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Abstract
Random networks were first used to model epidemic dynamics in the 1950s, but in the
last decade it has been realized that scale-free networks more accurately represent the
network structure of many real-world situations. Here we give an analytical and a Monte
Carlo method for approximating the basic reproduction number R0 of an infectious agent
on a network. We investigate how final epidemic size depends on R0 and on network
density in random networks and in scale-free networks with a Pareto exponent of 3. Our
results show that: (i) an epidemic on a random network has the same average final size
as an epidemic in a well-mixed population with the same value of R0; (ii) an epidemic
on a scale-free network has a larger average final size than in an equivalent well-mixed
population if R0 < 1, and a smaller average final size than in a well-mixed population if
R0 > 1; (iii) an epidemic on a scale-free network spreads more rapidly than an epidemic
on a random network or in a well-mixed population.
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1. Introduction

The world depends on a wide variety of complex networks, for example social
networks [17], the internet [2], networks of ecological interactions [32], biochemical
networks [1] and the neurovascular structure of the human brain [10]. It has long been
realized that an understanding of the nature and interactions of these networks can
advance our understanding of the systems that operate on them. Until about a decade
ago, study in this field was largely based on the assumption built into the work of
Erdős and Rényi [14] that these networks are randomly connected, with Poisson degree
distribution [21]. More recently, it has come to light that more complex structures are
common in numerous contexts, such as those mentioned above. Furthermore, it has
been realized that many of these share two properties.
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The first is the small-world property, which means that although the probability of
two randomly selected nodes being connected is extremely low, the number of steps
required to get from one node to any other node is relatively small [39]. This property
was popularized by the idea that you are six handshakes away from anyone in the
world [38].

The second property is a scale-free distribution of degrees. The degree of a node is
the number of other nodes to which it is connected. A scale-free distribution means
that the probability that a randomly chosen node has degree k is given by a power law
or Pareto distribution:

P(k) = ck−λ, k = 1, 2, 3, . . . ,

where 1 < λ ≤ 3 and c is a normalization constant [30]. This distribution is heavy-
tailed, meaning that it does not have finite variance. While most nodes will have
relatively low degree, nodes of arbitrarily large degree will occur in the large-
population limit. Even in finite populations, nodes with very large degree occur; these
nodes are referred to as hubs. Hubs are critical to the structure of the network, since
removing even a few of them can cause the network to become disconnected. Barabási
and Albert [5] developed an algorithm for constructing scale-free networks with λ = 3.
Their algorithm incorporates two key requirements for a scale-free network: growth
of the network and preferential attachment (meaning that new nodes are more likely
to connect to existing nodes that have many connections than to nodes with few
connections).

Since the introduction of the classical Kermack–McKendrick model [22], much
research has been directed towards producing effective models of disease spread.
The usual approach is to divide the population into several classes. At the simplest
level, these classes are the members of the population who are susceptible to the
disease (S), those who are infectious (I), and those who are removed (R), meaning
that they play no further role in the epidemic. It is possible to use additional classes,
for example members of the population who have been infected with the disease
(exposed) but are not yet infectious to others, or members of the population who
have been placed in quarantine [23]. Some models do not use the removed class,
assuming instead that infectious individuals remain infectious until the end of the
epidemic [6]. Another variant is the susceptible–infectious–susceptible model, in
which recovered individuals do not gain immunity, but return to the susceptible class.
This allows a stable endemic equilibrium to be reached, in which the proportion of the
population in the infectious class reaches a statistically stationary state [18, 40]. Other
extensions to the basic susceptible–infectious–removed (SIR) model include dividing
the population into age classes [11, 36], incorporating partial immunity [4], natural
births, deaths and migration of individuals [8], and investigating the effects of various
control strategies [35, 40].

