ON THE LOCAL THEORY OF CONTINUOUS
INFINITE PSEUDO GROUPS L.*

MASATAKE KURANISHI

Introduction

The local theory of continuous (infinite) pseudo-groups of transformations
was originated by S. Lie, and developed by himself, F. Engel, E. Vessiot, E.
Cartan, etc. In the beginning, the definition was not clear and we can find
several different definitions in the papers of pioneers. In 1902, E. Cartan intro-
duced a definition using his theory of exterior differential systems and made an
extensive study in his series of papers [1], [2], and [3]. The writer will adopt his
definition in this series of papers. A continuous pseudo-group of transforma-
tions is, roughly speaking, a collection of real (or complex) analytic homeo-
morphisms of domains in a real (or complex) euclidean space, which is closed
under the operations of composition and inverse, and which forms the general
solutions of a system of partial differential equations. An example is the colle-
ction of conformal mappings of domains in a complex plane, considered as a
real euclidean space, because the collection forms the general solutions of
Cauchy-Riemann equations. A continuous pseudo-group of transformations is
called finite, if the underlying system of differential equations is completely
integrable, otherwise infinite. Aside from the applications of the theory to the
differential geometry and partial differential equations, he was also interested
in the analytic-algebraic structure which lies behind the structure of continuous
pseudo-group of transformations. Namely, if G is a pseudo-group of trans-
formations and f, g are in G, then the inverse /™' is defined and the composi-

tion fog is defined for some pairs (f, g). Thus G forms an algebraic system
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which looks like a group; on the other hand such algebraic system will be
related with the analytic properties of the underlying partial differential
equations. This is what we called the analytic-algebraic structure. In the
finite case, then, the analytic-algebraic structure is the parameter local groups.
One of the key points of E. Cartan’s theory, in this respect, is his notion of
“isomorphisme holoédrique,” which gives the definition of the isomorphism of
such analytic-algebraic structures. In the finite case, there exists an “isomor-
phisme holoédrique” between two pseudo-groups of transformations if and only
if their parameter local groups are isomorphic. In the general case, we have
no notion of parameter local groups. So he had to define the isomorphism of
the underlying analytic-algebraic structures without explicitly defining the
structure. The main purpose of the present series of papers is to introduce
the notion similar to that of parameter local groups in the general case. Our
task, then, is to generalize the notion of local Lie groups to the special case of
infinite dimensional parameter space so that the generalized notion can be used
as parameter structure of continuous pseudo-groups of transformations.

An examination in the finite case will make clear what approach one
should take. In this case, general solutions of the underlying systems of partial
differential equations depend on, roughly speaking, a number of arbitrary con-
stants. By parameterizing the general solutions by a finite number of constants,
and by means of compositions of transformations, we define the multiplication
functions of parameter local Lie groups. In the infinite case, the general
solutions depend on a finite number of arbitrary functions, in stead of arbitrary
constants. However, replacing arbitrary constants by arbitrary functions, we
can carry out the same reasoning as in the finite case, and we obtain the
multiplications between parameters and finally something like parameter local
groups. The first task, then, is to generalize the notion of analytic functions
to the case we are intersested in, because the multiplication functions are
analytic in the finite case. However, in order to develop the Lie’s fundamental
theorems in our generalized case, we have to generalize the notion of formal
power series to our case as well. We shall call the generalized formal power
series the formal analytic mappings. Chapter I is devoted tc present their
definitions and to prove several porperties which we shall use later. In

Chapter II, using formal analytic mappings as multiplications and commutators,
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we introduce the notion of formal Lie (F)-group and formal Lie (F)-algebra
and prove Lie’s fundamental theorems in our case. In the subsequent papers,
we shall give a description of E. Cartan’s theory of continuous pseudo-groups,
and study the relations between our approach and E. Cartan’s.

As stated before, we are concerned only with the local aspect of the
theory. So the global aspect of the theory, which is the subject of several
recent interesting works, will be entirely neglected. It should be noted also
that we are concerned only in the analytic case, real or complex, namely in
the case where transformations considered are analytic. No effort is made to
extend the theory to differentiable case, even though it is a very interesting

problem.

Chapter I. Formal Analytic Mappings

A field K containing infinitely many elements will be fixed throughout this
chapter. So such words as “over K” will be omitted when no confusion can
occur.

1. Vector spaces with (F)-structures

Let H be a vector space (over K) of dimension possibly infinite. Let H'”

and B, where [=0,1, ..., be vector subspaces of H. Assume that the
dimension of each B is finite, say d’. Let WY ={&., ..., s} be an ordered
basis of B".

DeriNiTION 1. 1. A collection (H™, B?, h'") is called a (F)-slructure in
H, if the following conditions are satisfied:

(1°) H=H"2H"2 - - 2H"2H"Y 2. . ;

(2°) H" is the direct sum of B" and H'*";

(3°) For any sequence (&)=, 1, ..., where £'=B", there is a unique element
¢ in H such that ¢ — (2 4+ 8"+« - - + ) eH"'Y for any integer I.  We denote
¢ by the formal sum & +&'+ - - - + &+ -+ or IEGD]O g,

(4°) We can find integers p, k and a real number m, such that, for
sufficiently large 1, we have

mi(l— k) <dim (H/HP) < (1 + B).

Elements of B will be called homogeneous elements of degree /. The

https://doi.org/10.1017/50027763000006747 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006747

228 MASATAKE KURANISHI

basis h'” will be called the distinguished basis of degree I. Any member of
the distinguished bases will be called a distinguished element. Set »' = dim
(H/H"")=ad+d'+ ---+d'. We introduce an order lexicographically in
the set of distinguished elements. Namely, we define k; (j=1,2,...), as
follows: hui-1.;=h: for 7=1,..., d" if d' is not zero. By the definitions,
any element ¢ in H can be expressed uniquely as £ =3} b’ hj, where b ek
Conversely, for any sequense (b7)j.1,,, .. of elements i:l K, the formal sum
167 h; represents an element in H.  {hs, hs, . . .} will be called the ordered
set of distinguished elements of the structure. It is easy to see that p and m;
such as in (4°) are uniquely determined by the structure. p and m=p!my
will be called the degree and the multiplicity of the structure. The ordered
pair (m, p) will be called the characteristic of the structure.

By a (F)-vector space, we mean a vector space in which a definite (F)-
structure is imposed. As far as no confusion can occur, we usually denote by
the same symbol, say H, a (F)-vector space as well as its underlying vector
space. When we want to make explicit the (F)-structure of a (F)-vector space,
a (F)-vector space will be denoted by (H, H", BY, n'").

Let (H',H"", B"’, ") be a (F)-vector space. Then (h'”, 0) and (0, h'"),
in this order, form an ordered basis, say h"”, of B 4+ B'", the direct sum of
B" and B'". Then we can check that the collection (H" + H"?, B" 4+ B'?,
h"'") forms a (F)-structure in H+ H'. The (F)-vector space (H+ H', H" +
H" BY 4 B h) will be called the direct sum of (F)-vector spaces H
and H'. As far as any ambiguity may not occur, the direct sum of (F)-vector
spaces H and H' will be denoted by H+ H'.

ProrositioN 1. 1.  Let (m, p) and (m', p') be the characteristics of H and
H', respectively. If p=p', then the characteristic of H+ H' is (m, p). If p=1p',
the characteristic of H+ H' is (m+ m', p).

ExampLE 1. Let H be a vector space of dimension finite, say m. Set
H"=H, H" = {0} for =1, B = H, and B” ={0} for I=1. Let h be an
ordered basis of the vector space H. We regard h” as the empty set for
I=1. The collection (H, H"”, B, h'”) is a (F)-vector space of characteristic
(m, 0). It is easy to see that any (F)-structure introduced in H is of charac-

teristic (m, 0). Conversely, if a (F)-vector space is of characteristic (m, 0);
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then its underlying vector space is a m-dimensional vector space.

ExampLE 2. Let H, be the vector space of formal power series in p
indeterminates xi, . . . , %, with coefficients in K.  When p is zero, H, means
the 1-dimensional vector space over K. Denote by HY’ the vector subspace of
all elements in Hy such that their terms of degree less than /, not including
terms of degree strictly I, are zero. Denote by BY’ the vector space of
homogeneous polynomials of degree . Monomials in %, ..., x, of degree /,
ordered lexicographically, form an ordered basis hY’ of B”. Because the
dimension of Hy/HY is equal to (p!)'i-(I+1)- - (U+p—1), (Hp HY, BY,
hg’) forms a (F)-vector space of characteristic (1, p), which we shall denote
also by H, for simplicity. Denote by Hj the direct sum of s copies of the

(F)-vector space Hp. The characteristic of H} is (s, p).

