Invited commentary

Obesity in Parkinson’s disease patients on electrotherapy: collateral damage, adiposity rebound or secular trends?

Whether obesity should be considered as a disease is debatable, but it is undeniable that it provokes the development of debilitating diseases that include type 2 diabetes, CVD and some forms of cancer. Consequently, emerging evidence that functional brain surgery for alleviating the clinical symptoms of Parkinson’s disease – by electrode implantation for deep-brain stimulation – results in a relatively high prevalence of overweight and even obesity may sound like jumping from the frying pan into the fire.

First described in 1817 by James Parkinson in his essay on ‘The shaking palsy’, Parkinson’s disease is a chronic and progressive neurological disorder characterised by rigidity of the limbs, trunk and face, tremor when awake and resting, abnormal body posture and difficulties in initiating voluntary motor activity (akinesthesia). The clinical manifestation of the syndrome usually begins in the fifth decade of life, and results from degeneration and premature death of brain cells that produce dopamine, a neurochemical that plays an important role in the control of motor functions (Samii et al. 1999; Gironell et al. 2004). Hailed as one of the miracles of modern medicine after its introduction to treat Parkinson’s disease in the late 1960s, levodopa, which is taken up by dopaminergic neurons where it is made into dopamine, is particularly effective in restoring the ability to initiate movement. But after an initial satisfactory response to levodopa (or to dopamine agonists), many patients develop motor fluctuations that are difficult to control. They alternate between a state of severe parkinsonism (the ‘drug-off’ period when the medication is not working) and a state of improved mobility (often accompanied by dyskinesia) during the ‘drug-on’ period when the medication is working. The patients become susceptible to malnutrition, since both the disease symptoms and the medication side-effects (nausea, vomiting) can limit food intake, while involuntary movements and the development of muscle rigidity can lead to marked elevations in ‘resting’ energy expenditure (Markus et al. 1992). Parkinson’s disease patients are four times more likely to report weight loss exceeding 4 kg than matched control subjects, and to have lower BMI, triceps skinfold thickness and percentage body fat, which correlate significantly with weight change and the stage of the disease (Beyer et al. 1992). Despite the fact that these complications become increasingly common and disabling with longer durations of the disease and of exposure to levodopa, the latter remains the most potent antiparkinson drug and is the backbone of treatment throughout much of the disease course.

Attempts to alleviate the ‘levodopa syndrome’ have led to a resurgence of surgical treatments centred upon the ablation of deep brain structures. Indeed, before levodopa, thalamotomy was found to reduce contralateral tremor, while pallidotomy variably improved motor symptoms in Parkinson’s disease. The renewed interest in functional brain surgery has now shifted to high-frequency stimulation of deep-brain targets, which causes less irreversible brain trauma than ablative surgery. Among the anatomical targets for such brain electrotherapy, bilateral stimulation of the internal segment of the globus pallidus or the subthalamic nucleus has emerged as being particularly effective at relieving motor symptoms. These procedures provide considerable clinical benefits, in terms of both improvement in primary symptoms (tremor, bradykinesia and muscle rigidity) and resolution of side-effects of chronic pharmacological treatment (dyskinesia). It also permits a 50 % or more reduction in the levodopa dosage required for satisfactory symptom control (Lang 2003; Samii et al. 2004). Although poorly documented, there are also reports that many patients show modest weight gain (Moro et al. 1999; Gironell et al. 2002; Romito et al. 2003), which is thought to be consequential to the improvements in involuntary movements and in mood, and hence in the normalisation of energy intake and energy expenditure to the pre-disease (and pre-weight loss) level. Whether deep-brain stimulation of the bilateral subthalamic nucleus (referred to as STN-DBS) is superior to bilateral globus pallidus stimulation in patients with Parkinson’s disease is unclear, but recent reports that excessive weight gain is common in patients treated by STN-DBS are likely to fuel further the on-going debate about the best stimulation target for this disorder.