Classical epidemic models assume that the population is homogeneous, meaning
that all individuals in a given class are essentially identical [8, 22, 33]. The state of
the system is fully described by the size of each class, and the dynamics are usually
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described by a system of ordinary [22] or integro-differential [33] equations for the
class sizes. More recently, research has been directed towards understanding the
effects of network structure on the dynamics of these models. Instead of assuming
that the population is well mixed (that is, that an infectious individual can infect any
member of the susceptible class), network models assume that the disease can only be
transmitted between connected nodes. This means that the state of the system cannot
be described by the class sizes alone and more complex approaches are required, such
as tracking the numbers of connected pairs of nodes in all possible combinations of
classes (S–S, S–I, and so on) [23] or using individual-based simulations.

In a large, well-mixed population, it is frequently possible to obtain analytical
expressions for the basic reproduction number R0 [3, 11, 34]. In a network model, this
can be more difficult, and we show that a naïve expression for R0 can be inaccurate
when the mean number of contacts (the mean degree) is relatively low. We instead
give a Monte Carlo method for approximating R0, which can be used for any network
with a known degree distribution.

Over the last decade or so, researchers have begun to investigate how epidemic
dynamics are affected by a scale-free network structure. It is known that scale-
free networks reduce the threshold population size needed for an epidemic to
spread [24, 29] and that the spread rate becomes instantaneous in the large-population
limit [6]. The presence of hubs makes scale-free networks robust to the removal of
large numbers of randomly selected nodes, but vulnerable to the targeted removal
of a few highly connected nodes [9, 13, 25]. This means that immunization of
randomly selected individuals is far less effective in reducing epidemic size than
targeted immunization of highly connected individuals, sometimes referred to as
superspreaders [19, 24, 27, 28]. Kiss et al. [24] investigated the effects of contact
tracing in a scale-free network. They used a network generation algorithm that
assigns each node a degree from an exponentially truncated Pareto distribution P(k) =

ck−λe−k/L with λ = 2.5, L = 100 and a fixed mean degree of 6. However, the exponent λ
is not typically known for real networks and the effect of choosing different values of λ
has not been investigated. Here, we use the Barabási–Albert algorithm [5], which gives
a Pareto degree distribution with λ = 3. (The distribution is naturally truncated as no
node can have degree greater than the size of the network.) We simulate a simple SIR
model on these networks and compare the epidemic dynamics to random networks and
to a well-mixed population. We investigate the effect of varying the basic reproduction
number R0 and the mean number of connections per node (the mean degree).

2. Models

Consider a network consisting of a fixed number of nodes N described by a binary
N × N matrix A: Ai j = 1 if node i is connected to node j and Ai j = 0 otherwise. (Clearly
A must be symmetric, namely Ai j = A ji for all i, j = 1, . . . , N.) If Ai j = 1, node i is said
to be a neighbour, or contact, of node j. A node’s degree is its number of contacts. We
model the spread of an infectious disease across this network using an individual-based
SIR model [11].
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2.1. Epidemic model At a given point in time, each node is in one of three classes:
susceptible, infectious or removed. The numbers of nodes in each of these classes at
time t are denoted by S (t), I(t) and R(t), respectively. We use a simple SIR model
based on Poisson processes for infection and removal events, as follows:

(i) A susceptible node has a constant probability per unit time β of becoming
infected by a neighbouring infectious node. The parameter β is referred to as
the transmission coefficient.

(ii) An infectious node has a constant probability per unit time γ of becoming
removed. The parameter γ is referred to as the removal rate.

(iii) A removed node plays no further part in the epidemic and remains in the removed
class for all time.

These assumptions contain some obvious simplifications. For instance, once
infected, an individual is considered to be immediately infectious; no latency period
is included in the model. The total population size (including removed nodes) S (t) +

I(t) + R(t) is assumed to be constant, so births, deaths, immigration and emigration are
ignored over the time scale of the epidemic. For real infectious agents, the probabilities
per unit time of infection and removal are not constant, but depend on the time elapsed
since infection [26, 33]. A susceptible node’s probability of becoming infected per
unit time is proportional to its number of infectious contacts i. Some previous models
ignore the effect of multiple infectious contacts, instead setting a fixed probability per
unit time of infection that is independent of i (provided that i ≥ 1) [7, 13].

