
A DIOPHANTINE EQUATION

by J. W. S. CASSELS

To Robert Rankin on the occasion of his 10th birthday

0. I was recently challenged to find all the cases when the sum of three consecutive
integral cubes is a square; that is to find all integral solutions x, y of

y = (% — l)4*X~i" (x ~1" 1)

= 3x(x2+2). (0.1)

This is an example of a curve of genus 1. There is an effective procedure for finding all
integral points on a given curve of genus 1 ([1, Theorem 4.2], [2]): that is, it can be
guaranteed to find all the integral points and to show that no others exist with a finite
amount of work. Unlike some effective procedures, which have only logical interest, this
one can actually be carried out in practice, at least with the aid of a computer ([3], [5]).
There are, however, older methods for dealing with problems of this kind which, while not
effective, very often lead more easily to a complete set of solutions (and a proof that it is
complete). I solve the problem here by a technique introduced in [4]. It requires only the
elementary theory of algebraic number-fields. The motivation is p-adic, but it is simpler
not to introduce p-adic theory overtly.

There is a discussion of the problem in [6].

THEOREM 0.1. The only solutions of (0.1) in integers are x = 0, 1, 2, 24.

We note that the greatest common factor of x and x2 + 2 is either 1 or 2. Hence on
considering the factorization of x and x2 + 2 in (0.1) there are integers u, v such that one
of the following holds:

x = 3u2, x2+2 = u2; (0.2)

x = u2, x2+2 = 3u2; (0.3)
x = 2u2, x2 + 2 = 6u2; (0.4)

x = 6u2, x2+2 = 2v2. (0.5)

If (0.2) holds, then
9u4 + 2 = u2,

which is impossible modulo 3. We treat the remaining equations (0.3), (0.4), (0.5) in
separate sections.

1. Here we deal with (0.3).

LEMMA 1.1. The only integral solution of

x = u2, x2+2 = 3t)2 (1.1)
is x = 1.
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Clearly 3/f u so that x = 3z - 2 for some integer z, and

z2 + 2 ( z - l ) 2 = u2, (1.2)
i.e.

(U + Z ) ( D - Z ) = 2 ( Z - 1 ) 2 . (1.3)

Any common prime divisor p of v + z, v - z divides their difference 1z and it also divides
z - 1; so p = 2. As z, u are clearly both odd, there are integers /, m such that one of the
two following holds:

u + z=4/ 2 , u - z = 2m2, z-l = 2lm; (1.4)

v + z=2l2, v-z=4m2, z-l = 2lm. (1.5)

If (1.4) holds then

1 = 2 / 2 - m2- 2lm = 3 / 2 - (I + m)2,

which is impossible modulo 3. Hence (1.5) holds, and so

u 2 = 3 z - 2 = f2 + 4fm-2m2 (1.6)
and

l = P - 2 / m - 2 m 2 . (1.7)

We now introduce y, where

72 = - 2 . (1.8)
Then by (1.6), (1.7) we have

(1.9)
where

K = l~ym. (1.10)

We now work in the field Q(y, 8), where

82=l + y, (1.11)
so that (1.9) can be written

Y, (1.12)

where the Norm is taken from Q(y, 8) to Q(y).
It is readily verified that 2 is completely ramified in Q(y, 8). There is thus a unique

extension | |2 of the 2-adic valuation to Q(y, 8) and

M2 = 2-1/2, | 5 - 1 | 2 = 2-"4. (1.13)

It readily follows that 1, y, 8, y8 is a basis for the integers of Q(y, 8).
Solutions of (1.12) are clearly given by u = ±1, A = ±1. We must show that these are

the only solutions with ueZ , AeZ[y]. In any case,

(1.14)
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where /x is an integer (because of the complete ramification of 2), and so /x is a unit. [Note
that this argument does not require a knowledge of the class-number of Q(Y, 8).] Further,

(1 + S ) 2 = T T , , (1.15)
where

Tj = 1 -7 -78 (1.16)

is a unit. Since Norm(l + S)= l - 8 2 = - 7 , it follows that

(1 + 8)1(1-8) =-q. (1.17)

It is easy to verify that 17 is a fundamental unit.
From all this it follows that

= ± ( 1 ± S ) T J 2 " (1.18)

for some H E Z and some choices of signs. We have

T , ± 2 = 1 + 0, (1.19)
where

(1.20)

Suppose, if possible, that n^O. Let T be the highest power of 2 dividing n and put
N=\n\. Then

T,2" = (l + e)N = l + JVfl + f Tm, (1.21)
2

where
T = M N l ) - ( N m + l ) f l n , ( L 2 2 )

m!

Here 2|3m/2 | |0m, 2r| N and 2m/fm!. Hence

Tm s 0 (2r+2). (1.23)
It follows that

T,2" = l + Af0 (2r+2)

^ l + 2r+1
78 (2r+2). (1.24)

Hence
2r+17)8 (2r+2). (1.25)

In particular, the coefficient of 7 is non-zero, which contradicts (1.18).

2. Here we deal with (0.4).

LEMMA 2.1. The only integral solution of

x = 2u2, x2 + 2 = 6u2 (2.1)
is x = 2.

