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THE DIRICHLET PROBLEM WITH DENJOY-PERRON 
INTEGRABLE BOUNDARY CONDITION 

BY 

M. B E N E D I C K S A N D W. F . PFEFFER 

Dedicated to the memory of Professor J. B. Diaz 

ABSTRACT. The Poisson integral of a Denjoy-Perron integrable 
function defined on the boundary of an open disc is harmonic in this disc. 
Moreover, almost everywhere on the boundary, the nontangential limits of 
the integral coincide with the boundary condition. This extends the classical 
result for Lebesgue integrable boundary conditions. By means of conformai 
maps, a generalization to domains bounded by a sufficiently smooth Jordan 
curve is also obtained. 

By R and C we shall denote the sets of all real and complex numbers, respectively. 
We let D = {z E C:\z\ < 1} and T = {z G C:\z\ = 1}. 

It is well known that a convolution of the Poisson kernel with a Lebesgue integrable 
function/on T produces a harmonic function in D whose nontangential limits are equal 
to/almost everywhere on T (see, e.g., [11], thm. IV. 1). By a limiting procedure this 
result can be extended to the case when/has only an improper Lebesgue integral. While 
the idea of such an extension is straightforward, the actual proof, which involves a 
switch of iterated limits, is unpleasant. How to proceed when the singularities of / 
cluster so that the improper Lebesgue integral does not exist (see later Example) is 
unclear. 

Since the Denjoy-Perron integral (abbreviated as DP integral) generalizes the im
proper Lebesgue integral and is, in fact, closed with respect to the formation of 
improper integrals, it seems appropriate to consider functions which are DP integrable 
on T. We are obliged to J. B. Diaz for suggesting this to the second author. The second 
author is also obliged to A. K. Lyzzaik for several stimulating discussions. 

To convince the reader that using the DP integral is not extravagant, we briefly recall 
the Kurzweil and Henstock definition (see [7] and [6]), which shows that the DP 
integral is only a very natural generalization of the classical Riemann integral. 

A partition of an interval [a,b] C R is a set 

{̂ 0, • • • , tn\ T,, . . . , T,,} 

such that a = t0 < . . . < t„ = b, and /,-_, < T ,< t,for j = 1, . . . , n. If ô is a strictly 
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positive function on [a, b], we say that the partition {t0, . . . , tn\ T\, . . . , T„} of [a, b] 
is h-fine whenever tt - tj- \ < 8(T7) for 7 = 1, . . . , n. A function/: [a, b] —» R is called 
DP integrable if there is a real number J^'f(t) dt such that given e > 0, we can find 
a positive function 8 on [a, b] with 

< e S/Or/Xf,-- *,-_,)- [7(0 df 

for each 8-fine partition {t0, . . . , tn\ Ti, . . . , T„} of [<2, /?]. 
Basic properties of the DP integral are derived from the above definition in [8]. They 

include the relationship between the DP and Lebesgue integrals, and also the equiv
alence of the Kurzweil-Henstock and Perron definitions of the DP integral. 

Since DP integrable functions are in general not absolutely integrable, the usual 
maximal function approach to the Dirichlet problem (see [5], Chpt. 2, Sec. 3) cannot 
be applied. However, following the proof of ([11], Thm. IV. 1), which essentially goes 
back to Fatou, we show that a judicious use of integration by parts for the DP integral 
(see [9] for a simple proof) yields a result completely analogous to the classical one. 
The critical property we employ is that almost everywhere the derivative of an 
indefinite DP integral exists and equals the integrand (see [10], Chpt. VI, Thm. (6.1)). 

The usefulness of our result is illustrated by an example of a DP integrable function 
which appears unmanageable within the limits of Lebesgue integration. 

Throughout this paper, integrability always means DP integrability, and all integrals 
are DP integrals. A function/: T^> R is called integrable if the integral f^f(e'd) d6 
exists. 

The Poisson kernel is the positive function 

PM - J - '-'' 
IT* 1 - 2r cos t + r2 

defined for 0 < r < 1 and t E R. Instead of (d/dt)Pr(t) we shall write P'r(t). We note 
that by associating P(z) = Pr(t) to each z = relt in D, we can define a map 
P:D^ R. 

PROPOSITION 1. Letf:T^> R be an integrable function. Then the integral 

u{re'«) = [ Pr(d - t)f(elt) dt 
J - I T 

exists for each (r, 6) 6= [0, 1) X R, and the function u is harmonic in D. 

PROOF. For t G R, let F(t) = jLvf(e
iB) d6. Integrating by parts (see [9]), we see 

that the Poisson integral defining the function u exists, and that 

u(reiQ) = Pr(6 - TT)F(TT) + J P'r(d - t)F(t) dt. 
• ' - I T 

Now F is a continuous function, and Pr and P'r are harmonic in D. Hence the proposition 
follows by differentiation under the integral sign (note that this is the Lebesgue 
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integral). 
For the remainder of this note, we shall assume that / : T —» R is an integrable 

function. For (r,t) E [0, 1) X R we let 

F(t) = \ fie*) de 
•'o 

P*f(r,eiB) = [ Pr(Q - t)f(elt)dt. 

