and (iz, 5) sharing the same vertex i%. For this triangle, however, 
we have a T-chain from (i2, 5) to (i3, r) which consists of only a proper part 
of the T-chain for the original triangle, namely, the part which follows edge 
(ii, ^2). This contradicts the minimality assumption for the length of the 
original T-chain and therefore no circuit which violates the lemma can be 
found in a T-connected graph. 

Lemma 4 implies that if (V,E) is T-connected and R £ Ë is such that 
V(R) — V, then (V,B), B = E — R> is not connected because, otherwise, 
adding any edge from R back to (V,B) would create a circuit which will 
violate the lemma. In view of Lemma 1, the fact that (V, B) is not connected 
means that for every T-connected graph there exists exactly one F-class R 
which meets all the graph vertices as asserted earlier. 

Consider a T-connected graph (V,E). As shown above, the "blue part" 
(Vj B) of this graph consists of p ^ 2 pieces; that is, maximal connected 
subgraphs, some of which may be isolated vertices. Let Vu i = 1, 2, . . . , p, 
be the subset of V which spans the ith piece of (V, B) and let U = {Vt) 
denote the set of these p subsets of V. 

LEMMA 5. If (V, E) is T-connected, then for every Vi 6 U, E(Vt) C B. 

Proof. If there were a red edge joining two vertices belonging to the same 
Vi G £/, we would have a circuit violating Lemma 4, because between any 
two vertices which belong to the same piece of ( V, B ) there exists a path 
consisting of blue edges only. 

LEMMA 6. If (V, E) is Y-connected, then every Vi Ç U is uniformly hinged 
on some set Yt C V — Vt. 

Proof. Since (V, E) is T-connected and each Vi G Z7 is properly contained 
in V, we must have a red edge (x, y) 6 R with x G Vt and y G V — Vt. Let 
Yi be the set of all vertices in V — F< which are joined by an edge to at least 
one vertex of Vi. To prove that Vt is uniformly hinged on Yt we have to show 
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that for every y G Y u (y, Vt) C E. To this end, let y G Yt and let 
X = {% G Vi\ (x,y) G E}. The set X is not empty because all the edges 
joining the vertices of Vi to a vertex of V — F?: must be red and Yi was 
constructed to contain all the vertices outside of Vi which are adjacent to 
some vertex of Fz-. If X ^ Vu there must be a blue edge (x\ z) G E(F*) 
with x' G X and s G F* — X. Since (x', y) is red and (x', z) is blue, we must 
have (y, z) G E and this edge cannot be blue because z G F* and 3/ g F* 
(and also because of Lemma 4). Thus, (y, z) must be red, which contradicts 
the assumption that X 9^ Vt. 

We turn now to TRO graphs and the special role of uniformly hinged vertex 
sets in such graphs. 

Consider a graph (V, E) and let X C V be uniformly hinged on Y C V. 
A directed image (F, E~*) of (V, E) is said to be regular with respect to X if 
for y G Y either [y, X] C E~> or [X, 3/] C £"*. 

LEMMA 7. / / (F, E) w EEO <md X C F w uniformly hinged on Y Cl F, 
£/zew //£ere aw/5 a EEZ) image (F , E~*) 0/ (F, E) which is regular with respect 
toX. 

Proof. Assume that (V, E) is TRO and let (F, ( JET) be a TRD image of 
(F, E) . If X is uniformly hinged on Y and (F, ( E T ) is not regular with 
respect to X, let Z be the subset of Y which consists of all z G Y for which 
there exist Xi and x2 in X such that Xi —» z and s —» x2 in (F, (E"T) . First, 
we observe that transitivity in (F, (E-*)*) and the fact that X is hinged on Y 
imply that no vertex outside of X U Y may be adjacent to a vertex of Z. 
That is, 

(15) z G Z and (1;, 2) G E imply v G X U F. 

Secondly, since x G X, y G F - Z, and [x, y] G ( E T imply [X, y] C ( E T , 
and since for every z G Z we have [s, x] G E"* for some x G X, transitivity in 
(F, (E~T) requires that 

(16) x G X, 3/ G F - Z and [x, y] G ( E T imply [Z, y] C ( E T . 

Similarly, we have 

(17) x G X, 3; G Y - Z and Qy, x] G ( E T imply [y, Z] C ( E T . 

Now, let 

A = {[x, z] G ( E T I x G X and z G Z} 

and let (F, E"*) be the directed graph obtained from (F, (E-*)*) by reversing 
the orientation of all, and only those, edges which belong to A. The new 
directed image of (F, E) is regular with respect to X with [Z, X] C E"*, and 
to complete the proof we have to show that (F, E~*) is TRD. To this end, 
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assume that there exist i, j , and ft in V such that [i,j], [7, ft] 6 E~* and 
[i, ft] Q E~*. This situation is equivalent to the following alternatives: 

(18) [i,j] e E*, [j, ft] e E* and [ft, i] e £"* 

or 

(19) [*, j] € E^, y , ft] e £ - and (i, ft) € E. 

Since (F, (E~*)*) is TRD and the only edges whose orientation might have 
been changed are connected between X and Z, it follows that at least one of 
i,j, ft belongs to X, at least another one belongs to Z and, from (15), the 
third of i, j , ft must belong to I U F. This last vertex is further restricted 
to be contained in Y — Z because [Z, X] C E~* and if any two of i, j , ft belong 
to either X or Z, neither of the assumed alternatives (18) and (19) can hold. 
Now, let x, y, and z be the elements from {i,j, ft} which belong to X, Y — Z, 
and Z, respectively. Evidently, (x,y) £ E and the orientation of (x, y) in 
(F, E~*) is the same as it was in (F, ( E T ) - From (16) and (17) we have 
either 

(20) [x,y] G ( E T and [g, y] G ( E T 

or 

(21) [y,x] e ( E T and [y,*] € ( E T . 

