A DIOPHANTINE EQUATION

by J. W. S. CASSELS

To Robert Rankin on the occasion of his 70th birthday

0. I was recently challenged to find all the cases when the sum of three consecutive integral cubes is a square; that is to find all integral solutions x, y of

$$
\begin{align*}
y^{2} & =(x-1)^{3}+x^{3}+(x+1)^{3} \\
& =3 x\left(x^{2}+2\right) . \tag{0.1}
\end{align*}
$$

This is an example of a curve of genus 1 . There is an effective procedure for finding all integral points on a given curve of genus 1 ([1, Theorem 4.2], [2]): that is, it can be guaranteed to find all the integral points and to show that no others exist with a finite amount of work. Unlike some effective procedures, which have only logical interest, this one can actually be carried out in practice, at least with the aid of a computer ([3], [5]). There are, however, older methods for dealing with problems of this kind which, while not effective, very often lead more easily to a complete set of solutions (and a proof that it is complete). I solve the problem here by a technique introduced in [4]. It requires only the elementary theory of algebraic number-fields. The motivation is p-adic, but it is simpler not to introduce p-adic theory overtly.

There is a discussion of the problem in [6].
Theorem 0.1. The only solutions of (0.1) in integers are $x=0,1,2,24$.
We note that the greatest common factor of x and $x^{2}+2$ is either 1 or 2 . Hence on considering the factorization of x and $x^{2}+2$ in (0.1) there are integers u, v such that one of the following holds:

$$
\begin{array}{ll}
x=3 u^{2}, & x^{2}+2=v^{2} \\
x=u^{2}, & x^{2}+2=3 v^{2} \\
x=2 u^{2}, & x^{2}+2=6 v^{2} \\
x=6 u^{2}, & x^{2}+2=2 v^{2} \tag{0.5}
\end{array}
$$

If (0.2) holds, then

$$
9 u^{4}+2=v^{2}
$$

which is impossible modulo 3 . We treat the remaining equations (0.3), (0.4), (0.5) in separate sections.

1. Here we deal with (0.3).

Lemma 1.1. The only integral solution of

$$
\begin{equation*}
x=u^{2}, \quad x^{2}+2=3 v^{2} \tag{1.1}
\end{equation*}
$$

is $x=1$.

Clearly $3 \Varangle u$ so that $x=3 z-2$ for some integer z, and

$$
\begin{equation*}
z^{2}+2(z-1)^{2}=v^{2} \tag{1.2}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
(v+z)(v-z)=2(z-1)^{2} \tag{1.3}
\end{equation*}
$$

Any common prime divisor p of $v+z, v-z$ divides their difference $2 z$ and it also divides $z-1$; so $p=2$. As z, v are clearly both odd, there are integers l, m such that one of the two following holds:

$$
\begin{array}{lll}
v+z=4 l^{2}, & v-z=2 m^{2}, & z-1=2 l m \\
v+z=2 l^{2}, & v-z=4 m^{2}, & z-1=2 l m \tag{1.5}
\end{array}
$$

If (1.4) holds then

$$
1=2 l^{2}-m^{2}-2 l m=3 l^{2}-(l+m)^{2}
$$

which is impossible modulo 3 . Hence (1.5) holds, and so

$$
\begin{equation*}
u^{2}=3 z-2=l^{2}+4 l m-2 m^{2} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
1=l^{2}-2 l m-2 m^{2} \tag{1.7}
\end{equation*}
$$

We now introduce γ, where

Then by (1.6), (1.7) we have

$$
\begin{equation*}
\gamma^{2}=-2 \tag{1.8}
\end{equation*}
$$

$$
\begin{align*}
-\gamma & =u^{2}-(1+\gamma)(l-\gamma m)^{2} \\
& =u^{2}-(1+\gamma) \lambda^{2}, \tag{1.9}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda=l-\gamma m . \tag{1.10}
\end{equation*}
$$