Indeed, two independent retrospective studies – one from Italy (Barichella et al. 2003) and the other from France (Macia et al. 2004) – that have evaluated body weight changes in STN-DBS-treated Parkinson’s patients up to 14 months after electrode implantation report an average weight gain of 9.3 kg and 9.7 kg, respectively. Comparison of the distribution of BMI before and after the procedure indicates a clear shift from underweight and normal weight towards overweight and even obesity. It is clear that explanations as to why more than 25 % of patients gained between 10 and 16 kg in a year, and weighed more than they ever had in their lifetime, go well beyond the normalisation of body weight to pre-disease levels. Given the close correlation observed between changes in motor scores and body weight gain assessed at 3 months and a year after surgical intervention, the question arises as to whether STN-DBS intervention – perhaps through interference with nearby hypothalamic areas involved in controlling appetite and energy expenditure – could underlie this apparent dysregulation of body weight. However, weight overshooting based upon ‘collateral damage’ from STN-DBS therapy seems unlikely, judging from a follow-up of the French study published in a previous issue of this journal (Perlemoine et al. 2005). In the follow-up, resting energy expenditure, substrate oxidation and daily energy intake were compared in STN-DBS-treated patients, in non-operated patients (awaiting surgery) and in a group of healthy controls. Although 1 year after STN-DBS electrotherapy the operated patients showed lower resting energy expenditure as well as lower...
fat and protein oxidation than the non-operated patients, no signifi-
cant differences were found in resting metabolism or in energy
intake between STN-DBS-treated patients and healthy controls.
Thus, STN-DBS therapy did not seem to perturb energy intake
and energy expenditure beyond levels found in healthy individu-
als, and excessive weight gain following such electrotherapy would
seem to be related to changes in the cardinal manifestations of Par-
kinson’s disease itself, rather than to secondary changes resulting
from the surgery.

A more likely scenario, at least among STN-DBS-treated patients
who may have lost a substantial amount of weight
during the course of the disease, is that the improvements in
motor functions in the months immediately following electrother-
apy led to an unmasking of autoregulatory mechanisms that nor-
mally operate to restore body fat and fat-free mass through
increases in hunger and/or through adaptive reductions in
energy expenditure (Dulloo et al. 1997; Dulloo & Jacquet,
1998). These mechanisms are thought to underlie the phenom-
enon of disproportionate rate of fat recovery and fat overshooting,
i.e. ‘adiposity rebound’, which has been observed during follow-
up studies of famine victims of World War II, and documented in
longitudinal studies of experimental starvation and re-feeding in
man (see Table 1).

In their classic Minnesota Experiment of semi-starvation and re-
feeding, Keys et al. (1950) described this phenomenon as ‘post-star-
vation obesity’. It has, in more recent years, been traced to the asym-
metry in body fat and fat-free mass recovery consequential to
mechanisms that suppressed thermogenesis specifically for acceler-
ating recovery of fat mass, and not fat-free mass (Dulloo et al. 1997;
Dulloo & Jacquet, 1998; Weyer et al. 2000). Thus, in Parkinson’s
patients who may have lost a considerable amount of body fat
during the course of the disease, the efficacy of the STN-DBS in nor-
malising motor functions may, paradoxically, have disinhibited
intrinsic mechanisms of adiposity rebound that underlie the syn-
drome of ‘post-starvation obesity’. These same mechanisms, in par-
icular those that suppress thermogenesis in favour of accelerating
specifically fat recovery (or catch-up fat), also confer to the phase
of weight recovery its particularly high sensitivity to the develop-
ment of hyperinsulinaemia and insulin resistance (Dulloo et al.
2002; Crescenzo et al. 2003), thereby putting the patient at risk
for obesity and type 2 diabetes.

Finally, secular changes in body weight and adiposity might also
be relevant in explaining weight overshooting in the STN-DBS-
treated Parkinson’s patients, given disease duration of 10–15
years before the start of electrotherapy. During this period, an
increase in the prevalence of overweight and obesity of similar
magnitude among the general population of the same age range
(50–70 years) is not unusual. This ‘secular trend’ factor may
assume even greater significance given recent findings – from
two prospective epidemiological studies – that increased adiposity
during middle adulthood is associated with an elevated risk for Par-
kinson’s disease later in life, notably 15–30 years later (Abbott
et al. 2002; Chen et al. 2004). These epidemiological associations
between midlife adiposity and later Parkinson’s disease, whose
cardinal signs are largely due to the loss of dopamine-producing
neurons in the substantia nigra area in the brain, together with clini-
cal observations that obesity is associated with depletion of striatal
dopamine D2 receptor availability (Wang et al. 2001), suggest that
nigrostriatal system disorders are associated with both Parkinson’s
disease and obesity (Abbott et al. 2002). It has also been proposed
that either obesity down-regulates dopamine D2 receptors, perhaps
to compensate for increased dopamine concentration associated
with overeating, or lower dopamine D2 receptor availability may
lead to overeating and obesity. In either case, the lower dopamine
D2 receptor availability may predispose those with a tendency to
fatness to later risk for Parkinson’s disease (Chen et al. 2004). In
this context, the efficacy of STN-DBS in normalising motor func-
tions in some Parkinson’s disease patients some 10–20 years after
clinical diagnosis of the disease may also have allowed their inherent
predisposition to obesity to manifest itself.