A crucial idea in models of this type is that of the basic reproduction number R0,
defined as the expected number of secondary infections arising from a single infected
individual in an otherwise fully susceptible population [11]. That is to say, R0 is the
expected total number of transmissions by a particular infective if all its contacts are
susceptible. Naturally, R0 = 1 is a threshold value: if R0 is less than 1 then the outbreak
will rapidly die out, whereas larger values of R0 have the potential to lead to a major
outbreak.

In a finite population, the epidemic will always die out eventually since the number
of susceptibles will eventually become small enough that new transmissions are
extremely rare. The epidemic is said to be over when I(t) = 0. A useful measure of
the significance of an outbreak is its final size, which is defined as the total proportion
of the population that contracts the disease. This is equivalent to the proportion of the
population in the removed compartment once the epidemic is over: 1 − S∞/N, where
S∞ = limt→∞ S (t).

2.2. Network models We consider three types of network model: a well-mixed
population, a random network, and a scale-free network. In a well-mixed population,
every node is connected to every other node: Ai j = 1 for all i, j = 1, . . . , N. For a large
population size N, the dynamics of the epidemic can be described by the well-known
Kermack–McKendrick [22] SIR equations:

dS
dt

= −βIS ,
dI
dt

= βIS − γI,
dR
dt

= γI. (2.1)
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A BA networkA random network(a) (b)

F 1. Example networks of size N = 22: (a) a random network with density K = 0.1, (b) a network
generated using the BA algorithm with m = 1. To help illustrate the degree distribution, the size of each
node is proportional to its degree. These example networks are for illustrative purposes; the networks
used in epidemic simulations are much larger than this.

The basic reproduction number in a large, well-mixed population is given by

R0 =
βN
γ

(2.2)

and the final size satisfies the following equation [11]:

ln
(S∞

N

)
= ln

(S (0)
N

)
+ R0

(S∞
N
− 1

)
. (2.3)

In a random network, each pair of nodes is connected with fixed probability K,
independently of all other pairs of nodes. The parameter K is referred to as the network
density. This construction, often termed a random graph, is simple to implement, one
reason why it was favoured in epidemic modelling for the four decades following the
work of Erdős and Rényi [14]. While the construction is straightforward, it has several
surprising consequences in the large-population limit. The most immediate is that all
countably infinite random graphs are equivalent, regardless of the density parameter K
used in their construction [31]. Hence we can think of all random networks constructed
as described above as being approximations of the random graph, called the Rado
graph or Erdős–Rényi graph [14, 31]. The degree distribution of a random network is
binomial, which, for large populations, is well approximated by a Poisson distribution.
This implies that the vast majority of nodes have degree lying in a relatively narrow
range about the mean degree. Figure 1(a) shows an example of a random network.

Barabási and Albert [5] showed that the combination of network growth and
preferential attachment can be used to generate networks that are scale free. Growth
means that the network is not static and new nodes are added with time. Preferential
attachment means that when a new node is added, it is connected to an existing node
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with a probability that is proportional to the degree of that node. There is therefore
a self-reinforcing tendency for a few nodes to become highly connected, while the
majority of nodes have relatively few connections. Although there are other methods
of construction [12], we use the Barabási–Albert (BA) algorithm [5] to construct scale-
free networks. We begin with a small, fully connected network of size m and then
add new nodes in an iterative process. At each iteration, a new node is added and
is connected to m randomly selected existing nodes. The probability that the new
connection is with node i is

pi =
ki∑

j∈S k j
,

where ki is the current degree of node i and S is the set of all nodes to which the new
node is not yet connected. This process is repeated until the network has the desired
number of nodes N. This results in a network whose degree distribution approaches
an inverse-cubic Pareto distribution

P(k) = 2m2/k3, m ≤ k <∞, (2.4)

as N approaches infinity [5]. The mean of this degree distribution is 2m and the
variance is infinite. Because of this, there is no “typical” degree and, although most
nodes will have relatively small degree, there will be a small number of nodes with
very large degree. By construction, the density of the network is

K =
m(2N − 1) − m2

N(N − 1)
,

which is approximately 2m/N for large N. The size of the initial fully connected seed
group m can thus be chosen to generate a network of any required density 0 ≤ K ≤ 1.
Figure 1(b) shows an example of a network constructed using the BA algorithm.