We now work in the field $\mathbf{Q}(\gamma, \delta)$, where

$$
\begin{equation*}
\delta^{2}=1+\gamma \tag{1.11}
\end{equation*}
$$

so that (1.9) can be written

$$
\begin{equation*}
\operatorname{Norm}(u+\lambda \delta)=-\gamma, \tag{1.12}
\end{equation*}
$$

where the Norm is taken from $\mathbf{Q}(\gamma, \delta)$ to $\mathbf{Q}(\gamma)$.
It is readily verified that 2 is completely ramified in $\mathbf{Q}(\gamma, \delta)$. There is thus a unique extension $!l_{2}$ of the 2-adic valuation to $\mathbf{Q}(\gamma, \delta)$ and

$$
\begin{equation*}
|\gamma|_{2}=2^{-1 / 2}, \quad|\delta-1|_{2}=2^{-1 / 4} \tag{1.13}
\end{equation*}
$$

It readily follows that $1, \gamma, \delta, \gamma \delta$ is a basis for the integers of $\mathbf{Q}(\gamma, \delta)$.
Solutions of (1.12) are clearly given by $u= \pm 1, \lambda= \pm 1$. We must show that these are the only solutions with $u \in \mathbf{Z}, \lambda \in \mathbf{Z}[\gamma]$. In any case,

$$
\begin{equation*}
u+\lambda \delta=(1+\delta) \mu \tag{1.14}
\end{equation*}
$$

where μ is an integer (because of the complete ramification of 2), and so μ is a unit. [Note that this argument does not require a knowledge of the class-number of $\mathbf{Q}(\gamma, \delta)$.] Further,

$$
\begin{equation*}
(1+\delta)^{2}=\gamma \eta \tag{1.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=1-\gamma-\gamma \delta \tag{1.16}
\end{equation*}
$$

is a unit. Since $\operatorname{Norm}(1+\delta)=1-\delta^{2}=-\gamma$, it follows that

$$
\begin{equation*}
(1+\delta) /(1-\delta)=-\eta \tag{1.17}
\end{equation*}
$$

It is easy to verify that η is a fundamental unit.
From all this it follows that

$$
\begin{equation*}
u+\lambda \delta= \pm(1 \pm \delta) \eta^{2 n} \tag{1.18}
\end{equation*}
$$

for some $n \in \mathbf{Z}$ and some choices of signs. We have

$$
\begin{equation*}
\eta^{ \pm 2}=1+\theta \tag{1.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=-4-4 \gamma \mp(4+2 \gamma) \delta . \tag{1.20}
\end{equation*}
$$

Suppose, if possible, that $n \neq 0$. Let 2^{r} be the highest power of 2 dividing n and put $N=|n|$. Then

$$
\begin{equation*}
\eta^{2 n}=(1+\theta)^{N}=1+N \theta+\sum_{2}^{N} T_{m} \tag{1.21}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{m}=\frac{N(N-1) \ldots(N-m+1)}{m!} \theta^{m} . \tag{1.22}
\end{equation*}
$$

Here $2^{[3 m / 2 \mid}\left|\theta^{m}, 2^{r}\right| N$ and $2^{m} \npreceq m!$. Hence

$$
\begin{equation*}
T_{m} \equiv 0 \quad\left(2^{r+2}\right) \tag{1.23}
\end{equation*}
$$

It follows that

$$
\begin{array}{rlrl}
\eta^{2 n} & \equiv 1+N \theta & \left(2^{r+2}\right) \\
& \equiv 1+2^{r+1} \gamma \delta \quad\left(2^{r+2}\right) \tag{1.24}
\end{array}
$$

Hence

$$
\begin{equation*}
(1 \pm \delta) \eta^{2 n} \equiv 1+2^{r+1} \gamma+\left(\pm 1+2^{r+1} \gamma\right) \delta \quad\left(2^{r+2}\right) \tag{1.25}
\end{equation*}
$$

In particular, the coefficient of γ is non-zero, which contradicts (1.18).
2. Here we deal with (0.4).