DeriniTiON 1. 2. By a system S of characters we mean an ordered set of
a finite number of non-negative integers So, Si, . . . , Sp, Where sp % 0.  Denote
by H(S) the direct sum of HY’, HY', . .., and Hi¥*. By Proposition I. 1, H(S)

is a (F)-vector space of characteristic (sp, D).

DeriniTiON 1. 3. Let F be a linear mapping of H into H'. F is called an
analytic linear mapping if and only if there is an integer kE such that the
image of H" by F is in H''"® for sufficiently large .

Thus, if the degree of H is zero, any linear mapping of H into H' is
analytic. Let A" be another (F)-vector space. If G is an analytic linear
mapping of H' into H'", it is clear that the composition G°F is again an
analytic linear mapping of H into H". H and H’ are said to be isomorphic if
there are analytic linear mappings F and G of H into H' and of H' into H,
respectively, such that GoF and FoG are the identity mappings of H and H',
respectively.  Thus, what is essential in the definition of the (F)-vector space
is the filtration H' of H. The homogeneous elements and the distinguished
elements are added in the definition, in order to make the description of the

later development easier.

ProrositioN 1. 2. Let H and H' be (F)-vector spaces of characteristics (m,
P) and (m!', p"). Denote by F an analytic linear mapping of H into H'. Assume

that F is bijective. Then either pZp', or p=p' and m=m'.
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Proof. Identify the vector space H with the vector space H' by the
mapping F. Then HPcH""®.  Choosing % sufficiently large, we find that
U+ E)?/(I—- k¥ =(p! m")/(p'" m) for large I. Then the conclusion of our
proposition follows immediately by letting / tend to oo.

TueoreMm 1. 1. Let H and H' be (F)-vector spaces. Then H and H' are

isomorphic if and only if they have the same characteristic.

Proof. By Proposition I. 2., it is clear that if H and H' are isomorphic
then they have the same characteristic. Let {hi, hs, ...} and {hi, A3, ...}
be the ordered set of distinguished elements of H and H' respectively. We
define linear mappings F and G of H into H' and of H' into H, respectively,

as follows:
F(S b7 i) =3 b7 1), G(zg b h) = jz; b’ h;, (B eK).
J=1 i=1 J= =

Clearly G°F and FoG are the identity mappings. Because H and H’ have the
same characteristic, the condition (4°) implies that F and G are analytic.

In particular, if S={so, s1, - . ., S}, Sp%0, then H(S) is isomorphic to
Hj*. Let F be a linear mapping of H+ H onto H defined by the formula:
F((ijoanxi', ibnx;'))=n2;(anx§"+b,.x§"“). F is a bijective and analytic

n=0
linear mapping. However, F' is not analytic.
DeriniTION 1. 4. A decreasing sequence {c™) of vector subspaces of H is
called an admissible filtratisn of H if there is an integer k such that H U=k

2C"2HM® for sufiiciently large 1.

ProposiTioN 1. 3. Let F be an analytic linear mapping of H into H'. Set C'V
={¢eH; F¢&)eH"). If there is an analytic linear mapping F' of H' into H
such that F'F is the identity mapping of H, then {C'"} is an admissible
filtration of H.

The proof is easy.

A method of constructing a (F)-vector space is as follows: Let A,
(I=0,1,...), be a sequence of finite dimensional vector spaces. Set d'”
=dim AP, @ =a'® 4 - -+ +d'". Assume that we can find integers p', %'

and a real number m] such that

(0 my(I=EN? <n'’ <m)(1+ R)?.
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such that deA®. H' forms

a vector space by the obvious addition and multiplication by scalars, and A"

Let H' be the set of all sequences a = {a'}i-o, 1, ...
will be identified, by the obvious injection, with the vector subspace of all
sequences a = {a'} such that a'=0 for ixl Let H'"*" be the vector subspace
of all sequences a ={a'} such that @'=0 for i=0,...,l We set H'"=H'
If we choose an ordered basis h'” of A" for each 1, (H', H'®, A", n'®)
forms a (F)-vector space of characteristic (p'! m{, p'). We call this the (F)-
vector space generated by A" and h'”. Now, we apply the above construction
in the following case: For a given (H, H'", B", h'") of characteristic (p! m,,
), take a copy B*»" of B for each strictly positive integer 7, and let A be
the direct sum of B 7 for »=1,2, ..., provided I[>1. We set A” ={0).
We will show that the requirement (1) is satisfied with mi = (p+1) " my, p’
=p+1, and with sufficiently large #. Since A" is isomorphic with H/H",

we have the inequality m (I—k)? <d"” <m,(I+ k)? for large I. Hence for
sufficiently large /, we have mx(l_:lﬁZ:”j")Sn"” gmx(ligl)j”). Because of the
inequalities: C/_p < (p1)7'4? for j=p, (p1)7'j2 < Ci*?, %Cﬁi”’:Cffﬁﬁ“, where
C! are binomial coefficients, we have p! m, Chii<n'™’ < )j' miCHik?+2 There-
fore, there exists %' such that m;(I—k)?"' <n"” <mi(I+E)?"" for large I
Thus (1) is satisfied. Denote by h”" the copy of h'” in B**”. Let W* be
the ordered basis h'"""*, h'*"*'% ... h'“"! in this order, of A'"”. Denote by
°H the (F)-vector space generated by A" and W'”. 1In the following, we will
constantly use the following notations to express elements in °H: Introducing
an indeterminate ¢, we denote by £¢" the copy of £€B"” in B">7. B“'T being
identified with the vector subspace of °H, any element « in “H can be uniquely

l

[- ~

expressed as a formal sum: a =3 (338" 7¢), where ""€B". Because any
l r=1

element in H can be expressed uniquely as a formal sum of homogeneous

elements, we may also express a without ambiguity as « =>)&,t", where &,
r=1

Pl

=Sehrem U RP =k, ... k) and &7 =20"" K, where """ €K, then
1

i=1

we may also use the expression a = >« 'Iii, where o' =316""'#" are formal
Lt r=1

@©
power series in ¢ without constant terms. Conversely, expressions as >, £,¢7,
r=1

& 'nl, and ) a’h;, where £, € H, o' and a’ are formal power series in ¢
[ J
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without constant terms, and where {A;, ks, ...} is the ordered set of distin-

guished elements in H, represent elements in °H.

DeriniTiON L. 5. °H will be called the (F)-vector space of formal curves
in the (F)-vector space H. If we use indeterminate t to express elements in °H
as above, t will be called a parameter of curves in H. For any a = >,&t" in

r=1

°H, we set (oa/ot)i-o = 1€ H.
We proved already the following:

ProrositioN L. 4. If H is of characteristic (m, p), ‘H is of characteristic
(m, p+1).

Let us use the same parameter ¢ for curves in H, H', and H+ H'. Then
elements in °H, °H’, and ‘(H+ H') will be expressed as >)&,t", >)¢rt", and D)
r=1 r=1 r=1

«©

(¢, &) ', where &, € H and ¢, € H', respectively. Then the mapping >) (£,

r=1
)t (g &t ?;Crtr) of “CH+ H') to “H+°(H') is bijective and is the iso-
morphism of the (F)-vector spaces. As far as no confusion can occur, we
will identify ‘(H+ H') with ‘H+ °H' by the above mapping.

For any analytic linear mapping F of H into H', we associate a linear
mapping °F of °H into °H' as follows:

‘F(i;;e,t') =éF($f)t’,

where we use the same parameter ¢ to express elements in °H and “H’. It is

easy to see that °F is also an analytic linear mapping.

2. Formal analytic mapping

Let H be a (F)-vector space. Let {hi, hs, ...} be the ordered set of
distinguished elements of H. If the degree of h; is I, we set |jly=1. Let us
introduce an indeterminate a’ for each hi. Denote by I(H) the set of all al.
Denote by K[H] the ring of polynomials in the indeterminates in I(H). The
polynomials in the indeterminates aj, where |jlu </, form a subring K[H, I]
and K[H] is the sum of K[H, 1], I=0,1, ... . The above notations will be
used throughout the present paper and we may drop index H if no confusion
can occur. Let H' be another (F)-vector space.
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DeriniTiON L. 6. By a formal analytic mapping F of H into H', we
understand that,‘ for each integer m =1, 2, . .., and for each tndeterminate
ai in I(H'), there is assigned a polynomial Fine K[H] satisfying the following
conditions for an integer k: Fliisa homogeneous polynomial of degree m and
of weight <|ilw + km, ie. Fb is a linear combination of terms @l - - - ail", where

[ dla+ - <« +ljmlu<|élu+km. The integer b will be called a degree of F.

