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1. Introduction. In a recent paper [1], Brown, Hajarnavis and MacEacharn have
considered non-commutative Noetherian local rings of finite global dimension which are
integral over their centres. For such a ring R they have shown:

(i) R is a prime ring whose Krull and global dimensions coincide;
(ii) R = f] RP where p runs through the set of rank one primes of the centre of R,

and each Rp is hereditary;
(iii) the centre of R is a Krull domain.
We shall show that each Rp in (ii) above is in fact a principal right and left ideal ring.

We deduce that the above ring R is a maximal order (defined below), and that if R is in
addition a Pi-ring with centre Z then it is a maximal Z-order in the sense of Fossum [5].

Our result covers the case where R is a local Noetherian ring of finite global
dimension finitely generated as a module over its centre, which has previously been
discussed in [7], and indeed our proof is somewhat easier than that given there. However,
let D be a division ring which is locally finite dimensional, but not finite dimensional, over
its centre. Then the localization of the polynomial ring D[XU . . . , Xn] at the maximal
ideal generated by Xu..., Xn is a local Noetherian ring of global dimension n which is
integral, but not finitely generated, over its centre. The reader will find further details in
[1, 7.1].

Throughout, all rings will be assumed to have an identity, and Noetherian will mean
left and right Noetherian. A ring R with Jacobson radical J is called semilocal (respec-
tively local) if R/J is semisimple (respectively simple) Artinian. For a right R-module M,
M®s denotes a direct sum of s copies of M
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2. The Main Theorem. We shall first briefly define maximal orders (in the sense of
Asano). Details may be found in [6].

Let R be a ring with a simple Artinian (right and left) quotient ring Q. A subset I of
Q is called a right R-ideal if:

(i) J is a right R-submodule of Q;
(ii) J contains a unit of Q;

(iii) uI^R for some unit u of Q.
Left R-ideals and (two-sided) R-ideals are defined in the obvious fashion. Clearly

any non-zero ideal of R is an R-ideal. If I is an R-ideal, write
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Then R is called a maximal order if Or(I) = R = Oi(I) for each R-ideal I of Q. We
note by [6, 3.1], R is a maximal order precisely when Or(I) = R = Oi(I) for each non-zero
(ordinary) ideal / of R.

We begin with the following lemma, whose proof may be found in, for example, [4,
10.2].

LEMMA 1. Let R be any ring, J its Jacobson radical, and P and Q finitely generated
(f.g.) projective right R-modules. If PIPJ is an R/J-module direct summand of QIQJ, then P
is a direct summand of Q.

Since a local ring has a unique simple right module (up to isomorphism), it follows
that such a ring has a unique f.g. projective indecomposable right module. We shall,
however, wish to apply Lemma 1 to certain semilocal localizations of a local ring, and thus
require:

LEMMA 2. Let Rbe a right Noetherian ring of finite right global dimension, and suppose
that R has a unique f.g. projective indecomposable right module P. Let S = R& be the
classical localization of R at a right Ore set 2f of regular elements. Suppose that S is
semilocal. Then S has a unique f.g. projective indecomposable right module, namely P<8>R S.

Proof. Let Q be a f.g. projective indecomposable right S-module. We can write
Q = qxS + .. . + qtS with each qf e Q. Let

and form an R -projective resolution

0->PB-» ?„_ , -> . . . ->?„ - • *->().

Each Pf can be chosen finitely generated, and hence is a direct sum of copies of P.
Since K <8>R S = Q and RS is flat, we have an exact sequence of S-modules

0 ^ P n < 8 > R S ^ . . . ^ P o < g > R S ^ Q ^ 0 .

As Q is S-projective an easy induction on the length of this resolution shows that
there are integers k and / such that

(p®Rsreo=(p®Rs)ffll

If / is the Jacobson radical of S, we obtain

(P(8)RS)ek O (P®RS)®'

(P <g>R S)e k . J QJ (P ®R S)e i . /

Comparing the simple modules occurring, we must therefore have

Q ^ (P(8>RS)e(|-k)

From Lemma 1 and the indecomposability of Q we deduce Q = P<8>R S, as required.
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We fix some notation. For the remainder of the paper, R will be a local Noetherian
ring of finite global dimension integral over its centre Z. Further, 5$ will denote the set of
rank one primes of Z. We can now prove:

PROPOSITION 3. For each pe?$, Rp is a principal left and right ideal ring.

Proof. By the result quoted in the introduction, Rp is certainly a hereditary Noeth-
erian prime ring, and is semilocal by [3, 2.2]. Let I be a non-zero right ideal of Rp. We are
to prove that I is principal, and so we may assume that I is essential as a right ideal of Rp.
By Lemma 2, Rp has a unique f.g. projective indecomposable right module Q, and so
Js= Qffis for some s. Also, R = Q®1 for some t. Since the uniform dimensions of IR and RR

are equal, we have s = t and I is right principal.
We are in a position to obtain our main result.

THEOREM 4. R is a maximal order.

Proof. We have R = C\p^ Rp by [1, 6.7], and by Proposition 3 each Rp is a principal
left and right ideal ring. If now / is a non-zero ideal of R and q lies in the quotient ring of
R,

qld^> qIRp
 c I R P for each pe^^> qe f] RP

since IRP is an invertible ideal of Rp. Thus R is a maximal order by [6, 3.1].
Theorem 4 fails should the requirement that R be local be weakened to one of

semilocality. To see this, let S be the ring of integers localized at 2 and, using the usual
notation, put

"S 2S~l
T =

l- sr
Then T is a semilocal hereditary Noetherian prime ring finitely generated over its centre.
However, T is not a maximal order. For if I is the ideal

of T, and
0

Ll/2
[

then q/<=7 and q lies in the quotient ring of T, yet q£T.
We recall the definition of a maximal C-order from [5]. Let C be a Krull domain with

quotient field K, and Q a finite dimensional central simple K-algebra. A C-order is, in the
sense of Fossum, a subring T of Q satisfying:

(0 C^T;
(ii) K.T=Q;
(iii) T is integral over C.
A C-order is called maximal if it is not properly contained in any C-order in Q.
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Suppose that R is, in addition to our previous assumptions, a Pi-ring. Proposition 1.5
of [2] now guarantees that R is a maximal Z-order.

In particular we note that, by [6, 4.2 p. 147], for each pe^R there is a unique prime
ideal of R lying over p. Each Rp is thus a local ring. Presumably this last statement
remains valid without the additional PI hypothesis, but we have been unable to confirm
this.
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