Note that the iterative process described above was first used to generate a network
and the epidemic model was then run on that static network. This is effectively an
assumption that the time scale of the epidemic outbreak is much faster than the birth–
death process in the population.

2.3. Numerical methods Infections and removals both occur as Poisson processes
with rates β[S I] and γI, respectively, where [S I] denotes the number of connected
SI pairs (in the well-mixed case, [S I] = S I). These processes are simulated using the
Gillespie [16] algorithm, as follows. The sum of the infection and removal processes
is itself a Poisson process, with rate β[S I] + γI. Therefore, the times between events
are drawn from an exponential distribution: T ∼ Exp(β[S I] + γI). Once the event time
has been drawn, the type of event is decided. The event is an infection with probability
PI = β[S I]/(β[S I] + γ) and a removal with probability PR = 1 − PI . In the case of an
infection event, the SI pair that the event applies to is drawn at random from the set
of all SI pairs. In the case of a removal event, the node to which the event applies
is drawn at random from all nodes in the infectious class. The status of the affected
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nodes is then updated and the process is repeated until there are no infectious nodes
remaining.

Equation (2.3) was solved using Newton’s method. All computations were
performed in MATLAB and the system (2.1) was solved using the built-in ordinary
differential equation solver ode45. A population size of N = 500 or N = 1000 was
used in all simulations. This allowed us to investigate some of the finite-size effects
that are important in the network models studied. Using a larger population, for the
same network density K, shifts the results towards the infinite-population limit. The
simulation method was verified by comparing simulations of the well-mixed model
to solutions of the Kermack–McKendrick SIR equations (2.1) and to simulations of
a fully connected network. Averaging over 50 realizations, these results matched
up almost exactly (for example, see Figure 4). Including more realizations slightly
reduced the amount of noise in Figures 2, 4 and 7, but did not change any of the
overall patterns.

3. Results

3.1. Random networks We first investigate how network density affects the final
size of an epidemic on a random network. Final size was calculated by averaging
1 − S∞ over n realizations of the individual-based epidemic model. In a large
population, R0 is equal to β/γ multiplied by the number of potential secondary cases,
which, in the well-mixed case, is simply the population size N [11]. For a random
network, the number of potential secondary cases is the degree of the index node (the
primary infection). The mean degree is approximately NK, so

R∗ =
βNK
γ

(3.1)

might be expected to provide a good predictor final size. Figure 2 shows final size
against R∗ for a range of network densities K and transmission coefficients β on a
random network of size N = 500. Network density K does not have a major impact
on final size for K greater than about 0.1, and final size is accurately predicted by
equation (2.3) (Figure 2, bottom panels). As K drops below 0.1, however, final size
decreases substantially for a fixed transmission coefficient β (Figure 2, top panels).

Equation (2.2) for R0 is only valid when the number of potential secondary cases is
large, so that the rate of new infections by the primary case does not drop substantially
as the primary case’s contacts move from the susceptible to the infectious class [11].
For the small values of network density in Figure 2, the primary case has a relatively
small number of connections. As a consequence, the potential for new infections drops
substantially each time the primary case infects one of its contacts.