Thus F may be considered as a collection {Fi,} of elements in K[HJ,
satisfying the above conditions. We may use expressions such as F={F ;
atn€I(H)}, or F={F%)} to denote a formal analytic mapping of H into H'.
Let Me K[H]. For any & =b'l+b6*h+ - - -, b’ € K, in H, denote by M(¢)
the value of the polynomial M at a/=5’. Let {h), A} ...} be the ordered
set of distinguished elements in H’. What the writer has in mind, by saying
that F={F,.} is a formal analytic mapping of H into ', is the formal mapping :
) I AT

i m=

without caring whether or not the summations in the parenthesises have any
meanings. In the case K has a topological structure, we say that F is defined
at & (with respect to the topological structure), if ﬁ:l Fi. (%) converges to a
limit, say F'(£), for each 7. In this case, ZFi (s)hﬁ‘_is called the value of F
at &, and will be denoted by F(¢). F is d::ﬁned everywhere with respect to
the discrete topology of K, if, for each i, F%, is the zero polynomial for suf-
ficiently large m. In this case, F is completely determined by the mapping :
£ F(£). So there will be no confusion even if we mean by F, when Fl,=0
for sufficiently large m for each i, either the collection {Fi,} of polynomials or
the mapping: &- F(¢), according to the context. We hope that this conven-
tion does not arouse any confusion.

Let us consider the case when H is of characteristic (s, 0) and H’ of (1,
0). Then the associated system I(H) of indeterminates consists of s elements
X'=aj, ..., X°=a}, and I(H') consists of a single element. Hence a formal
analytic mapping F of H into H' is a sequence of homogeneous polynomials
Fn(XY, ...,X%), m=1,2, ..., of degree m. Conversely, it is easy to see

that any such sequence comes from a formal analytic mapping of H into H'.

In this way, F can be identified with the formal power series > Fm (X', ...,
m=1
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X?®) without the constant term.

DeriniTION L. 7. A formal analytic mapping F={Fi)} of H into H' is
called linear if Fin=0 for mZ 1.

In this case F is defined everywhere in H with respect to the discrete
topology of K and, as a mapping, is an analytic linear mapping of H into H'.
Conversely, for any analytic linear mapping F' of H into H', it is easy to see
that there is a unique linear formal analytic mapping F of H into H' such that
F, considered as a mapping, is equal to F'. In this sense, the notion of analytic
linear mappings is equal to that of linear formal analytic mappings.

Let M be an element of K[H] For any a =) a’h; in °H, where o« are
formal power series in ¢ without the constant term, jand where {hi, b2, . ..} is
the ordered set of distinguished elements, denote by M(«) the formal power
series in ¢ obtained by replacing the indeterminates a% by a’. Let F= {Fiz}
be a formal analytic mapping of H into H'. We now associate a mapping
(°F)' of °H into °(H') as follows: The value of (°F)' at a is equal to

3) 33X Fonla) b,
where {&i, hy, . ..} is the ordered set of distinguished elements in H'. By

Definition I 6., Fi(a) are divisible by #™ because «’ are divisible by ¢
Therefore the summations in the parenthesises in (3) are defined as formal
power series in ¢ without the constant terms, and so (3) represents a unique
elements in “(H’). It is not hard to see that there is a unique formal analytic
mapping °F of °H into °(H') such that °F is defined everywhere in “H with
respect to the discrete topology of K and such that °F, as a mapping, is equal
to (°F)'. According to the convention made before, (°F)’ will be also denoted
by °F. °F is called the mapping of curves in H associated with the formal
analytic mapping F. If F’ is a formal analytic mapping of H into H' such that
°F=°(F'), then it is clear that F=F'. Thus °F completely determines F.

Let H" be another (F)-vector space. Let G be a formal analytic mapping
of H' into H". We claim that there is a unique formal analytic mapping L of
H into H" such that °L, as a mapping, is eaval to the composition of the
mappings °F and °G. L may be defined by constructing formally the composi-

tion of the formal mappings (2). L will be called the composition of F and
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G, and will be denoted by GoF. In order to define L explicitly, we introduce
the following notation: Let M be a polynomial in indeterminates xi, ..., %7,
t, where 7 may be zero. M can be expressed as M = g M,t", where M, are
polynomials in %1, . ..,%. We set xx[MJ1=M, Now, L is defined by the

following formula: For each a’.- in I(H") and for each m=>1, set

(4) L =;"S‘1x£n[6’;.(...,§m]t‘fpz,...)],
n= q=1

where the formula inside [ ] means the polynomial obtained by replacing

the indeterminates a4 in G by Elt"F . Let & be a degree of G. Then L),
=

is a linear combination with coefficients in K of terms
(5) .- Fa,

where il + + - + lénlew <|jlun+k'n, 1 <n <m, and where g+ * - - + gn = m.
Then it is easy to verify that {L},} forms a formal analytic mapping of H
into H"” of degree <k+ k. We can verify by direct calculation that the
equality: °L =°G°°F holds. If F and G are defined everywhere in H and H',
respectively, with respect to the discrete topology of K, then so is GoF, and
GoF considered as a mapping is equal to the composition of the mappings £
and G.

Denote by i, and #. the canonical injection of H to the first and the second
components of H+ H, respectively. Then {éihy, éihsy « .., &shy, t2ho, .. .} IS
the complete set of distinguished elements in H+ A. Denote by a'/, a"’ the
indeterminates associated with i kj, i3k, respectively. Hence elements M of
K[H+ H] are polynomials in ...,da”7, ..., ..., a"”, .... Now we as-
sociate for any formal analytic mapping F of H into H' a formal analytic
mapping dF of H+ H into H' as follows: For each ai. in I(H') and for each

m=1, set
(6) (d[“)izz= 2 (aF;ln/a(Z;I)’(l”j

J
where ( )’ means that we substitute a'’ for @j. It is easy to see that the
collection dF ={(dF)},} forms a formal analytic mapping of H+ H into H'.
If F is defined everywhere with respective to the discrete topology of K, so is

dF. Therefore, in this case, dF is also considered as a mapping. Identifying
‘(H+ H) with “H+“H by the canonically isomorphism, we have the equality :
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‘dF =d°F. Let G be a formal analytic mapping of H' into H”. Then for any
a and B in °H,

7 [‘d(G°F)](a, p) =[°dG] (°F(a), [‘dF] («, B)).

Denote by (°dF), the mapping of °H into °(H’) defined by the formula:
(°dF ) («) =[°dF] (0, «). Then it is easily seen that (°dF), is the mapping
of curves in H associated with a formal analytic mapping (dF'), of H into H'.
Namely, (dF)o=L is the collection {L},} such that L} =Fi L}, =0 for m=2.
Thus (dF), is linear.

DeriniTION 1. 8. dF is called the differential of F. (dF ). is called the
differential of F at the origin.

3. Jacobians and differential equations

THEOREM 1. 2. Let F be a formal analytic mapping of H into itself.
Assume that (dF ), is the identity mapping of H. Then there is a unique
JSormal analytic mapping G of H into itself such that both G°F and F°G are
equal to the identity mapping of H.

Proof. For each a’<I(H), we set G} =a’€ K[H]. Assuming that

i ..., Glh,e K[H] are constructed, we set

. » . m-—1 .
G{n = "’zkfn[FJn(. “ ey E}lth;, . )]
g=

n=1
First we shall show that the collection G ={Gh; a’€I(H), m=1,2, ...}

forms a formal analytic mapping of H into itself. Since F={Fj} is a formal

analytic mapping, we remark that G’ m=>2, is a linear combination of terms:

(8) G&...Gi
where
(9) Vidu+ - - +linle <1 jlu+kn,
g+ +agn=m, 1<qg<m-—1r=1, ...,n

Hence, 7 in (9) must be=2. We proceed by induction on m. It is clear
that G, is a homogeneous polynomial of degree m. We can assume without
loss of generality that 2>0. Assuming that G is of weight <|ilz+2k(g—1)
for g<m and for any & in I(H), we claim that GJ, is of weight = N<|jh
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n

+2k(m~-1). Namely, (8) and (9) imply that N< rz_} (lérln + 2k(gr = 1))
<|jlu+kn+2km—n) = |jln+2km — kn<|jlu +2k(m — 1), because 2 <n.
Thus G is a formal analytic mapping of a degree 2k. By explicitly calculating
FoG, it is easy to see that FoG is the identity mapping. Since (dG), is the
identity mapping, there is a formal analytic mapping F' such that G°F' is the
identity mapping. Therefore °G is a bijective endomorphism of ‘H and both
‘F and “F' must be the inverse mapping of ‘G. Hence F=F'. Thus we find

that GoF is also the identity mapping.