Lemma 2.1. The only integral solution of
is $x=2$.

$$
\begin{equation*}
x=2 u^{2}, \quad x^{2}+2=6 v^{2} \tag{2.1}
\end{equation*}
$$

Here

$$
x=6 z+2
$$

for some $z \in \mathbf{Z}$, and so

$$
\begin{equation*}
2 z^{2}+(2 z+1)^{2}=v^{2} \tag{2.3}
\end{equation*}
$$

that is

$$
\begin{equation*}
\{v+(2 z+1)\}\{v-(2 z+1)\}=2 z^{2} . \tag{2.4}
\end{equation*}
$$

There are thus integers l, m such that one of the two following holds:

$$
\begin{array}{lll}
v+2 z+1=4 l^{2}, & v-2 z-1=2 m^{2}, & z=2 l m \\
v+2 z+1=2 l^{2}, & v-2 z-1=4 m^{2}, & z=2 l m \tag{2.6}
\end{array}
$$

If (2.5) holds, we have

$$
1=2 l^{2}-4 l m-m^{2}=6 l^{2}-(2 l+m)^{2},
$$

which is impossible modulo 3 .
Hence (2.6) holds, and

$$
\begin{align*}
1 & =l^{2}-4 l m-2 m^{2}, \tag{2.7}\\
u^{2} & =l^{2}+2 l m-2 m^{2} . \tag{2.8}
\end{align*}
$$

As in the preceding section, we define γ by

Put

$$
\begin{equation*}
\gamma^{2}=-2 \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\lambda=l-\gamma m, \tag{2.10}
\end{equation*}
$$

so that

$$
\begin{align*}
1 & =-\gamma u^{2}+(1+\gamma) \lambda^{2} \\
& =\{u+(1+\gamma) \mu\}^{2}+(2-\gamma) \mu^{2} \tag{2.11}
\end{align*}
$$

where

$$
\begin{equation*}
\mu=\lambda-u . \tag{2.12}
\end{equation*}
$$

Clearly, solutions of (2.11) are given by $u= \pm 1, \lambda= \pm 1$. We shall show that these are the only solutions with $u \in \mathbf{Z}, \lambda \in \mathbf{Z}[\gamma]$.

The argument is similar to that in the previous section. We define δ now by

$$
\begin{equation*}
\delta^{2}=-2+\gamma \tag{2.13}
\end{equation*}
$$

There is a unique extension $\left.\left|\left.\right|_{2}\right.$ of the 2-adic valuation and $| \gamma\right|_{2}=2^{-1 / 2},|\delta|_{2}=2^{-1 / 4}$. Hence $1, \gamma, \delta, \gamma \delta$ is a basis for the integers of $\mathbf{Q}(\gamma, \delta)$.

On putting $u=-1, \lambda=1$ in (2.11) we see that

$$
\begin{equation*}
\eta=1+2 \gamma+2 \delta \tag{2.14}
\end{equation*}
$$

is a unit, and it is easy to check that it is fundamental. Then either
or

$$
\begin{align*}
& u+(1+\gamma) \mu+\mu \delta= \pm \eta^{2 n} \tag{2.15}\\
& u+(1+\gamma) \mu+\mu \delta= \pm \eta^{1+2 n} \tag{2.16}
\end{align*}
$$

for some $n \in \mathbf{Z}$. The proof now follows much as for Lemma 1.1 on noting that

$$
\begin{equation*}
\eta^{\star 2}=1+\theta \tag{2.17}
\end{equation*}
$$

A DIOPHANTINE EQUATION

where

$$
\begin{equation*}
\theta=-16+8 \gamma \pm(4+8 \gamma) \delta \tag{2.18}
\end{equation*}
$$

If $2^{r} \| n$ and $N=|n|$ we have

$$
\begin{array}{rlr}
\eta^{2 n} & \equiv 1+N \theta & \left(2^{r+3}\right) \\
& \equiv 1+2^{r+2} \delta \quad\left(2^{r+3}\right) . \tag{2.19}
\end{array}
$$

This is incompatible with (2.15). Further,

$$
\begin{equation*}
\eta^{1+2 n} \equiv 1+2 \gamma+\left(2+2^{r+2}\right) \delta \quad\left(2^{r+3}\right) \tag{2.20}
\end{equation*}
$$

which similarly contradicts (2.16).
3. We now conclude the proof of Theorem 0.1 by dealing with (0.5).