Hence, R∗ is not a good measure of the epidemic’s potential when the mean degree
is small. A more accurate approximation for R0 may be obtained by noting that a node
exposed to the primary case for a period of time τ remains uninfected with probability
e−βτ. Suppose that the primary case has k0 contacts and remains infectious for a period
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F 2. Final size as a function of R∗ = βNK/γ in random networks. In each panel, R∗ was varied
by varying β and keeping N = 500, γ = 1 and K fixed. Points represent the average final size from 10
realizations of the individual-based model. Simulations were initialized with a randomly chosen 2% of
nodes being infectious and all remaining nodes being susceptible. The curve is the numerical solution to
equation (2.3) with S (0) = 0.98N. This gives a good prediction of final size only when network density
K is greater than about 0.1, but overestimates final size when K is less than 0.1.
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of time τ. We approximate the number of secondary infections R from the primary
case by a binomial random variable R ∼ Bin(k0, 1 − e−βτ), which has expected value
k0(1 − e−βτ). Conditioning on the values of k0 and τ gives

R0 =

∫ ∞

0
fI(τ)

(N−1∑
k0=0

P(k0)k0(1 − e−βτ)
)

dτ = k̄
(
1 −

∫ ∞

0
fI(τ)e−βτ dτ

)
, (3.2)

where fI is the probability density function for the infectious period, P(k) is the
probability that a randomly chosen node has k contacts, and k̄ is the mean degree.

In the case of a random network, the mean degree is k̄ = (N − 1)K. The length
of time τ for which the primary case is infectious has an exponential distribution,
fI(τ) = γe−γτ. Hence

R0 =
β(N − 1)K
γ + β

.

In general, equation (3.2) gives an analytical approximation for R0 provided that the
integral over τ can be evaluated and the infectious period τ, the transmission coefficient
β and the recovery rate γ are all independent of the number of contacts k0. The
integral over τ can be evaluated for a reasonably general range of distributions fI(τ),
for example a fixed infection period, a gamma distribution as considered by Ross [37],
or a normal distribution. However, there may be contexts in which the independence
conditions do not hold. In such cases, R0 can instead be estimated using a Monte Carlo
method. Generating random values for the number of contacts k0, infectious period τ
and number of secondary infections R according to

τ ∼ Exp(γ), k0 ∼ Bin(N − 1, K), R ∼ Bin(k0, 1 − e−βτ) (3.3)

gives a random sample of R. Repeating this process a sufficiently large number of
times and calculating the mean of R gives an estimate for R0.

Both equation (3.2) and the Monte Carlo method (3.3) provide approximations to
the true value of R0. They both neglect the possibility that one of the primary case’s
contacts could be infected by another node while the primary case is still infectious,
rather than by the primary case directly. This assumption is likely to be more serious in
clustered networks, where the primary case’s contacts are more likely to be connected
to one another. A method for well-mixed populations that avoids this assumption is
given by Ross [37].

Figure 3 compares the naïve approximation (3.1) and the improved approxima-
tion (3.2) to the value of R0 obtained from simulations of the full network model.
(Values of R0 generated using the Monte Carlo method (3.3) are almost identical to
those calculated using equation (3.2).) These graphs show that equation (3.2) provides
a much more accurate approximation to R0 than the naïve approximation. When R0

is subcritical (Figure 3(a)) or moderately supercritical (Figure 3(b)), the improved
approximation lies within the 95% confidence interval for R0 in almost all cases.
Equation (3.2) loses accuracy when R0 is high (Figure 3(c)). This is because of the
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F 3. Comparison of the naı̈ve (dashed line) and improved (solid curve) approximations to R0 with
values of R0 calculated from m = 1000 repeat simulations of the full network model (points) for varying
network density K and three different values of R∗. The vertical axis ranges from 0.5R∗ to 1.05R∗ in each
case. Points show the mean number of nodes R̄ infected by the primary case during the simulation. Error
bars show 95% confidence intervals for R0, calculated as R̄ ± 1.96σ/

√
m. Parameter values: N = 1000,

γ = 1, with β varied according to β = γR∗/(NK) to give the required value of R∗.

increased likelihood of contacts of the primary case being infected by other nodes
while the primary case is still infectious. However, equation (3.2) is still much more
accurate than equation (3.1).