PROPOSITION 2. Let 80 E [-TT, TT] be such that F'(80) =f(ei%). Ifu = P*f, then 

u{rel*)->f{ei%) 

whenever r —» 1 —, and there is a c > 0 such that |8 — 60| < c(l — r). 

PROOF. It suffices to prove the special case of/(e'e°) = 60 = 0; for this yields the 
general result when applied to the function 

g(z) = /(ze/e°) -fie1**). 

By the continuity of F, 

M = sup {|F(f)|:|f| < TT} < + oo. 

Choose c > 0, e > 0, and let 

TI = e(5M + c + 1)"'. 

As F'(0) = 0, there is a 8 E (0, TT/2) such that |F(f)| ^ TT||r| for each * E [ -8 ,8 ] . 
Find a p E (0, 1) so that c(l — p) < 8/2 and Pr(t) ^ nq whenever p < r < 1 and 
8/2 < |;| < TT. We show that if p < r < 1 and |6| < c(l - r), then |w(r^/e)| < e. 

Let p < r < 1 and |8| < c(l — r) < 8/2. An integration by parts yields 

w(re/e) = Fr(0 - TT)F(TT) - Pr(8 + TT)F(-TT) + j F;(8 - t)F(t) dt 
- T T 

< 2MTI + M J | F ; ( 6 - t)\ dt + i] J |p;(9 - r)r dt. 

Observing that Fr'(0sin / ^ 0, we shall estimate each integral separately. Since 
P'ri — t) = —Prit), both integrals are even functions of 9, and hence it suffices to 
estimate them for 6 > 0. Given 9 > 0, we have 

-TT + e 

I |P;(8 - 0 | dt = f p ; ( 9 - t)dt + \ F;(8 - 0 dt 

- I p;(8 - 0 dt = Fr(8 - TT) + 2F,(TT 
J — I T + 8 

f ~8 

) 

- Fr(8 - 8) - Fr(8 + TT) - Fr(8 + 8) < 3TI, 

and similarly 
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f8 ro re 

|p;(e - t)t dt\ = pf
r(d - t)t <\t - p;(8 - t)t dt 

+ P;(0 - t)t dt = 20/>,.(O) - hPr(Q + Ô) - 8Pr(0 - Ô) 

+ J Pr(0 - 0 dr - J Pr(9 - t) dt + ( Pr(6 - r) dr 

f77 6 1 + r 
< 26Pr(0) + Pr(8 - 0 dr = - + 1 < c + 1; 

J - T T 7T 1 - r 

for 1 + r < 2, and 9 < c(l - r). Combining the previous estimates, we see that 

|w(ré?''e)| < TI(5M + c + 1) = e, 

and the proposition is proved. 
The convergence u(re1^) —> f(el%) described in Proposition 2 is usually referred to 

as nontangential convergence. Using ([10], Chpt. VI, Thm. (6.1)), we can summarize 
our results. 

THEOREM 1. If fis a DP integrable function on T, then P * f is harmonic in D, and 
it converges nontangentially to f almost everywhere in T. 

EXAMPLE. Let / = (a, b) with a,b E R and a < b. Set 

^ / x / ^ / , ̂  • ^ (b - a\2 . 77 lb - a\2 

F,(t) = (t- aY-(t - 6 ) - s i n - - s i n - -
2 \t - a' 2 \t - b' 

if t E /, and F,{t) = 0 if t E R - I. Then the finite derivative F'i(t) exists for each 
t E R, and it is easy to see that F\ is not Lebesgue integrable over / (though, the 
improper Lebesgue integral exists). 

Let AT be a Cantor discontinuum in the interval [—77, TT], and let /„, n = 1, 2, . . . , 
be the connected components of (—TT, TT) — K. As 

|F,(0| ^ (t ~ af(t - b)\ 

it is not difficult to check that the function F = 2 *=, F,n has a finite derivative F '. Now 
define/: T —> R by setting /(z) = F'(arg z) for each z E T. Then/is DP integrable, 
and F(t) = J-7T/(^'e) d8 for each t E R (see [8], Thm. A3). Consequently, P * / i s 
a harmonic function in D whose nontangential limits are equal to / every where in T. 

However, f(elt) is not Lebesgue integrable in any open interval containing points of 
K. In particular, f{elt) does not have an improper Lebesgue integral over [—77,77]. 

REMARK 1. Following our proofs, it is easy to verify that Theorem 1 holds for each 
function / : T —> R for which we can find a bounded measurable function F with 
F'(t) = f(elt) for almost all t E [—77,77]. Indeed, we only need to define P * / in the 
distribution sense, i.e., by setting 

P*f(rel«) = Pr(Q - T7)F(T7) + J p;(6 - t)F(t) dt 
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for each relB E D. This, of course, links with the standard fact of harmonic analysis 
that the convolution of P and a tempered distribution is harmonic in D. However, it is 
the important feature of DP integrable functions that the convolution P * / can be 
defined directly. 

Using conformai maps, Theorem 1 can be extended to more general domains. We 
shall describe this next. 

