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FAST DIFFUSION WITH LOSS AT INFINITY—
ADDITIONAL SOLUTIONS

A. BROWN1
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Abstract

The paper presents some additional solutions of the diffusion equation

Yr

for the case s = 2, m = —1, a case that was left open in a previous discussion. These
solutions behave in a manner that is physically acceptable as the time, t, increases and as
the radial coordinate, r, tends to infinity.

1. Introduction

This note may be regarded as an addendum to a paper by Philip [6] in which he
discussed solutions of the nonlinear diffusion equation

(1.1)

where 6, t and r denote respectively concentration, time and the radial space coor-
dinate, with s as the number of dimensions and with the diffusion rate taken as 0m.
This equation occurs in numerous physical contexts, as far apart as percolation of
liquid through soil and the transport of cosmic rays in interplanetary space [1,4, 7].
In many applications m is positive but problems where m is negative also occur. For
example, in discussing the expansion of a thermalised electron cloud Lonngren and
Hirose [5] obtain a standardised equation which corresponds to (1.1) with s = 1 and
m = — 1. King [3] cites applications where m = — 1 /2, at the end of a paper in which
he discusses similarity solutions of (1.1) and he includes solutions for a number of
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cases where m is negative. Edwards and Broadbridge [2] examined solutions of the
diffusion-conductivity equation, using Lie group symmetry analysis, and their paper
includes some solutions which have m < 0, especially for s = 2 and 5 = 3.

In Philip's paper, he placed no restriction on m and examined cases where m is
negative and there is loss of material at infinity, subject to suitable physical constraints
on the behaviour of the solution, namely

(1) the total amount of the concentrate must be finite,
(2) for any fixed value of t,

r'-19m

r-t-oo
]imr'-19m— = -A, (1.2)

where A is a finite real positive function of t,
(3)

lim 0(r, t) = 0 for each relevant value of t. (1.3)
r-*0O

He considered similarity solutions of three different types and examined the restric-
tions on s and m that were imposed by the physical constraints. From this he deduced
that physically acceptable solutions could exist for

(a) 0 < s < 2, -(2/s) < m < - 1 ,
(b) s > 2, - 1 < m < -(2/s),

and noted that the border-line case s = 2, m = — 1 needed further investigation. The
purpose of the present paper is to show that a physically acceptable solution is possible
when s = 2 and m = —1.

2. One form of solution for s = 2 and m = — 1

In Section 6 of Philip's paper he considers a similarity solution of the form

with 0 < r < o o , 0 < a < o o , 0 < / 8 < o o . With this form of solution, 0(r, T)=0
and 6 is taken as zero for t > T, leaving 0 < t < T as the relevant range of t for (2.1).
To save frequent repetition of the restriction 0 < t < T we shall assume that the same
convention applies in the subsequent discussion, that is, 6(r, t) = 0 for t > T and any
statements about non-zero solutions are valid only for 0 < t < T. For (2.1) Philip
notes that similarity requires

a - 1 = a(l + m) + (2/s)(a - p). (2.2)
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If m = — 1 and a = 1, we must have /J = a = 1.
In this case,

6(r, t) = 0 (p) (r - / ) / 7\ p = r/Vf, (2.3)

so p is simply a scaled version of r and 0(r, t) has the form of a separable solution. If
we take s = 2 and substitute (2.3) in (1.1), we get

-p@(j>) = — £ — , (2.4)
dp \© dp J

which corresponds to (4.9) of Philip's paper. We want to solve this equation with
the initial conditions that © = ©o and d@/dp = 0 for p = 0. To do this, we can
introduce *(/>) = f£ M©(M) du; hence

(2.5)

and

(2.6)

Integrating (2.4) and using the initial conditions gives, in turn,

= p ©'(p)

where AT is a positive constant. Hence

64©p 64r© 0 (r - Q

The total quantity of the concentrate at time t is

q(t) = / 2nr9(r, t) dr = %n(J - t),
Jo

which is finite and it is easy to check that the constraints (1.2) and (1.3) are satisfied,
with A = 4. For t = 0, we have 9(jr, 0) = ©0/{l + (r^Qo/ST)}2, which gives the
right-hand half of a bell-shaped curve, with a maximum ®0 at r = 0 and with 9 -*• 0
as r -> oo. As t increases, the graph retains the same profile as it sinks toward zero.
This is clearly a solution which is rather specialised but physically acceptable.
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3. Other forms of solution for s = 2 and m = — 1

