A DIOPHANTINE EQUATION
by J. W. S. CASSELS

To Robert Rankin on the occasion of his 70th birthday

0. I was recently challenged to find all the cases when the sum of three consecutive
integral cubes is a square; that is to find all integral solutions x, y of

y2=(x—-1>3+x3+(x+1)%
=3x(x%+2). 0.1)

This is an example of a curve of genus 1. There is an effective procedure for finding all
integral points on a given curve of genus 1 ([1, Theorem 4.2], [2]): that is, it can be
guaranteed to find all the integral points and to show that no others exist with a finite
amount of work. Unlike some effective procedures, which have only logical interest, this
one can actually be carried out in practice, at least with the aid of a computer ([3], [5]).
There are, however, older methods for dealing with problems of this kind which, while not
effective, very often lead more easily to a complete set of solutions (and a proof that it is
complete). I solve the problem here by a technique introduced in [4]. It requires only the
elementary theory of algebraic number-fields. The motivation is p-adic, but it is simpler
not to introduce p-adic theory overtly.
There is a discussion of the problem in [6].

THEOREM 0.1. The only solutions of (0.1) in integers are x =0, 1, 2, 24.

We note that the greatest common factor of x and x*+2 is either 1 or 2. Hence on
considering the factorization of x and x>+2 in (0.1) there are integers u, v such that one
of the following holds:

x=3u?  x*+2=0v% 0.2)
x=u? x24+2=30p2% (0.3)
x =2u?, x%2+2=60v% 0.4)
x=6u?  x*+2=202% (0.5)
If (0.2) holds, then
Qut+2=192

which is impossible modulo 3. We treat the remaining equations (0.3), (0.4), (0.5) in
separate sections.

1. Here we deal with (0.3).
LEMMA 1.1. The only integral solution of

x=u> x2+2=73p? (1.1)
isx=1.
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Clearly 3.4 u so that x =3z —2 for some integer z, and
224+ 2(z - 1)*>=v?, (1.2)

(w+2)v-2)=2(z- 1> (1.3)

Any common prime divisor p of v+ 2z, v —z divides their difference 2z and it also divides
z—1;s0 p=2. As z, v are clearly both odd, there are integers I, m such that one of the
two following holds:

v+z =412 v—2z=2m? z—1=2Im; (1.4)
v+z=207 v—z=4m? z—1=2Im. (1.5)
If (1.4) holds then
1=212-m?-2lm =312 (1 + m)?,
which is impossible modulo 3. Hence (1.5) holds, and so

ur=3z—-2=12+4lm—-2m?> (1.6)
and
1=1*>-2Ilm—2m>. 1.7

We now introduce v, where

vi=-2. (1.8)
Then by (1.6), (1.7) we have

—y=u’=(1+y)(I—-ym)?

=u’—(1+y)A2 (1.9)
where
A=l—-ym. (1.10)
We now work in the field Q(y, §), where
§%2= 1+, (111)
so that (1.9) can be written
Norm(u +A8)=—v, (1.12)

where the Norm is taken from Q(y, 8) to Q(y).
It is readily verified that 2 is completely ramified in Q(y, 8). There is thus a unique
extension | |, of the 2-adic valuation to Q(vy, 8) and

lvb=27"% |8 -1=27"% (1.13)

It readily follows that 1, v, 8, v8 is a basis for the integers of Q(y, 8).
Solutions of (1.12) are clearly given by u =41, A = £1. We must show that these are
the only solutions with ueZ, A e Z[v]. In any case,

u+Ad=(1+68)u (1.14)
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where p is an integer (because of the complete ramification of 2), and so w is a unit. [Note
that this argument does not require a knowledge of the class-number of Q(y, 8).] Further,

(1+8)>=ym, (1.15)
where
n=1l-y-vyo (1.16)
is a unit. Since Norm(1+8)=1—8%= —v, it follows that
(1+8)/(1-8)=—mn. (1.17)