TueoreM 1. 3. Let Y be a formal analytic mapping of H' + H into H.
Assume that °Y («, B), where a€(H') and B °H, is linear with respect to the
variable 8. Assume also that °Y (0, ) =B for any 8 in °H. Then there is a
formal analytic mapping F of H'+ H into H such that ‘Y (a, ‘F(a, B)) =
‘Fla, ‘Y (a, B)) =B for any « in ‘(H') and for any B in °H.

Proof. We claim that there is a formal analytic mapping Y* of H'+ H
into itself such that ‘(Y*) (a, 8) =(a, ‘Y (a, 8)). Namely, denote by G the
everywhere defined formal analytic mapping (£, 9) e H +H- (£, 5, 5)E H’
+ H'+ H, and by G’ the direct sum of the identity mapping of H' and Y, then
Y*=G'>G is the required one. It is easy to verify that (dY*), is the identity
mapping. By Theorem I 2, there is the inverse F* of Y*. Let F' be the
canonical projection of H'+ H to H. F' is an everywhere defined formal
analytic mapping. Then F/oF* = F is the required one.

In the finite dimensional case, the following theorem is equivalent to the
existence theorem of solutions for the system of ordinary differential equations
of the first order depending on parameters.

TueoreM 1. 4. Assume that the characteristic of K is zero. Let Y be a
formal analytic mapping of H'+ H into H'. Assume that ‘Y(a, 0) =0 for any
a in “(H'). Then there is a unique formal analytic mapping F of H' + H into
H' such that

d'F((a, 8), (0, 3)) =Y (‘Fla, B), 3,
‘Fla, 0)=a

for any « in ‘(H') and 3 in ‘H.

Proof. We naturally identify J(H) and I(H') with subsets of J(H'+ H),
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Thus, K[H], KIH1c K[H'+ H]. Now we define polynomials F ,, where
deI(H') and », w are non-negative integers such that v + w=>1, in K[H' + H]
by means of induction on m = v+ w as follows:

Fio=d, Fi,=Y, Fn,=0 for m>2,

(10) Fi ,= the coeﬁicient of u"t“’ i
:E] I’l :E] uqtrqu Py e e e 3 ey tbﬁ .. .)
n=1 a+r 1

for v+ w>2, w=>1, where a’ € I(H') and Ve I(H). Set Fi= 21._ Fi w.

Since °Y (a, 0) =0, Y%, are in the ideal generated by I(H). In particular, Y}
depend only in the indeterminates in I(H), since it is linear. Therefore we

may replace 2 in (10) by 2 without affecting the results. Then the similar
arguments as in the proof of Theorem I. 2, imply that the collection F ={F}
is a formal analytic mapping of H’+H into H. Because Y% are in the ideal

generated by I(H), we can replace E in (10) by E Then it is easy to
gqtr=1 gtr=1
verify that F is the required and unique one.

Similarly, we have the following.

THEOREM L. 5. Under the same assumption as in Theorem 1. 4, there is a

unique formal analytic mapping F of H into H' such that

d°F(B, B) =°Y (°F(B), B)
for any B in °H.

Assume that the characteristic of K is zero. Let F={Fi} be a formal
analytic mapping of H into H'. For any % in K and a, B in °H, ‘F(a + #B)
= $ (...2 Fin(a+ u3))hi, where {hi, i}, . ..} is the ordered set of distinguished
elements of H'. Then Fin(a+ uB) = Fi(a)+u-Foy (a, B)+ - 4 U Fin,r(a,
B+ - +u"Finm(B). We set 0/ou °Fla + ufl) = 2(,"2}1('211;' "Fin, r (a,
£)))ki. By definition, (3/0% ‘F (& + uB))u-0 = “dF(a, B) = d°F(a, B). The usual
rules of partial derivatives hold for this operator o/ou. For instance, if H
=Hi+ H, and a = (a1, az), B = (B, B:), then (0/ou °F(ai+ ud, az+ uBe))u-v
= (0/ou °F(ar+ uB, az+ vB:))u=v+ (3/0u Flar+ vB, az+ uB:))u-p. If Frn=
G+ L, where G={Gi} and L= {L}} are supposed to be formal analytic
mappings, then 9/0u °F(a +uB3) =9/ou ‘G(a + uB) +0/ou ‘L(a +uB). If 5/ou
‘Fla+u3) =0 for any % in K, then ‘F(a+uB) = ‘F(a) for any # in K. In
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particular, if o/ox “F(ua) =0 then ‘F(a) =0.

Lemma 1. 1. Assume that the characteristic of K is zero. Take (F)-vector
spaces Hy, H,, and H.. Denote by F', G' formal analytic mappings of H,+ H;
into H,, Let Y be a formal analvtic mapping of H;+ Hi+ H,+ H, into H,.
Fix elements « and B in ‘H, and in °H,, respectively. Assume that we have
equalities: 0/ou ‘F'(a, uB) = ‘Y (°F'(a, uB), «, uB, B) and 5/ou °G'(a, uB)
=°Y (°G'(a, uB), a, uB, B). If, moreover, “F'(a, 0) =°G'(a, 0), then ‘F'(«, uf)
=°G'(a, uB) for any uc K.

Proof. As we can see easily by the arguments at the beginning of the
preceding paragraph, ‘F’'(a, uB) =§ u' F](a, B), where Fi(a, 8) = °F'(a, 0)
and F}(a, B) are divisible by #, # being the parameter of curves in Hi+ H..
By the definition, 3/o# “F'(a, uB) = li}lu"‘ Fi(a, ). Then the equality:
o/ou °F'(a, uB) =Y (°F'(a, u3), a, uS,ﬂ[l?) implies that Fj(a, 3) is determined
inductively, starting from Fq(a, 8), by the formulas entirely determined by Y,
«, and by 3. Therefore, ‘F'(«, #8) =°G’(«, uB) for any ucK.

By the similar argument, we prove the following:

Lemma 1. 2. Hy, H,, H,, F' and G' being as in Lemma I. 7, denote by Z
a formal analytic mapping of Hy+ H,+ H; into Hs. Fix a<°H, and (€ H..
Assume that we have the equalities: u 9/ou ‘F'(«, u3) +da'F'(a, ul)="Z(°F'
(a, uB), «, uB) and u 3/ou ‘G'(a, uB) + a°G'(a, u3) = ‘Z(°G' (a, uB), a, uB)
Jor a strictly positive integer a. Assume further that there is a formal
analvtic mapping Z' of H:+ H,+ H.+ Hs into Hs such that ‘Z(3, a, uB) =u
Z'(5, a, uB, B) for any 6 in ‘Hs. If, moreover, ‘F'(a, 0) =°G'(a, 0), then
‘Fi(a, u3) =°G'(a, uB) for any u in K.

Let Y be a formal analytic mapping of H'+ H-+ H into H'. Then it is
easy to see that there are formal analytic mappings W and X of H'+ H+ H
+ H and of H'+ H'+ H+ H into H' respectively, such that

‘Wla, 8, 1, ) =[0/0u(°Y («, 3+ 2r, 6))u=0,
Xa, a', 8, 1) =[0/0u(‘Y(a+ua', B, 1))Ji=0

for any «, «' in “(H") and 8, 7, 6 in ‘4.  Under these notations we have the
following :
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TuroreMm 1. 6. Assume that we have the following equality :

(]1) CW(“, B, 7 8)+CX(Q’ :Y(d, B’ T): B’ 6)
=‘Wla, B, 6, 1)+ X(a, °Y(a, B, &), B, 1),
(a€(H"), B, v, 8€°H).

Suppose that °Y (a, B, v) #s linear with respect to the variable y. Assume also
that the characteristic of K is zero. Then there is a unique formal analytic
mapping F of H' + H into H' such that

d°F((a, B), (0, 1)) =°Y(°F(a, B), B, 7)
‘Fla, 0) = a.

Proof. By Theorem 1. 4 there is a formal analytic mapping F of H' + H
into H' such that d°F((a, B), (0, B)) =°Y(°F(a, B), B, 8) and such that °F(a,
0) =a. We will show that F is the required one. Differentiating the equality:
d°F((a, B+ur), (0, B+uy))=°Y(°F(a, B+ ur), 8+ur, B+ur) with respect
to #, we find that

d°F((a, B), (0, 1)) —°Y(°F(a, B), B, 1)
(12) = —[3/ou(d°F((a, B+ ur), (0, B)))Ju=0+ W(F(a, B), B, 1, B)
+°X(°F(a, B), d°F((a, B), (0, 7)), B, B).