Since also the orientation of (y, z) is the same in both (F, (£~T) and (F, E~*), 
it follows that one of the alternatives (20) or (21) must hold with regard to 
E~*. However, it is easy to verify that neither of these alternatives is com
patible with any of the assumed alternatives (18) or (19), and hence (F, E"*) 
is TRD. 

LEMMA 8. / / (F, E) is TRO and X C F is uniformly hinged on Y C F, 
/Ae» (F, E - E(X)) w also TRO. 

Proof. If (F, E) is TRO and X is uniformly hinged on F, then by Lemma 7 
there exists a TRD image (F, E~*) of (F, E) which is regular with respect to 
X. Consider (V, E* - E*(X)). We claim that (F, £"* - E"*(X)) is a TRD 
image of (F, E — E(X) ) . This can readily be established by observing that 
if [i,j] and [j, ft] belong to E"* — E~*(X), then i and ft cannot both belong to X 
because then j must belong to F, which contradicts the regularity of the original 
graph (F, E"*) with respect to X. Thus, at least one of i and ft belongs to 
F — X, and since the existence of [i, ft] in E^ is guaranteed by the transitivityjof 
(F, E T [i, ft] must also be present in E* - E*(X). Hence, (F, E"* - E*(X)) 
is TRD or (F, E - E(X)) is TRO as asserted. 

LEMMA 9. If ( F, E) w TRO, then for every X C F /Ae iterte* section (Xt E(X)) 
of (V,E)is TRO. 
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The reader may readily verify this lemma by considering a TRD image of 
(V, E) and the vertex section (X, E*(X)) thereof. 

LEMMA 10. If (V,E) is TRO and T-connected, then (V,R) is TRO, where 
R G E is the T-class of red edges. 

Proof. The lemma is trivially true if the set B = E — R of blue edges is 
empty. If B is not empty, then by Lemma 6 every set Vi G U which spans a 
piece of (V, B) is uniformly hinged on some Yt C V. By Lemma 8, the graph 
(V,E — E(Vi)) is TRO for every Vt G U and by Lemma 5 it contains all 
the original red edges of (V,E). I t is also clear that (V, E — E(Vt)) is 
T-connected with the same set of edges R forming the red T-class for this 
graph as for (V, E). The lemma follows now by induction on the number of 
pieces in (V, B) which contain at least one edge. 

LEMMA 11. If (V,E) is TRO, then for every T-class A G Ë the edge-section 
(V,A)is TRO. 

Proof. Consider the vertex section of (V, E) which is spanned by V(A) C V 
for an arbitrary A G E. Each such vertex section is a T-connected graph with 
A being the set of its red edges. Thus, if (V, E) is TRO, then by Lemmas 9 
and 10, (V(A),A) is also TRO for every A G Ë. Since (V,A) consists of 
(V(A),A) and the isolated vertices belonging to V— V(A), (F, A) is 
also TRO. 

LEMMA 12. If (F , E) is TRO, then (F, E - A) is TRO for every A G Ë. 

Proof. If (F, E) is TRO, then by Lemma 2, V(A) is uniformly hinged on 
some F C F and by Lemma 7 there exists a TRD image of (F, E) which is 
regular with respect to V(A). Let (F, E"*) be such a TRD image of (F, E) 
and let C* = E~* — A^. Suppose that i—>j and j —> k in (F, C*). Since 
(F , E~*) is TRD, we must have i —> k in (V,E~*). If (i, k) G C, there is 
nothing to prove. If (i, k) G A, then i and k belong to V(A) and, by the 
regularity of (F, E~*) with respect to V{A), also j must belong to V(A). 
Thus, the vertex section of (F, E) which is spanned by V(A) contains a 
triangle formed by (i, k) G A and (iyj), (J,k) £ C = E — A. This, however, 
violates Lemma 4 because the vertex-section spanned by V(A) is a T-con
nected graph with A being the set of its red edges. Hence, we must have 
(i, k) G C and, therefore, i —» k in (F, C~*). 

Proof of Theorem 2. The proof is by induction on the number of edges. The 
theorem is trivially true if (F , E) is a TRO graph with only one edge. Suppose 
that the theorem holds for all TRO graphs with k or less edges and consider 
a TRO graph (F, E) with k + 1 edges. Let A G Ë be the T-class of edges 
that are oriented during the first phase and let (V, A^) be the resulting 
directed image of (F, ^4). By Lemmas 11 and 12, (F, ^4) and (F, E — ^4) are 
both TRO. If A y£ E, then (F, ^4) has k or less edges and, by the inductive 
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hypothesis, (V, A~*) will pass the TRD test and the algorithm will reach its 
second phase with the graph (V, E — A). Since this TRO graph certainly 
contains less than k + 1 edges, the algorithm will terminate in state (S). To 
complete the proof we have to consider the case in which A = E. But, if 
(V, E) is TRO and every pair of its edges are JT-related, then the direction of 
any edge in a TRD image of (V, E) uniquely determines the direction of all 
other edges in accordance with the T-implied orientation rule. Since the 
graph obtained by reversing the direction of every edge in a TRD graph is 
also TRD, the direction of the first edge can always be chosen arbitrarily, 
without effecting the decision reached by the algorithm. 
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