It is easy to verify that n is a fundamental unit.
From all this it follows that

u+A8=x(1+8)n*" (1.18)
for some n e€Z and some choices of signs. We have
n=2=1+9, (1.19)
where
0=—-4—4yF(4+2y)8. (1.20)
Suppose, if possible, that n#0. Let 2" be the highest power of 2 dividing n and put
N =|n|. Then
N
N =(1+6)N=1+N6+) T, (1.21)
2
where
TmzN(N—l)...(N—m+1) - (122)
m!
Here 2P*™211¢™, 2"| N and 2™ ¥ m!. Hence
T,.=0 23). (1.23)
It follows that
n"=1+N6 (23
= 1+2r+l,Y6 (2r+2)‘ (1'24)
Hence
(18 =1+2"""y+(E1+2""'y)$ (273, (1.25)
In particular, the coefficient of y is non-zero, which contradicts (1.18).
2. Here we deal with (0.4).
LemMma 2.1. The only integral solution of
x=2u> x?+2=602 (2.1)
is x=2.
Here

x=6z+2
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for some z€Z, and so

2224+ (2z+1)%=02 (2.3)
that is
fo+Qz+DHo—-Qz+1)}=222 (2.9
There are thus integers I, m such that one of the two following holds:
v+2z+1=417 v—22z-1=2m? z=2lm; (2.5)
v+2z+1=207 v—2z—-1=4m? z=2Im. (2.6)

If (2.5) holds, we have
1=212-4lm-—m?>=61>- (2l + m)?,

which is impossible modulo 3.
Hence (2.6) holds, and
1=1?-4Im-2m? 2.7
w?=1242lm-2m?2 (2.8)

As in the preceding section, we define y by

y?=-2. (2.9)
Put
A=l—ym, (2.10)
so that L= —yu+ (14 A2
={u+1+7)uP+Q2-y)u? (2.11)
where w=A—u (2.12)

Clearly, solutions of (2.11) are given by u=+1, A = +1. We shall show that these are the
only solutions with ueZ, A e Z[vy].
The argument is similar to that in the previous section. We define 8 now by

8%==2+4. (2.13)

There is a unique extension | |, of the 2-adic valuation and |y|,=2""2, |8|,=2""4 Hence
1, v, 8, y8 is a basis for the integers of Q(y, §).
On putting u=-1, A =1 in (2.11) we see that

n=1+2y+28 (2.14)

is a unit, and it is easy to check that it is fundamental. Then either
u+(l+y)p+ud=+n>" (2.15)
o u+(1+y)p +ps = 2q*2 (2.16)

for some n €Z. The proof now follows much as for Lemma 1.1 on noting that

n¥=1+9 2.17)
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where
0=—-16+8vy+(4+8y)d. (2.18)

If 2"||n and N =ln| we have
,n2n = 1 +N0 (2r+3)

=1+2"2 (2™ (2.19)
This is incompatible with (2.15). Further,
=142y + (242728 (23, (2.20)

which similarly contradicts (2.16).

3. We now conclude the proof of Theorem 0.1 by dealing with (0.5).

LemMa 3.1. The only solutions in integers of

x=6u? x2+2=2¢2 (3.1)
have x =0 or x =24.
Clearly v is odd. We have
w+Dw-1)=3x2=18u* (3.2)
and so there are integers [, m such that one of the following holds:
v+1=1441% v-1=2m*% (3.3)
v+1=161%, v—1=18m*; (3.4
v+1=2I% v—1=144m*; (3.5)
v+1=181% v—1=16m* (3.6)
On eliminating v, these give respectively:
721*-m*=1; (3.7
81*-9m*=1; (3.8)
*=72m*=1; (3.9)
91*—8m*=1. (3.10)

Here (3.7) and (3.8) are both impossible modulo 3. The only solutions of (3.9) have
m =0, as follows from the next lemma.

LeMma 3.2. All solutions in integers of

1*-2n%=1 (3.11)
have n=0.

The proof is simple. First, (I+1)(I*—1)=2n2 Here [ is odd, I+ 1=2 (mod 4), and
so [2+1=2r% [?—1=s? for integers r, s. But then (I+s)(I—s)=1, so that | +s=2%1,
l-s=41 and we are done.
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We note in passing that Lemma 3.2 implies the theorem of Skolem [9] which is
reproduced on p. 207 of [8].
There remains (3.10). We shall prove the following.