Set Hi=H'+ H, H,=H, and H; = H'. Denote by F’' the formal analytic
mapping of H,+ H. into H; such that °F'(a, 7, 8) =d°F((a, B), (0, 1)) = Y(°F
(a, B), B, 1) for any (a, 7) in °H, and B in °H.. Substittlting ‘W(°F(a, B),
B, 7, B) in (12) by a sum obtained by (11), we find by the definition of F that

d°F'((a, 7, B), (0, 0, B)) +°F'(a, 7, B)

=‘X(°F(a, B), °F'(a, 1, B), B, B).
Hence,

u 3/ou °F' (a, 7, uB))+ F'((a, 1, #B)) =Z(°F'(a, 7, uB), «, 7, uB),

where Z is the formal analytic mapping of H;-+ H;+ H, into H; such that °Z(g,
a, v, B)=“XCF(a, B), 4, B, B). Since °Y(a, B, 7v) is linear with respect to 7,
so is ‘X(a, a', B, v). Hence there is Z’ such as in the assumption in Lemma
1. 2. Since d ‘F((a, #B3), (0, 8)) =Y (°F(a, uB3), uB, 8) =0, it follows that
‘F'la, 1, 0)) =0. On the other hand, denoting by G’ the zero mapping of
H,+ H. into H,, we find that u 9/ou ‘G'((a, 7, #®) + G' ((a, 7, #B)) = “Z(G’
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(«, v, uB), «, v, uB). Therefore, by Lemma 1. 2, we see that °F'(a, 7, B)
=0, i.e. dF((a, §), (0, 1))=Y (°F(a, 3), B, 7).

4. Germs of analytic mappings

Throughout this section except in the last part we assume that K is the
field of complex numbers with the topology of the euclidean distance. A formal
power series is called convergent if its radius of convergence is strictly
positive. Denote by ., the vector space of convergent power series in x,

., %p. % p is considered as a subspace of Hy. We set .« =K. Let
% be the direct sum of s copies of .&’p. For a system of characters S= (s,

., sph spx0, (cf. Def. I. 2), set Z(S) =5+ -+ +&F. For each 2
=s+1, ..., So+s+ - -sp, the A-th component & of £ in H(S) is a con-
vergent power series in %y, ..., %p0). If $>0, for A=1, ... ,5s, & isin K
and we set p(1)=0. For any strictly positive numbers # and », denote by
&(S; u, v) the set of all elements £ in _%'(S) such that, for a sufficiently

small ¢>0 and for each 4, (i) the radius of convergence of &, =>#+¢ and (ii)

18 (%, . .., %poy) | <v—c for any |%-|<u. Of course, ¢ depends on £&. When
Sy = (8), ie. sy="+"=sp-1=0 and sp=s, we set S 3(u, v)=_L(S; u,

v). Let C(a) be the disk in the complex plane of radius ¢ with the origin as
its center. A mapping f of C(a) into & (S; u, v) is said to be a regular
curve in & (S; u, v), if, for each A=1,2, ..., s +8s+ * -+ +5;5, the function
B(x, o .o, Zpons ) =LA (%1, . . ., #0,) is holomorphic for | x| <w, |t|<a.

DeriniTION 1. 9. A mapping % of (S; u, v) into L (S; o, V') is
called regular if % (0)=0 and if for any regular curve f in < (S; u, v),
& of is again a regular curve in Z(S'; u', v').

ProrosiTioN 1. 5. Let % be a regular mapping of S (S; wu, v) into
(S ', V). Then for anv <> 0 and ¢ <1, the image of 5 (S; u, cv) is in
(S W, c(v' +¢)).

Proof. Take £ in 4 (S; u, v). For any fixed x = (%1, . . ., %), |27
<u!, f(z) =[F(2%)],(x) is holomorphic for |z|<1, because z—z£ is a regular
curve. And |f(2){ <y for jz|<1 and f(0)=0. Hence by a theorem in the
theory of complex functions, | f(2)| <c¢v' for 2] <c<1,
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For any ¢ in .&(S; u, v), set
[lu=sup {|5x(X)]; lx-1<w, r<pR), A=1, ..., 80+ - +5p}

ProrosiTioN 1. 6. Let % be a regular mapping of ' (S; wu, v) into
(S w, v'). Then, if & 7 are in JZ/(S; u, —Z—),

/
IF(&)—F(ﬂ)lu'S4%!E—ﬂlu

-1
Proof. Set {=£&—7%. Then ¢é—-20e€ L (S; u, v) for |z| <R=0'(§‘|C‘u) .
Hence, if | x| <#', then [F (£ — 20)],(x) = f(2) is holomorphic for |z| <R, [f(2)]

<", and f(0) = F(£),(x). Since CE(;V(S; u, %), 1<R. Therefore |f(1)

~7 @1 <42 [¢l.

We remark that £ (S; «", v'") < Z(S; u, v) N L(S; o, v') for u'>u,
u', and for v'' <wv, /. Let .4, be a regular mapping of . (S; #,, v,) into
(S5 u;, vy) S (S, (r=1,2). We say that .4, and .Z are equivalent
if there are > u;, #,» and v <wv,, v: such that the restrictions of .#; and ¥4,

to Z(S; u, v) are equal. Clearly this is an equivalence relation.

DerinitiON 1. 10.  An equivalence class of regular mappings under the

above relation is called a germ of regular mappings of S (S) into ' (S').

ProrosiTioN 1. 7. Let %1 and ¥ . be regular mappings of < (S; u, v)
into (S, w', v'). If %, and ¥ » are equivalent, then % 1= ¥ s.

Proof. Assume that .%; and .4 coincide on &' (S; »* v*), where #*>u
and v*<v. Take £ in .Z(S; u, v). Then there is ¢>0 such that the radius
of convergence of £,>(1+2¢)u and (1+2¢)|£]|.<v. Let f(2) be the mapping
of C(1+¢) in 7 (S) defined by the formula: [/ (2)]1(x1, ..., 2s0) = 2° &
(2x), . . ., 2%p0y).  f(2) is a regular curve in .Z(S; u, v) and f(z) is in
Z(S; u*, v*) for z sufficiently near the origin, say, |z/<8. Then .#:(f(2))
=.%(f(2)) for |z|<é8. Hence by the theorem of coincidence .%1(f(1)) =.%»
(f(1)), ie. F1(5) =F2(8).

Let F be a germ of regular mappings of .Z'(S) into .2'(S'). We say
that F is defined at ¢ in ./ '(S) if there is a representative .4 of the class F
which is a regular mapping of _%(S; u, v) containing &; % ({) is called the
value of F at £ and will be denoted by F(£). By Proposition I. 7 the value

https://doi.org/10.1017/5S0027763000006747 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006747

CONTINUOUS INFINITE PSEUDO-GROUPS 243

of F at ¢ is independent of the choice of .%°(S; u, v) as above. Denote by
Z(F) the set of all £ at which F is defined. Then F can be regarded as a
mapping of .Z(F) into .2 (S").

Let F and G be germs of regular mappings of ."(S) into .’(S') and of
(8" into &°(S"), respecrively. If there is a representative .4 of F which
maps ¢ (S; u, v) into o« (S'; ', v') and if there is a representative ¥ of
G which maps & (S'; #«', ¢') into _°(S"; u", v"), then we say that the
composition of F and G is defined. It is clear that & o % is a regular
mapping of (S; wu, v) into .s(S"; u", v"); the germ which contains
& o4 is called the composition of F and G and will be denoted by GoF. It
is easy to verify that, if GoF can be defined, GoF does not depend on the
choice of .4 and ¥ such as above.

DermniTion 1. 11. A germ F of regular mappings of - (S) into ' (S')
is called a germ of analytic mappings of (S) into Z(S"), if there are
strictly positive numbers u™, v, v', w, and an integer k such that for any u<u*
there is a representative %, of ¥ which is a regular mapping of .2 (S; u, #*v)
into 2 (S'; wu, v'). The integer k is called a degree of F.

Remark: When the degrees of .¢(S) and .&(S') are zero, i.e. when
~7(8S) and .Z(S’') are finite dimensional, . (S; wu, v) and .&(S; «', v') are
domains in Z(S) and Z'(S'), respectively, and regular mappings in our
sense coincide with the usual regular mappings. In this case, any germ of
regular mappings is a germ of analytic mappings and our definition coincides

with the classical definition of germs of analytic mappings.

Prorosition 1. 8. Let F and G be germs of analytic mappings of & (S)
into .5/ (S') and of /(S into .5 (S"), respectively. Then the composition
of F and G are always defined, and is a germ of analyvtic mappings of 7 '(S)
into 7 (S").