An approximate value for R0 can be obtained very quickly using either
equation (3.2), when available, or the Monte Carlo method (3.3). Calculating R0 from
repeat simulations of the full network model is much more computationally intensive.

Figure 4 shows final size against the value of R0 calculated from (3.3). The results
shows that, when R0 is calculated using this method, it provides a good predictor of
final size regardless of the network density.

3.2. Scale-free networks In order to check that networks generated using the BA
algorithm are approximately scale free, we first calculate the degree distribution of a
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F 4. Final size as a function of R0 in random networks. In each panel, R0 was varied by varying β and
keeping N = 500, γ = 1 and K fixed; R0 was calculated from a Monte Carlo sample of size m = 104. Blue
points represent the average final size from 10 realizations of the individual-based model. Simulations
were initialized with a randomly chosen 2% of nodes being infectious and all remaining nodes being
susceptible. The green curve is the numerical solution to equation (2.3) with S (0) = 0.98N. This gives a
good prediction of final size for all network densities investigated. Note that when K = 0.004, the mean
degree is equal to 2, so it is impossible for R0 to be greater than 2.
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F 5. Degree distribution (log–log frequency plot) of a network of size N = 104 generated using the
BA algorithm with m = 4 (red crosses) and the theoretical Pareto distribution in equation (2.4) (blue line).
The green dashed line is the line of best fit for the data.

network of size N = 104 generated using this method. This compares well with the
expected distribution in equation (2.4) (Figure 5).

The value of R0 for a scale-free network may be calculated using equation (3.2)
or with the Monte Carlo method. The number of contacts k0 of the primary case
is distributed approximately according to equation (2.4). However, equation (2.4)
applies only in the large-population limit and, while the approximation is reasonably
accurate for N = 104, it may be less accurate for the smaller networks used in the
epidemic simulations. To minimize the error in the approximated value for R0, we
therefore sampled values of k0 by generating a network of the required size using the
BA algorithm and counting the number of contacts of a randomly selected node in
that network. As for random networks, equation (3.2) and the Monte Carlo method
provided near-identical results.

We now compare epidemic dynamics on scale-free networks with those on random
networks of the same density. Figure 6 shows time series for epidemics on networks of
density K = 0.01 and for three different values of R0. In all cases, the variability among
realizations of the stochastic model is greater for scale-free networks than for random
networks. This is to be expected because the variance of the degree distribution is
much higher, relative to the mean degree, than in a random network. The epidemic
also spreads more rapidly and peaks earlier (red I(t) curves in Figure 6) on scale-free
networks than on random networks. The final epidemic size (the asymptotic height of
the green R(t) curves in Figure 6) is higher for scale-free networks than for random
networks when R0 is close to 1, but lower when R0 is substantially greater than 1.

Similar comparisons with higher network density reveal that the differences
between the random and scale-free networks diminish as network density increases.
This is partly because the networks of higher density require a greater value of m in the
BA algorithm. As a consequence, a greater proportion of the network is in the initial,
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F 6. Realizations (pale curves) of the stochastic epidemic model on a random network (left) and on
a scale-free network (right) of the same size N = 1000 and density K = 0.01 (m = 5 in the BA algorithm):
susceptible S (t) (blue), infectious I(t) (red), removed R(t) (green). (Colour available online.) Dark curves
show the average of the stochastic realizations. Rates are β = 0.1 (top row), β = 0.2 (middle row), β = 0.4
(bottom row); γ = 1 in all cases. Time is dimensionless and t = 1 corresponds to the mean period of time
for which an individual node remains infectious. Note the different time scale in the top graphs to show
the full course of the outbreak.
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fully connected seed group, rather than in the group of nodes whose connections are
chosen according to the preferential attachment model. Thus, the degree distribution
will be further away from the limiting Pareto distribution, equation (2.4). Furthermore,
as network density increases, the limiting distribution itself becomes less distinct from
the degree distribution of a random network (the two distributions are trivially identical
in the extreme case K = 1).