Lemma 3.1. The only solutions in integers of
have $x=0$ or $x=24$.

$$
\begin{equation*}
x=6 u^{2}, \quad x^{2}+2=2 v^{2} \tag{3.1}
\end{equation*}
$$

Clearly v is odd. We have

$$
\begin{equation*}
(v+1)(v-1)=\frac{1}{2} x^{2}=18 u^{4} \tag{3.2}
\end{equation*}
$$

and so there are integers l, m such that one of the following holds:

$$
\begin{array}{ll}
v+1=144 l^{4}, & v-1=2 m^{4} \\
v+1=16 l^{4}, & v-1=18 m^{4} \\
v+1=2 l^{4}, & v-1=144 m^{4} \\
v+1=18 l^{4}, & v-1=16 m^{4} \tag{3.6}
\end{array}
$$

On eliminating v, these give respectively:

$$
\begin{align*}
& 72 l^{4}-m^{4}=1 ; \tag{3.7}\\
& 8 l^{4}-9 m^{4}=1 ; \tag{3.8}\\
& l^{4}-72 m^{4}=1 ; \tag{3.9}\\
& 9 l^{4}-8 m^{4}=1 . \tag{3.10}
\end{align*}
$$

Here (3.7) and (3.8) are both impossible modulo 3. The only solutions of (3.9) have $m=0$, as follows from the next lemma.

Lemma 3.2. All solutions in integers of

$$
\begin{equation*}
l^{4}-2 n^{2}=1 \tag{3.11}
\end{equation*}
$$

have $n=0$.
The proof is simple. First, $\left(l^{2}+1\right)\left(l^{2}-1\right)=2 n^{2}$. Here l is odd, $l^{2}+1 \equiv 2(\bmod 4)$, and so $l^{2}+1=2 r^{2}, l^{2}-1=s^{2}$ for integers r, s. But then $(l+s)(l-s)=1$, so that $l+s= \pm 1$, $l-s= \pm 1$ and we are done.

We note in passing that Lemma 3.2 implies the theorem of Skolem [9] which is reproduced on p. 207 of [8].

There remains (3.10). We shall prove the following.
Lemma 3.3. All integral solutions of (3.10) have $l^{2}=m^{2}=1$.
We have

$$
\begin{equation*}
\left(3 l^{2}+1\right)\left(3 l^{2}-1\right)=8 m^{4} . \tag{3.12}
\end{equation*}
$$

Since

$$
\begin{equation*}
3 l^{2}-1 \equiv 2(\bmod 4) \tag{3.13}
\end{equation*}
$$

there are integers r, s such that

$$
\begin{equation*}
3 l^{2}+1=4 r^{4} ; \quad 3 l^{2}-1=2 s^{4} \tag{3.14}
\end{equation*}
$$

and so

$$
\begin{equation*}
2 r^{4}-s^{4}=1 \tag{3.15}
\end{equation*}
$$

Here one can invoke the deep theorem of Ljunggren [7] that the only positive solutions of $2 x^{4}-y^{2}=1$ are $(1,1)$ and $(13,239)$. Alternatively, we can proceed as follows.

Lemma 3.4. All integral solutions of

$$
\begin{equation*}
2 t^{2}-s^{4}=1 \tag{3.16}
\end{equation*}
$$

have $s^{2}=t^{2}=1$.
Without loss of generality $t \geqslant 0$. We have

$$
\left(1+2 t+s^{2}\right)\left(1-2 t-s^{2}\right)=-2\left(t+s^{2}\right)^{2}
$$

where

$$
\begin{aligned}
& 1+2 t+s^{2}>0 \\
& 1-2 t-s^{2} \equiv 2(\bmod 4)
\end{aligned}
$$

Hence there are integers a, b such that

$$
\begin{align*}
1+2 t+s^{2} & =4 a^{2} \tag{3.17}\\
1-2 t-s^{2} & =-2 b^{2} \tag{3.18}\\
t+s^{2} & =2 a b
\end{align*}
$$

and so

$$
\begin{gather*}
2 a^{2}-b^{2}=1 \tag{3.19}\\
-2 a^{2}+4 a b-b^{2}=s^{2} \tag{3.20}
\end{gather*}
$$