Proof. Keep the notations in Definition I 11. Let #f, v, v}, wi, and &
be constants for G such as in Definition I. 11. If w satisfies the conditions,
then any w' < w satisfies the same conditions. Similary we can replace k& by
any ' =k So we can assume that k>0 and (z"w)" v, (20')71<1. Set v,

=w"p0(20)°. Then by Proposition I. 5 there is a representative .% ; of F

https://doi.org/10.1017/50027763000006747 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006747

244 MASATAKE KURANISHI

which is a regular mapping of < (S; u, #***v:) into X (S'; wu, (wu)*1v,)

Y.uf), the composition of .47} and

for u<u® Hence, if #<wu’ =Min (s* w”
& wu maps H(S; u, u***v:) into H(S"; wwiu, v)).

A regular mapping .4 of Z(S; wu, v) into _Z(S'; ', v') is said to be
linear when the following condition is satisfied: If & % and «f+ By are in
2 (S; u, v), where a, 8 are complex numbers, then % (af+ B7) =a.% (&) +
B-Z (). Set Z(S; u)=U{Z(S; u, v); v>0). Z(S; u) is a vector
space. For any 2€.2°(S; u) and « such that |a|<|&|z' v, a™'+ % (af) does
not depend on the choice of such . Set %'(¢) =a™'+ % (at). Then &'=.4
on .4 (S; u, v) and .4 is a linear transformation of .Z(S; ) into ¥ (S';
«'). Moreover, for any v, %' |H(S; u. v) is a regular mapping. Thus, in
this case, the germ represented by .4 is defined on .&(S; #). A germ F of
regular mappings is said to be linear if it has a representative which is a
linear regular mapping. Then the similar argument as in the proof of
Proposition I. 7 shows that any representative of F is linear. Assume further
that F is analytic. For any ¢ in .&'(S), £ (S; «) for sufficiently small .
Since F has a representative defined on .«(S; u, ») for sufficiently small «
and »;, the above remarks show that F is defined at any £ in .&(S) and is,
as a mapping, a linear transformation of .&«(S) into .&°(S'). Thus

ProrosiTiON 1. 9. Let F be a germ of analytic mappings of % (S) into
s(S"). If F is linear, F is defined everywhere and, as a mapping, is a linear

transformation.

Set 2S = (258, ...,2s5). Then we can identify .&(S)+.2(S) and
7S5 u, v)+ (S5 u, v) with £(2S) and £ (2S; u, v), respectively, in
the obvious way. So we can speak of regular mappings of ' (S; u, v) + .«
(S; wu, v), etc. Keep the notations in Definition I. 11. For any ¢ and 7 in
(S5 u, 27k 0), set £ = (2/0z Fulf+29))z-0. By the definition of & (S: u,
v), there is u:, u<wu <u™, such that £ and 7 are in 7 (S; wu, 2 'u*v). Hence
G u(t+2zp) is in (S wuy, v') for [2]<1. Hence by Cauchy’s integral
formula ¢ is in . (S'; wu, v'). Thus d-F.: (&, 9)—>% is a regular mdpping
of (S; u 27w ) + _Z(S; u, 27 u ) into 2 (S'; wu, v'). It is clear
that, d 47, and d.% . are equivalent. Hence d.% . defines a unique germ of

analytic mappings dF of .#(S)+.7(S) into . (S". dF is called the
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differential of F. For any 7 in Z(S; %, 27'u*v), set (d-Fu)o = dFu(0, 7).
Then (d-%u)o represents a germ of analytic mappings (dF), of (S) into
& (S'). (d F), is called the differential of F at the origin and is linear. If
G is a germ of analytic mappings of _Z'(S') into .£'(S"), we have the

formula :

(13) (d(GoF))o=(dG)o° (dF)o

TueoreMm I. 7. Let F be a germ of analytic mappings of < (S) into
& (S'). Assume that there is a representative of ¥ which is a regular mapping
of (S; u, u*v) into S (S'; wu, v') for each u<u*. Then there is a unique
formal analytic mapping F of H(S) into H(S') such that, for any u<u*, F is
defined on ' (S; u, u*v) with respect to the topology of the euclidean distance
and F(£) =F(8) for any & in S (S; u, uv).

Proof. Let {hi, hs, ...} be the ordered set of distinguished elements in
H(S). Components of J; are zero except one component, say A(Z)-th, which is
a monomial x; * - - x;, in %, . . ., ¥pin, where I=|¢|ns. For any £ in H(S),
denote by a'(¢) the coefficient of x;, - - - x; in the A(i)-th component of .
Similarly, letting {h{, k3, . . .} be the ordered set of distinguished elements in
H(S'), b} has components zero except one, say o(j)-th, which is a monomial
Xjyt* Xju AN X1, . . ., Xpiojn Where = jiusy. Now, let YH(S) be the set of
all elements ¢ in H(S) such that each component of £ is a polynomial of
degree <N. Then there are convergent power series “F7"7/* in indeterminates
a';nm for ¢ )< N such that

Fo(8)= 33 YF (..., d(8), .. )% %,

J1reran

for any #<#" and any £ H(S)N 2 (S; u, u*v). Let “FJ, be the homogene-
ous part of degree m in “F’ = YFi;;7" and set “F},(£) = "Fi,(...,d'(2), ...),

i.e. the value of “FJ, at aiys =a'(£). Then, for a constant vs, m

> o"

(14) ‘VF';n(f) = Up, m(aij vt axj az,'n Fo(j)(zs))

xX=2=0

for £ in YH(S)N_&(S; w, u*v). By Cauchy’s integral formula, the mapping
> ... @2 "
oX;, oxj, oz™
& procin (wW'u, w"v") for u<wu*, where w' and o" are constants, and it is

%)

G f—>2)n,m< an(z;‘)> maps < (S; wu, #v) into

z2=0
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regular when restricted to each .(S; %, #*v). By (14), "Fj,(¢) is the value
of Fj,(£) at the origin.

As remarked before, we can assume that £>0. We shall show that, for
N'>N=>n+km, “Fj,="VFJ, ie. they are the same homogeneous polynomial
of degree m. Take ¢ and 7 in YH(S) and ¥ H(S), respectively. Assume that
@ () =0 for |ilas <N, and that £€ .2 (S; u 4 '4*v) for a real number
u<u*. Assume further that the coefficients of components of 7 are so small
that y € & (S; #', 47" (')« ) for any #'<u. This is possible, because
a'(9) =0 for |ilms, < N. Since 22 € "H(S)NH(S; o', 47 («')*v) for | 2| < (w'/u),
applying Proposition 1. 6 for %%, we find that | F (28 +7) — F (28w w
<(u')F "o 49" |ylu for |21 < (u'/u)*. Hence by the choice of y we have, for
a constant v,

(15) | Y Fiy (28 +7) = “Fi(z8) | < ¥ 175y,

for any |z|< (#'/u)*. Since P(z) =¥ Fiy(25 +1) — “Fia(2£) is a polynomial in z
of degree <m—1, if it is not zero, then P(z)=2'Q(z), where 0<I<m—1,
Q(0) 0. Then by (15) we find that k/I=N+1~k—n>k(m—1)+1). Since
k>0 and m—-1=1=0, it is a contradiction. Hence P(z) is a zero polynomial,
and so YFj,="F}, for NN>N>n+km. Now, we set Fi="Fj, N>n+km.
For any ¢ in H(S), denote by % the element in YH(S) such that a'(*¢) = 4'(#)
for |ilms)<N. Then there is a constant 2, < —Z— such that ¥¢ are in &(S;
u, 4 uFv) for £ in (S; 2u, (2u)*v:). Applying Proposition I. 6, we find
that é Fi(8) converges to F/(£) = F{;‘('j,'j"(é) for £ € H(S; u, «*v,), where

m=1

u<2"'u* and that Fs(&) =, 2 FirIn(g)xj - - -x;,. Thus the only thing left to
prove is the fact that {F{n}l f;;ms a formal analytic mapping. By definition
Fl is a homogeneous polynomial of degree m. Take £ in "H(S). If there is
u<u* such that 1a'(8)]| =4""'vs;, for a sufficiently small constant u;, where
I=ilus), then € (S 27w, 27%u"v), and so |YFR(&)|<|.F5(8) ot <t
(2"v"), where n=|jlus,. Since *Fj, is a homogeneous polynomial of degree
m, the above inequality implies that |YFi(&)|<u*™ "y for lai(jE Yi<u,
where " is a constant. This shows that F), is of weight < |jlms)+km. Thus
the theorem is proved.