We now investigate the relationship between final size and R0 in scale-free networks
(Figure 7). For large values of R0, scale-free networks have a lower final size than
random networks. However, for smaller values of R0 close to or less than 1, the
opposite effect is seen. This is true for all network densities investigated, though the
differences are more pronounced at lower densities for reasons discussed above.

Finally, we investigate how the scale-free network structure affects the time scale
of the epidemic. Figure 8 shows the average time between the first infection and the
time at which the number of infectious nodes I(t) reaches its peak value. This metric,
referred to as time-to-peak, is a useful measure of the spread speed and duration of the
epidemic (information that cannot be inferred from the value of R0 alone). The results
show that epidemics progress more rapidly on scale-free networks than on random
networks of the same density. This is particularly so for relatively small values of R0.
Note that results for R0 < 2 are not included in Figure 8 because a significant number of
realizations of the stochastic model die out very rapidly, which biases the time-to-peak
data.

4. Discussion

We have used a simple SIR model to investigate epidemic dynamics in random
networks. We have compared three types of network: a well-mixed population,
in which an infectious individual can potentially transmit the disease to any other
member of the population; a random network, in which all individuals (nodes) have
approximately the same number of contacts; and a scale-free network, which is
characterized by a heavy-tailed degree distribution, meaning that most nodes have
very few contacts, but a small number of nodes (called hubs) have an extremely large
number of contacts. We have compared these three models and investigated the effects
of varying the basic reproduction number R0 and the network density (or equivalently
the mean degree).

We have shown that care is needed when calculating R0 in network models where
the mean number of contacts per node (the mean degree) is relatively small. Because of
the limited pool of potential secondary infections, naïve calculations of R0 are likely
to be inaccurate. Instead, we have provided an analytical approximation for R0 that
is valid in cases where an individual’s transmission coefficient and recovery rate are
independent of his/her number of contacts. When calculated correctly, R0 provides
an accurate prediction of the proportion of the population that ultimately becomes
infected by the disease (the final epidemic size) on a random network. An important
implication of this is that an infection in a highly connected population with a low
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F 7. Final size as a function of R0 in scale-free networks. In each panel, R0 was varied by varying
β and keeping N = 1000, γ = 1 and K fixed; R0 was calculated from a Monte Carlo sample of size
m = 104. Blue points represent the average final size from 10 realizations of the individual-based model.
Simulations were initialized with a randomly chosen 2% of nodes being infectious and all remaining
nodes being susceptible. The green curve is the numerical solution to equation (2.3) with S (0) = 0.98N,
which shows the expected final size for a random network. When R0 is close to or less than 1, the final
size is larger on scale-free networks than on random networks of the same density and with the same R0;
when R0 is much larger than 1, the effect is reversed. The bottom-right panel shows a more detailed close
up of the top-left panel for small values of R0.
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F 8. Time at which the number of infectious nodes I(t) peaks as a function of R0 on random (green)
and scale-free (blue) networks of size N = 1000 and density K = 0.04 (colour available online). R0 is
varied by varying β with fixed γ = 1. Time is dimensionless and t = 1 corresponds to the mean period of
time for which an individual node remains infectious.

transmission coefficient is expected to have the same final size as an infection in a
sparsely connected population with a high transmission coefficient and the same value
of R0.

Our results show that epidemics on scale-free networks initially spread more rapidly
than on random networks of the same density. This supports previous results showing
that the spread rate of an epidemic on a scale-free network becomes instantaneous in
the limit as the network size N tends to infinity [6, 29]. Our results also show that the
scale-free network structure can affect the final epidemic size. For values of R0 close
to or less than 1, scale-free networks have a lower final size than random networks; for
values of R0 much greater than 1, the effect is reversed.