Here
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for some z e Z, and so
2z2 + (2z + l)2=v2, (2.3)

that is
-(2z + l)} = 2z2. (2.4)

There are thus integers /, m such that one of the two following holds:

l = 4f2, u - 2 z - l = 2m2, z = 2!m; (2.5)

l = 2I2, u - 2 z - l = 4m2, z = 2!m. (2.6)

If (2.5) holds, we have

which is impossible modulo 3.
Hence (2.6) holds, and

l = / 2 -4 /m-2m 2 , (2.7)
u2=l2+2lm-2m2. (2.8)

As in the preceding section, we define y by

T 2 = -2 . (2.9)
Put

K = l-ym, (2.10)
so that

1
(2-11)

where . /o 10^
M. = A-u. (2.12)

Clearly, solutions of (2.11) are given by u = ±1, A = ±1. We shall show that these are the
only solutions with ueZ , A eZ[?].

The argument is similar to that in the previous section. We define 8 now by

(2.13)

There is a unique extension | |2 of the 2-adic valuation and |Y|2
 = 2~1/2, |S|2 = 2~1/4. Hence

1, 7, S, yd is a basis for the integers of Q(7,8).
On putting u = - 1 , A = 1 in (2.11) we see that

r\ = l + 2y + 28 (2.14)

is a unit, and it is easy to check that it is fundamental. Then either

« + (l + 7)/x + ju,8 = ±T1
2n (2.15)

° r u + (l + 7V + ft5 = ±T)
1+2n (2.16)

for some neZ. The proof now follows much as for Lemma 1.1 on noting that

T ) * 2 = 1 + 0 (2.17)
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where
(2.18)

If 2r || n and N= |n| we have

(2r+3)
r+28 (2r+3). (2.19)

This is incompatible with (2.15). Further,

T(i+2n = 1 + 2T + (2 + 2r+2)8 (2r+3), (2.20)
which similarly contradicts (2.16).

3. We now conclude the proof of Theorem 0.1 by dealing with (0.5).

LEMMA 3.1. The only solutions in integers of

x = 6u2, x2 + 2 = 2u2 (3.1)
have x = 0 or x = 24.

Clearly v is odd. We have

(u + l ) (u - l ) = 5X2=18u4

and so there are integers I, m such that one of the following holds:

u + l = 14414, u - l = 2m4;

u + l = 16f4, u - l = 18m4;

u + l = 2f4, u - l = 1 4 4 m 4 ;

u + l=18/ 4 , u - l = 16m4.

On eliminating v, these give respectively:

72l4-m4=l;
8 J 4 - 9 m 4 = l ;

J 4 -72m 4 = l ;

9 / 4 - 8 m 4 = l .

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
(3.9)

(3.10)

Here (3.7) and (3.8) are both impossible modulo 3. The only solutions of (3.9) have
m = 0, as follows from the next lemma.

LEMMA 3.2. All solutions in integers of

I4-2n2 = l (3.11)
have n = 0.

The proof is simple. First, (12+ I)(l2-l) = 2n2. Here I is odd, I 2+l = 2 (mod4), and
so / 2 + l = 2r2, / 2 - l = s2 for integers r, s. But then (l + s)(l-s) = 1, so that l + s = ± l ,
Z - s = ±1 and we are done.
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We note in passing that Lemma 3.2 implies the theorem of Skolem [9] which is
reproduced on p. 207 of [8].

There remains (3.10). We shall prove the following.

LEMMA 3.3. All integral solutions of (3.10) have 12= m2- 1.

We have
(3P+l ) (3P- l ) = 8m4. (3.12)

Since
3/ 2 -1 = 2 (mod 4) (3.13)

there are integers r, s such that

3!2+l = 4r4; 3 / 2 - l = 2s4, (3.14)
and so

2 r 4 - s 4 = l . (3.15)

Here one can invoke the deep theorem of Ljunggren [7] that the only positive
solutions of 2x 4 - y 2 = 1 are (1,1) and (13, 239). Alternatively, we can proceed as follows.

LEMMA 3.4. All integral solutions of

2t2-s4=l (3.16)
have s 2 = r 2 = l .

Without loss of generality t s= 0. We have

where
l

l - 2 t - s 2 = 2(mod4).

Hence there are integers a, b such that

l + 2t + s2 = 4a2, (3.17)

l-2t-S
2 = -2b2, (3.18)

t + s2=2ab,
and so

2a 2 - fc 2 =l , (3.19)

-2a 2 + 4a6 -b 2 = s2. (3.20)

We operate now in Q(i) with i2 = - l . It follows that

- i = s2 + (l + i)02, (3.21)
where

0 = b - ( l - i ) a . (3.22)

We must show that all solutions of (3.21) have s 2 = l , /32 = - l . Following the by now
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familiar pattern, we introduce 8 with

82=-l-i. (3.23)

Then 2 ramifies completely in Q(i, 8) and 1, i, 8, i8 is a basis for the integers. Further,

Norm(l + i8) = -i, (3.24)
so that

7] = l + i8 (3.25)

is a unit, and it is easily checked that it is fundamental.
We have

s + |38 = i V (3.26)

for some /, geZ . By (3.21) and (3.24) g is odd, say g = ± l + 4n, and so

s + 0S = ±iQ±(S) i i 4 " (3.27)
or

S + |3S = ±(1±;S)T}4 1 1 . (3.28)
Now

- T , ± 4 = 1 + 0 (3.29)
where

fl = - 8 - 8 i ± ( 4 - 8 i ) 8 . (3.30)

Hence (3.27) leads to a contradiction with (3.26) modulo 2.
Putting JV=|n|, 2r || n, we have

T)4" = (1 + 0 ) N

= 1 + N6 (2r+3)

= l + 2r+25 (2r+3). (3.31)
Hence

(-l)"(l±iS)Ti4" = l + 2r+2 + 2r+2i + (2r+2±i)8 (2r+3). (3.32)

In particular, the coefficient of i is not zero, in contradiction to (3.26). Hence the only
possibility is n = 0.
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