The above F will be called the formalization of F. If a formal analytic
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mapping F is a formalization of a germ of analytic mappings, we shall say
that F is convergent.

ProrosiTioN 1. 10. Assume that the characteristics of H(S) and of H(S')
are equal. Then there are everywhere defined germs of linear analytic mappings
F and G of < (S) and & (S') into (S and L (S), respectively, such that
FoG and G°F are indentity mappings.

Proof. (1°) First we prove the case when s, =s,+S8r41+ * * * + 8, (=0,
1,...,p), where S=(so, S1, . . ., 8p), S'=(s}, S0 . . . ,Sp). & in Z'(S) has s,
components which are functions of %, . . . , x,; we denote these by &I, . . ., &5,

Similar notations will be used for elements in .Z(S'). We define a linear
mapping F of _/(S) into -&'(S') by the formula: For & € . &(S),

F(8)%+.. +sg1r0 =£3(0) (g=0,...,p—1; 1<a<s,if s,%0),
o

F(E)§r+.A.+5q_x+o = %, 53
(r=1,...,0; gq=7...,0—-1; 1<0<sqif s4%0).
Of course s+ - * * + s4-1+ 0 means ¢ when g=7. We define a linear mapping

G of ' (S') into Z'(S) by the formula: For y < (S,
Xy X, Xy
G(ﬂ)g:ﬂgw--wsr_,m‘f'j‘o ﬂ;,+-~+3r—1+odx1+ “0 77.25‘2+~-~+sr_1+udx2 + -+ \ N dXr.

Then it is not hard to check that they represent germs of analytic mappings
and FoG, GeF are identity mappings.

(2°) General case: We write (S) = .%(S') when F and G such as in
Proposition I. 10 exist. It is sufficient to show that .Z(S)=.«®. By (1°),

we can assume that so=x0, s;%0, ..., spx0. Therefore it is sufficient to
prove the following statement: If s,>0, s,+:>0, . ..,s,>0, p>7, then .« (0,
e e e 0, 8 Srety e, )= L0, ... ,0,8-—1, Sr41, . . ., Sp). In fact, making
use of (1°) twice, 270, . .., 0, Sr, Srvt, o . o> Sp) TS0, . .. ,0, 5, =1, Sr4y,
Sy 0, 0,8 =1, Seey e ey Sp) A+ (o L+
SR, 0,0, 5r=1, spr—1, oo, 8p) T (L o+ ) (O,
e 0,8, =1 sr =1, L) = (0, .., 0, 5r— 1, Sier, o e ,Sp)e

Let .2 "(S), H(S) be the set of elements £ in .&(S), H(S) such that
components of & are power series with real coefficients respectively. Set
SS; u ) =" (S) N (S; w, v). A mapping ¥ of L F(S; u, v)
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into *(S'; u', v') is called regular, if there is a regular mapping .4 ¢ of
(S; u, v) into &(S'; o', v') such that & is the restriction of ¢ to
S*(S; u, v). By the theorem of coincidence, it is clear that such .%% is
unique. By the similar procedure as above, we define germs of analytic
mappings of s&*(S) into .&™*(S'). They can be regarded as germs of analytic
mappings of & (S) into .&'(S'), representatives of which map intersections
with <*(S) into &*(S'). The formalizations of germs of analytic mappings
of *(S) into (') are formal analytic mappings of H"(S) into H'(S').

Remark. Theorems in §3 do not hold for convergent formal analytic
mappings. For instance, for a fixed real number R>1, let F be a germ of

analytic mappings of &, into itself defined by the formula:
[F(&)](2) = &(2) + (Rz) « £(2) « £&(R2).

Then (dF), is the identity mapping. By Theorem I. 2, there is the inverse
formal analytic mapping G of the formalization of F. However, G is unot

convergent.

5. Examples

xf‘
(A) We can consider So and 9/9x, as germs of analytic mappings. They

are linear and everywhere defined.

(B) Let Ax(y1, . - ., ¥s, Zpe1, - - - 4 Xp11)y, A=1, .. ., §', be analytic functions
defined for lys! <o, |%p+ul<u®, (6=1,...,s; #=1,...,0). Assume that
Ax(0, . .. ,0) =0 and that | Ax(y, )| <¢' in the above domain. Then we have
a mapping & of & 3(u, v) into L5, (w, v') for u<u® defined by the
formula: [ZE)N(x, ..., %p00) = An(Eal®, ooty %)y ooy Es2r, oo, %),
%p+1, - - - » %), Clearly they are representatives of a germ of analytic mappings

of &} into JV;'H.

(C) By a homeomorphism element in p-dimensional complex euclidean
space C? at the origin, we mean a homeomorphic analytic mapping of a domain
containing the origin onto a domain in C?. By identifying two homeomorphism
elements at the origin which coincide on a neighborhood of the origin, we
define germs of homemorphism elements of C? at the origin. Denote by C?(x)
the domain: |x|<u, (r=1,...,). For any Z in H5(u, 27'u), let f* be the

mapping: f7(xy, ..., %) =% + & (%, ..., xp) of CP’(u) into C?, f° maps
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C?(u) into C?(2 %), and C? (2 %) into C?(#). Hence if 7 is another element
in .5 (u, 27" u), then the composition f7of* is defined on C?(27'%) and its
image is in C?(2x). Therefore there is a unique element y in .Z5(27"u, 3 %)
such that the germ of f at the origin is equal to that of f"of*. Putting ,
= M 4(n, £), we have a mapping A of % (u, 27 u)+ &% (u, 27 u) into
5(27 u, 3u). One finds easily that the r-th component of #,(%, ) is
(%) + & (% +91(x), . . ., %p+7s(%x)), where x= (%, . . ., x5). Clearly £, are
representatives of a germ of analytic mappings of &%+ &% into <5, which
may be called the multiplication in the general infinite pseudo-group of
p-dimensional homeomorphism elements at the origin. -# . map the intersections
with &5 + 3 into 23", so they also represent a germ of real analytic
mappings.

(D) If 2 is in &%(2u, 6u’), where u<1, 6 <477, then [fi(x)|>u -47"'u
=47'8u for |%|=u and |f7(0)1<4™ 4w Hence the image of C?(u) by f°
contains C?(2™'«). Moreover for x in C?(wu), |2f5/o%|=1-6 and |of}/o%s|
<9, (r=xs). Therefore there is ¢>0, independent of <1, such that the
inverse (f%)7! is defined on C?(2™' ) and maps it into C’(#). Thus there is
a unique 7 in 25 (27 u, 2%) such that the germ of /" at the origin is equal
to that of (%)™, Putting 7 =.%4(2), we define a mapping ..« 5(u, 8u4°) into
82w, 2u) for u<1. It is clear that .4, are representatives of a germ
of analytic mappings of %% into ¢4, .4, preserve .4}, so they are also
representatives of a germ of real analytic mappings. The germ may be
called the inverse operation in the infinite pseudo-group of p-dimensional homeo-
morphism elements at the origin.

(E) Let A,, A=1, ...,s, be analytic functions in variables i, . . ., % -1,
Y, +..,¥s, and ¥, where n=1,...,sand r=1,...,p. Assume that A,
are defined when the absolute values of each variables are less than, say, a.

Now we consider a system of partial differential equations:

oY )
ox, """

(A=1,...,s).

\ Y.,
(O] a‘xf;l -——Ax(x],...,xprl,yl,...,ys,...,

Let ¢ be in &’} and assume that |2, (0) |, [(32,/9%,)x-0]/ <a. An element 7 in

& p.1 is called a solution of () with the initial condition 2, if v =7, is a
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solution of (X)) and if 7{x, ..., %p, 0) = &Exlxy, . .., Xp). The classical

theorem of Cauchy-Kowalewski can be sharpened to the following:

TreoreM L. 8. Assume that each A, is zero when all the variables, except
X1, - . ., %p+1, are zevo. Then there is a unique germ of analytic mappings F
of &5 into 51 with the following properties: If % : &5 (u, v) > & p1
(o', V') is a representative of ¥ and if v, u ' v<a, then for any & in S 3 (u, v)

#(8) is the unique solution of (I) with the intial condition' &.

Proof. By the classical theorem, there are positive real numbers u, vy,
ui, v5, (w, ui'v:<a), and a regular mapping ¥ of &} (w1, v1) into & 5.1 (ui,
v1) such that, for any ¢ in ¢} (w, v1), .%'(§) is the unique solution of (X)

with the initial condition &. Let .4 be a regular mapping of &} (%, ») into

! and assume that v, » 'v<a. Then by the

S 341 (o', V') equivalent to &
similar method as in the proof of Proposition I. 7 we see that .%(£) is a
solution of (%) with the initial condition £, and the classical theorem assures
us that .# (£) is the unique one. It remains to show that .4 ' is a represen-
tative of a germ of analytic mappings. We divide the proof in several steps.