LemMma 3.3. All integral solutions of (3.10) have I>’=m?*=1.

We have
B+ 1)312-1)=8m* (3.12)
Since
31— 1=2(mod 4) (3.13)
there are integers r, s such that
312+ 1=4r% 317-1=2s"% (3.14)
and so
2rt—s*=1. (3.15)

Here one can invoke the deep theorem of Ljunggren [7] that the only positive
solutions of 2x*—y?=1are (1, 1) and (13, 239). Alternatively, we can proceed as follows.

Lemma 3.4. All integral solutions of
2t2—s*=1 (3.16)
have s*=1t*=1.
Without loss of generality t=0. We have
(1+2t+53)(1-2t—-s%)=-2(t+5%*

where
1+2t+52>0,

1-2t—5%?=2(mod 4).

Hence there are integers a, b such that

1+2t+s%=4a? (3.17)
1-2t—s2=-2b2, (3.18)
t+s2=2ab,
and so
2a%-b%=1, (3.19)
—2a%*+4ab-b%*=s>. (3.20)
We operate now in Q(i) with i?=—1. It follows that
—-i=s>+(1+i)B>% (3.21)
where
B=b-(1-i)a. (3.22)

We must show that all solutions of (3.21) have s*>=1, g?=—1. Following the by now
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familiar pattern, we introduce § with

8%=~-1-1i. (3.23)
Then 2 ramifies completely in Q(i, 8) and 1, i, 8, i8 is a basis for the integers. Further,
Norm(1+i8) = —i, (3.24)
so that
n=1+id (3.25)
is a unit, and it is easily checked that it is fundamental.
We have
s+B8=in* (3.26)
for some f, g€ Z. By (3.21) and (3.24) g is odd, say g =+1+4n, and so
s+B6=+i(1£i8)n* (3.27)
or
s+B8=+(1£i8)n*". (3.28)
Now
-n=1+96 (3.29)
where
60 =—-8-8i+(4—8i)s. (3.30)

Hence (3.27) leads to a contradiction with (3.26) modulo 2.
Putting N =|n|, 2" || n, we have

n4n = (1 + 0)N
=1+No (2
=142 (2. (3.31)
Hence
(CD"(L£i8)n* =1+272+ 220+ (2205 (27), (3.32)

In particular, the coefficient of i is not zero, in contradiction to (3.26). Hence the only
possibility is n =0.

REFERENCES

1. A. Baker, Transcendental number theory (Cambridge, 1975).

2. A. Baker and J. Coates, Integer points on curves of genus 1, Proc. Cambridge Philos. Soc. 67
(1970), 595-602.

3. A. Baker and H. Davenport, The equations 3x*—2=1y? and 8x*>~7=z? Quart. J. Math.
Oxford Ser. 2, 20 (1969), 129-37.

4. J. W. S. Cassels, Integral points on certain elliptic curves, Proc. London Math. Soc. (3) 14A
(1965), 55-57.

5. F. Ellison, W. J. Ellison, J. Pesek, C. E. Stall and D. S. Stall, The diophantine equation
y*+k =x*, J. Number Theory 4 (1972), 107-117.

https://doi.org/10.1017/50017089500006030 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500006030

18 J. W. S. CASSELS

6. G. Hoare, Solution and comments on 67.A and 67.B, Math. Gaz. 67 (1983), 228-230.
7. W. Ljunggren, Zur Theorie der Gleichung x*+ 1= Dy*, Avh. Norske Vid.-Akad. Oslo, 1942
No. 5, 1.
8. L. J. Mordell, Diophantine equations (Academic Press, 1969).
9. T. Skolem, The use of p-adic methods in the theory of diophantine equations, Bull. Soc.
Math. Belg. 7 (1955), 83-95.
D.PMM.S.
UNIVERSITY OF CAMBRIDGE
16 ML LANE
CAMBRIDGE
CB2 1SB

https://doi.org/10.1017/50017089500006030 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500006030