Whatever the exact explanations for weight overshooting in
STN-DBS-treated Parkinson’s disease patients, the subthalamic
nucleus is likely to become a new centre of attraction for investi-
gations towards understanding how body weight is regulated, and
how some individuals become more prone to obesity than others.

during middle adulthood is associated with an elevated risk for Par-
kinson’s disease later in life, notably 15–30 years later (Abbott
et al. 2002; Chen et al. 2004). These epidemiological associations
between midlife adiposity and later Parkinson’s disease, whose
cardinal signs are largely due to the loss of dopamine-producing
neurons in the substantia nigra area in the brain, together with clini-
cal observations that obesity is associated with depletion of striatal
dopamine D2 receptor availability (Wang et al. 2001), suggest that
nigrostriatal system disorders are associated with both Parkinson’s
disease and obesity (Abbott et al. 2002). It has also been proposed
that either obesity down-regulates dopamine D2 receptors, perhaps
to compensate for increased dopamine concentration associated
with overeating, or lower dopamine D2 receptor availability may
lead to overeating and obesity. In either case, the lower dopamine
D2 receptor availability may predispose those with a tendency to
fatness to later risk for Parkinson’s disease (Chen et al. 2004). In
this context, the efficacy of STN-DBS in normalising motor func-
tions in some Parkinson’s disease patients some 10–20 years after
clinical diagnosis of the disease may also have allowed their inherent
predisposition to obesity to manifest itself.

Whatever the exact explanations for weight overshooting in
STN-DBS-treated Parkinson’s disease patients, the subthalamic
nucleus is likely to become a new centre of attraction for investi-
gations towards understanding how body weight is regulated, and
how some individuals become more prone to obesity than others.

Abdul G Dulloo
Jean-Pierre Montani

Department of Medicine/Physiology
University of Fribourg
Chemin du Musée 5
1700 Fribourg
Switzerland

email: abdul.dulloo@unifr.ch

References

Abbott RD, Ross GW, White LR, Nelson JS, Masaki KH, Tanner CM,
Curb JD, Blanchette PL, Popper JS & Petrovitch H (2002) Midlife adi-
posity and the future risk of Parkinson’s disease. Neurology 59,
1051–1057.

Barichella M, Marczewska AM, Mariani C, Landi A, Vairo A & Pezzoli G
brain stimulation. Mov Disord 18, 1337–1340.

Benedict FG (1907) The Influence of Inanition on Metabolism. Carnegie
Institute of Washington Publication, no. 77. Washington, DC: Carnegie
Institute of Washington.

Benedict FG, Miles WR, Roth P & Smith HM (1919) Human Vitality and
Efficiency under Prolonged Restricted Diet. Carnegie Institute of
of Washington.

Beyer PL, Palarino MY, Michalek D, Busenbark K & Koller WC (1995)
Weight change and body composition in patients with Parkinson’s disease.
J Am Diet Assoc. 95, 979 – 983.

Chen H, Zhang SM, Schwartzchild MA, Herman MA, Willett WC &
Epidemiol 159, 547–555.

Crescenzo R, Samec S, Antic V, Rohner-Jeanrenaud F, Seydoux J, Mont-
catch-up fat in the pathophysiology of catch-up growth. Diabetes 52,
1090–1097.

Table 1. Post-starvation weight overshooting in man

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of energy deprivation</th>
<th>n</th>
<th>Weight overshoot (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benedict (1907)</td>
<td>Total fast</td>
<td>5</td>
<td>2·7</td>
</tr>
<tr>
<td>Benedict et al. (1919)</td>
<td>Semi-starvation</td>
<td>11</td>
<td>3·1</td>
</tr>
<tr>
<td>Keys et al. (1950)</td>
<td>Semi-starvation</td>
<td>12</td>
<td>3·6*</td>
</tr>
<tr>
<td>Martin & Demole (1973)</td>
<td>Food rationing</td>
<td>700</td>
<td>6·5</td>
</tr>
</tbody>
</table>

* Excess weight was accounted for by fat, measured by hydrostatic weighing.