As usual, we say that a map 7 : 7—» C is of class % ' e, 0 < e < 1, if it has a derivative 
which is Lipschitz of order e (see [3], Sec. 5.1). 

Let ft be a Jordan domain of class %x,\ i.e., a bounded open subset of % whose 
boundary dft is a Jordan curve of class %u\ and let 7 : [0,a] —> dft be a counter
clockwise parametrization of dft by arclength. A function / :d f t —> R is called 
integrable if the integral Jo/[y (s)] ds exists. By ([8], Coroll. A6), the integrability of 
/does not depend on the parametrization 7 of dft. 

By the Riemann mapping theorem and the Caratheodory extension theorem (see 
[11], Thm. IX.2), there is a homeomorphism < j > : D U r - » f t U d f i such that 4>(D 
= dft and $ is conformai in D. Each such homeomorphism is called a Riemann map. 

THEOREM 2. Let CI be a Jordan domain of class c€1,1, let f be a DP integrable 
function on dft, and let (J> : D U T—-» ft U d il be a Riemann map. Thenf° c|) is a DP 
integrable function on T. Moreover, [P * (f ° $)] ° <|> ' w harmonic in ft, awd /f 
converges nontangentially to f almost everywhere in dfl. 

PROOF. Let 7:[0,a] -^ M be a counter-clockwise parametrization of dO by 
arclength such that 7(0) = 7(a) = <|>(-1). By Kellog's theorem (see [11], Thm. IX.7), 
the derivative ((>' can be extended continuously from D to D U 7, and this extension 
(also denoted by c}>') is nowhere equal to zero. Letting 

s(9)= f |4>V)|df, 
— IT 

we have 7[s(0] — ty(e") for each f E [—IT, IT]. The change of variable theorem (see 
[8], Coroll. A6) yields 

\afbt(s)]ds= f foy[s(t)]s'(t)dt 

= r/04>(^")|<t>'(e")|dr, 

and s o / ° <)>• |<|>'| is integrable. The integrability of/° <\> is now a consequence of the 
following claim. 

CLAIM. The function <|>'(e") w absolutely continuous in [—7T,TT]. 

Indeed, as \$'\ > 0 is continuous in D U T, the claim implies that ^ ' (e 'Ol - 1 has 
a finite variation in [ - IT , TT]. By the Proposition in [9], this guarantees the integrability 
of 
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/*((> = [/ocH^'lH^t1-
Now giving the obvious meaning to "noritangential convergence" and "almost 
everywhere" in dfl, and using the conformity of c|), Theorem 2 follows from 
Theorem 1. 

It remains to establish the claim. 

PROOF OF THE CLAIM. For \z\ < 1, let 

G(z) = log<|>'(z) - u{z) + iv(z) 

where u(z) = log |<|>'(z)|, and v(z) = arg ty(z) = -i log (<|>'(z))/(|<|>'(z)|). If 
g(t) = v(e"), t E [-TT,TT], then by [3], Sec. 1.1, 

v(reid) j77 P r (9 - t)g(t) dt 

for each z = re'6 in D. By differentiating the equation 

y[s(t)] = Me"), 

t E [—7r,7r], we obtain 

y[*(o:H<l>V')l = *V'<i>V), 

and hence 

g(t) = -i log {-ie^'lsit)]}. 

Since 7 is of class c€1 ' and s'(t) = \<\>'(e")\ is bounded, we see that g is Lipschitz of 
order 1. In particular, g has a bounded derivative g' almost everywhere in [—TT, IT]. For 
z = re'Q in Z), we have 

Viz) a 
J Z — = izG'(z) = —G(z) 

<\>'(z) dti 

•u(z) + /J" p;(o - 0^(0 dr 

= ^ « U ) + i [ Pr(§ - t)gf(t)dt. 

As g' is essentially bounded, 

w(re /e) = [ Pr(8 - t)g'{t)dt 
J - I T 

is bounded in D, and hence w is of Hardy class h" C h2 (for the definition of Hardy's 
classes, we refer to [3], Sec. 1.1). An application of M. Riesz' theorem (see [3], 
Thm. 4.1) shows that G\ and hence <$>" = $'G' is in Hardy class H2 C / / ' . Now the 
claim follows from [3], Thm. 3.11. 
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REMARK 2. If the function fis Lebesgue integrable on dil, then it is easy to see that 
Theorem 2 holds whenever il is a Jordan domain of class %,,€. Recently, it was shown 
in [1], [2], and by a different method in [4], that cê1 e can be relaxed to %l 

(i.e., continuously differentiable boundary with no Lipschitz conditions imposed) if 
\f\p is Lebesgue integrable on dil for some/7 > 1. Iff is merely DP integrable, this 
generality is not possible for the following reason: a function which is Lipschitz of order 
e < 1 may be of infinite variation, and hence its product with a DP integrable function 
need not be DP integrable. 

REMARK 3. If dil is only piecewise %ux it is not difficult to show that Theorem 2 
still holds provided il is locally convex at each corner of dil. The same condition must 
be imposed even if the function fis Lebesgue integrable on dil. 
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