We operate now in $\mathbf{Q}^{(i)}$ with $i^{2}=-1$. It follows that

$$
\begin{equation*}
-i=s^{2}+(1+i) \beta^{2} \tag{3.21}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=b-(1-i) a . \tag{3.22}
\end{equation*}
$$

We must show that all solutions of (3.21) have $s^{2}=1, \beta^{2}=-1$. Following the by now

A DIOPHANTINE EQUATION

familiar pattern, we introduce δ with

$$
\begin{equation*}
\delta^{2}=-1-i . \tag{3.23}
\end{equation*}
$$

Then 2 ramifies completely in $\mathbf{Q}(i, \delta)$ and $1, i, \delta, i \delta$ is a basis for the integers. Further,

$$
\begin{equation*}
\operatorname{Norm}(1+i \delta)=-i, \tag{3.24}
\end{equation*}
$$

so that

$$
\begin{equation*}
\eta=1+i \delta \tag{3.25}
\end{equation*}
$$

is a unit, and it is easily checked that it is fundamental.
We have

$$
\begin{equation*}
s+\beta \delta=i^{f} \eta^{k} \tag{3.26}
\end{equation*}
$$

for some $f, g \in \mathbf{Z}$. By (3.21) and (3.24) g is odd, say $g= \pm 1+4 n$, and so

$$
\begin{equation*}
s+\beta \delta= \pm i(1 \pm i \delta) \eta^{4 n} \tag{3.27}
\end{equation*}
$$

or

$$
\begin{equation*}
s+\beta \delta= \pm(1 \pm i \delta) \eta^{4 n} \tag{3.28}
\end{equation*}
$$

$$
\begin{equation*}
-\eta^{ \pm 4}=1+\theta \tag{3.29}
\end{equation*}
$$

Now
where

$$
\begin{equation*}
\theta=-8-8 i \pm(4-8 i) \delta \tag{3.30}
\end{equation*}
$$

Hence (3.27) leads to a contradiction with (3.26) modulo 2.
Putting $N=|n|, 2^{r} \| n$, we have

$$
\begin{array}{rlr}
\eta^{4 n} & =(1+\theta)^{N} \\
& \equiv 1+N \theta & \left(2^{r+3}\right) \\
& \equiv 1+2^{r+2} \delta \quad\left(2^{r+3}\right) . \tag{3.31}
\end{array}
$$

Hence

$$
\begin{equation*}
(-1)^{n}(1 \pm i \delta) \eta^{4 n} \equiv 1+2^{r+2}+2^{r+2} i+\left(2^{r+2} \pm i\right) \delta \quad\left(2^{r+3}\right) \tag{3.32}
\end{equation*}
$$

In particular, the coefficient of i is not zero, in contradiction to (3.26). Hence the only possibility is $n=0$.

REFERENCES

1. A. Baker, Transcendental number theory (Cambridge, 1975).
2. A. Baker and J. Coates, Integer points on curves of genus 1, Proc. Cambridge Philos. Soc. 67 (1970), 595-602.
3. A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. 2, 20 (1969), 129-37.
4. J. W. S. Cassels, Integral points on certain elliptic curves, Proc. London Math. Soc. (3) 14A (1965), 55-57.
5. F. Ellison, W. J. Ellison, J. Pesek, C. E. Stall and D. S. Stall, The diophantine equation $y^{2}+k=x^{3}$, J. Number Theory 4 (1972), 107-117.
6. G. Hoare, Solution and comments on 67.A and 67.B, Math. Gaz. 67 (1983), 228-230.
7. W. Ljunggren, Zur Theorie der Gleichung $x^{2}+1=D y^{4}$, Avh. Norske Vid.-Akad. Oslo, 1942 No. 5, 1.
8. L. J. Mordell, Diophantine equations (Academic Press, 1969).
9. T. Skolem, The use of p-adic methods in the theory of diophantine equations, Bull. Soc. Math. Belg. 7 (1955), 83-95.
D.P.M.M.S.

University of Cambridge
16 Mill Lane
Cambridge
CB2 1SB