In Section 2 the similarity solution took the form of a separable solution and this
suggests that we look to see if other separable solutions are available. If we take s = 2
and m = — 1 in (1.1) and introduce <f>(r, t) = rd(r, t), then

dt ~rdt ~ dr\ddr)~ dr\<f>dr

and a separable solution 4>{r, t) = F(t)G(r) requires that

(3.2)
G (r) dr

We want the factor F(t) to decrease with time so we can take the constant in (3.2) to
be —2k, with A. > 0. With F(t) = 2k(T — t), we can ensure that 8 and <j> are zero
at t = T and assume that they remain zero for t > T. Then we can follow the same
convention as before and take 0 < t < T as the relevant range for f in solving (3.2).
The equation for G is now

£ {rG'(r)/G(r)} = -2kG(r). (3.3)

We can obtain a formal solution if we assume that, as r ->• 0, G(r) ~ rc, with
c > 1. Then if H(r) = f£ G(u) du, we can expect to have

-c+l

H ( ) H ' ( r ) = G(r)~rc, H"(r) ~ crc~l as r -+ 0.

Equation (3.3) becomes

Integrating this equation and using the behaviour as r -> 0 to evaluate the constants
of integration we obtain in turn

-2XH(r)H'(r) + (1 + c)H\r) = ±- {rH'(r)},

-k {H(r)}2 + (1 + c)H(r) = rH'(r),

H(r) = {(1 + c)Dr1+e] / {l + kDr1+c], (3.5)

where D is a positive constant. This gives

G(r) = H'(r) = {(1 + c)2 Drc] / {l + kDr1+c}2 , (3.6)

6{r, t) = (l/r)G(r)F(t) = {2k(T - 0(1 + c?Drc-x) / {l +kDrl+c}2 . (3.7)
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this form for 9{r, t) it can be checked that q(t) = 4jr(l + c)(T - t), so the
total quantity of concentrate is finite. Also, as r - • oo, conditions (1.2) and (1.3)
are satisfied, with A = c + 3. Thus the constraints (1), (2) and (3) of Section 1 are
satisfied. Note that the solution for 9(r, t) in (2.7) can be regarded as a limiting case
of the solution given by (3.7), obtained by letting c -+ 1 and taking kD = ©0/(8T).

However, there is an additional requirement which reduces the number of acceptable
solutions. For example, if we put c = 2 in (3.7), 9(r, t) ~ r as r -+ 0 and 99/dr
approaches a non-zero constant, whereas we want radial symmetry with 86/dr zero
at r = 0. This difficulty can be removed if we take c = 2n + 1, with n a positive
integer. With this restriction

9(r, t) = {SkD(T - 0(« + 1)V"} / {l + kDr^+2}2, (3.8)

which makes B an even function of r, with dO/dr — 0 at r — 0. A pointer in this
direction is that if we write 0(r, /) = \fr(u, v), with u = r2 and v = At, then the
equation for rj/ is

(

8v d \ 1 d ) ' { }

which is of the same form as the equation for <f>(r, t) (Equation (3.1)). So we can write

6{r, t) = xKu, v) = ^(r2, 4 0 = F(40G(r*),

= {2XD(J - 40(1 + c ) 2 ^ } / {1 + XDr3^}2, (3.10)

and this is essentially of the same form as (3.8). To indicate what these solutions look
like we can use n = 1 in (3.8). Then

0(r, 0) = (32X01)^/ (1 + kDr4)2 (3.11)

and this function of r has a minimum value (zero) at r = 0, with a maximum at
r = r* = (3A.D)~1/4. For r > r*, ®(r, 0) decreases and approaches zero as r —*• oo.
The behaviour for n = 2 , 3 , . . . is similar, that is, 9{r, 0) has a minimum at r = 0
and a maximum for a single positive value of r. In the two-dimensional picture, the
concentration is a maximum for a ring at distance r* from the centre of symmetry. As
/ increases, 9(r, t) = (1 — t/ T)9(r, 0) so the profile remains the same as 9 declines
toward zero.
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