These results can be explained by the existence of hubs (or superspreaders), nodes
with many more connections than the average. Because of their high connectivity,
superspreaders are likely to be infected early in the course of the epidemic, and
are then able to pass the disease on to a large number of nodes. As a result, the
epidemic can initially spread more rapidly than would be predicted by considering
an average node (that is, by R0). As well as explaining the faster time-to-peak on
scale-free networks, this also accounts for the higher final size when R0 is relatively
small. However, when R0 is larger, the final size is not determined by the initial rapid
spread via the superspreaders, but by the ability of the epidemic to infect the poorly
connected nodes before dying out. In a random network, almost all nodes have close
to the average number of connections. In scale-free networks, there are a large number
of poorly connected nodes, which are very isolated and therefore much less likely to
become infected. These effects were also observed on scale-free networks (with Pareto
exponent λ = 2.5) by Kiss et al. [24]. However, these authors did not investigate the
effect of varying network density, nor calculate the threshold value of R0 at which the
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final size on a scale-free network switches from being higher to lower than that on a
random network.

The structure of real networks is rich and varied [30] and we have only a limited
understanding of the ways in which this influences the spread and persistence of
epidemics. Applications of such understanding are wide-ranging and important,
including the potential to protect networks such as the internet, understand complex
ecological networks [20] and suggest effective control measures for containing or
preventing epidemics of infectious diseases [23, 24]. One potential application is
improving vaccination strategies with the aim of preventing, or at least reducing,
the final sizes of epidemics. Most nodes in a scale-free network have a relatively
low number of contacts. Therefore, randomly selecting members of the population
to vaccinate tends to remove these structurally unimportant nodes. Because of
this, for an immunization strategy to be effective, a very large proportion of
the population needs to be vaccinated. Selectively vaccinating highly connected
individuals (superspreaders) is much more effective in preventing an outbreak, but
can be impractical or unethical. A suggested compromise is to select a random portion
of the population and have each selected individual nominate one of their contacts
for vaccination [15, 28]. It is clear that more research is needed to establish effective
vaccination strategies for real social networks.

The model presented here could be extended in various ways. We have only
considered binary transmission coefficients, that is, one individual can potentially
transmit the disease to another individual either at rate β or at rate 0. This could
be extended in two ways. Firstly, each individual i might be assigned a shedding rate
ri, representing the probability per unit time that this individual has of transmitting the
infection. For example, in a flu epidemic, strategies such as containing coughs and
sneezes, taking medication or frequently washing hands may reduce an individual’s
shedding rate. This would lead to an asymmetric transmission model. Secondly,
different pairs of connected individuals could be assigned differing contact rates. The
assumption of a constant contact rate means that highly connected superspreaders may
infect contacts at unrealistically high rates. Fu et al. [15] investigated the effects of
limiting the total infection rate of each individual, but this remains a largely unstudied
aspect of network epidemic models. Note that in these more complex cases, an
analytical expression for R0 will not typically be available, but the Monte Carlo method
can always be used to estimate R0.

The fact that outbreaks on scale-free networks were modelled at a fixed endpoint
of the construction algorithm of Barabási and Albert [5] suggests a further avenue for
analysis. What is the effect of continued growth of the network on the time scale of the
outbreak? This would enable the model to incorporate a natural birth–death process
while maintaining the scale-free structure of the network.

5. Summary

Our results make several novel contributions to the literature. First, we have
provided a method for calculating the basic reproduction number that can be applied
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to any network model. Second, we have shown that an epidemic in a random network
has the same average final size as an equivalent epidemic (that is, with the same R0) in
a well-mixed population. Third, we have shown that epidemics spread more rapidly on
scale-free networks than on random or well-mixed networks. This extends previous
results [24] for networks with a Pareto exponent of 2.5 and fixed density. Fourth,
we have shown that subcritical epidemics (R0 < 1) have a higher final size on scale-
free networks than on random networks, whereas the opposite is true of supercritical
epidemics (R0 > 1).
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