(I) The case when Ay =By(%y, . . . ,%p+1, Vi» « « - 5 3s) +ErB§r(xl, e X
M, ...,%)¥. We use the same notations introduced inu,the beginning part
of the proof of Theorem I. 7, except we will write u(¢) instead of A(7), and
| s, » instead of | |[as,.

(I. i) For # in Hj and for 7 such that lils, ,> 0, denote by o;5 the partial
derivative 9'2,)/0%:, - - +0x%;,. For m=0,1, ... let B* be a collection consisting
of analytic functions A, ., AY%? in the variables x= (%1, . .., %), ¥ = (3,

.,%s) defined in a common domain containing the origin and independent
of n, where hiuy, ..., hig run through distinguished elements of A} such
that 15(#)]s,,>0 and [i(D s+ -+ i@ lsp<n g=1,...,n In what
follows, we regard A, . as the case q=0 of Ay 9. So B" consists of
A the case ¢ =0 included. Now we will show that we can choose B”

with the following properties: For any £ in &} such that |£,(0)] <a, if
7= Ta(3) = 23 (3D AN U, 2(x)) @ind) + + - (Bigd)) %1
n=0

are convergent then %= (3, ...,7s) is the unique solution of () with the

initial condition £, and vice versa. In the above expression, the termes g =0
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mean A, »(x, 5(x)). We define B” by induction on #n. B° consists of A,,,
=y,. We assume that B° ..., B"" are already defined. Then we can find
A1 by formally differentiating the equation () with respect to xps1 7 — 1
times and by remarking that we are considering the special case mentioned
above.

(L. ii) Assume that the members of B" are defined for |%,| <., |y.!<ue.
Then there exist positive real numbers us; < #, and v; such that, for |z, |y,|
<us,

]Aix(l;{”i(q)(x: y)l < (ua)_n—q(113)’“”'“““')“,
where I(¢) = |i($) s, 5.

Proof. Let &%, uy, v, w, v, be such as stated in the beginning of the
proof of our Theorem. We can assume that v;, # <. and that 2] <u%,. Then
if &is in 3 (m, v1), Ta(8) = F (&) € & pi(m, v1), and so

(16) |24 (%, 2(x)) (Biy8) -+ + (Big £) ] < () "0

for |x,| <u.. Take a sufficiently large real number b such that »? <4(b ~1)2,
Then, for any |x7!1 <, |¥3] <4 ‘o, and |»7<(2ub) ™ 47 v, where I =1ils, 5,
there is & in Hj(w:, v1) such that £.(x°) =3° and [0:£](x°) =y7. Therefore,
by (16), if |%,] < and |y,| < Min (47'v;, %) then

LA 1D (g, 9) | < ()T (47 ) T2 0 b) T @

Hence it is sufficient to put u#s = Min (47 'y, ui, 1) and vs=Max (v}, 2 2,5, 1).

(1. iii) Introduce an indeterminate Y; for each distinguished element #;
such that |#ls,,>0. Set fu(Y) =21Yiq - - * Yip where the summation is with
respect to all Yiq,: - Yig, (¢=1,2, .. .), such that |i(D)]s ,+ e +14(@)ls, p
=n. Denote by f» the value of fw(Y) when Y:=27), I=lils,,. We set fo=1.
Then f™ =fo+fi+ + + +fa <2207,

Proof. Set gn(Y)=1Y;, where the summation is with respect to all

lilgp=n Set g(Y)=14+g(Y)+ -+ +g,{Y)+---. Then g(Y)" =2>]
N . . qﬁn
aV 'Y Yy - - Yig, where @V "9 >0, Therefore, when we denote by %"(¢)

the formal power series in ¢ obtaind by putting Y;i = (£/2)), I=1ils. 4, in fa(Y),
we see that the coefficient of ¢” in A"(¢) is less than that in (1 - (£/2)) %",

Because f» is equal to the coefficient of #* in h"(¢), it follows that f, < 2%”"
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(L iv) By the choice made in (ii), #3<1 and »;>1. Take ¢ in &} (u,
v), (w, v<u;). Since |2:2] < (u/2) v for |x | <(u/2), using (ii), we find that,
for | x| < (u/2).

]EAIA(,Dnm"q) (%, &(x)) @iy 8)- - - (ai(q)f)l
< u;nva(z u;qv§(1)+~-+l(q) (u/z)-(l(1)+...+l(q))vq)
< (v:;l . u§)'”va (E (ul/4)—(l(1)+...+l(q))2—(l(1)+‘..+I<q)))

< ((40)7 s (ba)) " oaf " < (wu) "'

where w = (22*%p;) "9} and o' =2%p;.  Therefore Th(£) € & pri(w'u, 20'), w'
= (w/2). This means that for », v<us ¥ : &3 (u, v) D& (Ti(2), ..., Ts(f))
€ & 31 (w'n, 20') is a regular mapping equivalent to .4”. Thus our Theorem
is proved in our special case.

(II) The general case. A. being given, consider the following system of
partial differential equations :

-aiy-}‘— =Axlxy, ... s Xp+1s Y1y o« o o 3 Vsy o o s ,yﬁ, o),
(5 o
9y%  _ DAi N 0An S EH DA oy
O%ps1 O +u§ Yy yu+u.=1 a1 9y 9%
where y1, . .., ¥s, . .., ¥, . ..are unknown functions. Since partial derivatives

of unknown functions appear only linearly in (3'), we know by (I) that there
is a germ F; of analytic mappings of .« ’** into . 3%%° such that representa-
tives of F, give the solutions with initial conditions. Denote by Fo, F. the
germs of everywhere defined analytic mappings: & 33¢ - (¢, ..., 3./o%,
e, D ey e ) oy s € S,
respectively. Now, let .% ' be the regular mapping of . }(a, v1) into % 34
(#', »') such as in the beginning of our proof. Then, because of the uniqueness
of solutions of (') under initial conditions, .% ' is a representative of the germ
F.oFoFy,. This finishes the proof of Theorem I. 8.

(F) Let B,, A=1, . ..,s, be analytic functions in variables xi, . . ., %+,
My oo e sy e v s Yoy o oey 2, .., 2, Where #=1,...,s and r=1,..., p.
Assume that B, are defined when the absolute values of all the variables are
less than a. Assume also that the values of B, are zero when all variables,
except xi, . . ., %1, are zero. Now, for any ¢ in < },, such that |£,(0)|<a

for ¢ =1, ...,s consider the following system of partial differential equations:,
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2o

357\ , Ay
(EE) D}t/)+1 ;B;A\(xl, e e Xp-1y Vs o v e s VE e e ey ax:~, .« e ey
51(961, e e ey xprl)’ .. ,’33'(x1; - ,x/)—x))

Tueorem L. 9. There is a unique germ F of analytic mappings of &%
+ Y into 5., with the following properties: For any regular mapping
Foof L y(u, )+ S hew, v) into Ly u, v'), representing ¥, and such
that v, u'v<a, :f%(;‘, L) is the unique solution of (Z;) with the initial condition
g, where £ 3 (u, v) and L€ & 5.1 (u, v).

Proof. Introducing a new variable ¢, consider the following system of

partial differential equeations:

15) o
Yr ’—‘B)‘(x), e e Xp1y Vi v e a5 Vs e e, 'yu, e e o3R8l 6 e ,Zs'),
axp“ axf
(2"
025 024 (
= = A=1,...,8; 6=1,...,s")
axp” at ’ ’ ’ ’
where %1, . . ., %, t, Xp+1 are independent variables and vy, . .., ¥s, 21, . . ., 2y

are unknown functions. The unique solution of the equation: 2z/0x,.1 = 9z/0¢
with the initial condition: (z(%y, ..., %, & Zp:1))xye=0 = C(%, . . ., %p, 1) is
equal to ¢(xy, . .., %p, t+%p+1). Therefore for &i(xy, - . ., xp), &y, - . o, %),
t) such that |£:(0) 1, |(2£:/0%r)2=0!, 1€5(0)] <@, the solution of (3") with the
initial condition: (1)zpu-0 =4, (25)x,.,-0 = s must be necessarily of the form:
wo=an(xy, oo, X, b, Xpr1), Zo=Col%y, . . ., %p, t+ %p+1). Hence yy = anlx,

., %p, 0, %p+1) is the solution of (ZX;) with the initial condition &  Thus,
applying Theorem I. 8 to (3"), we can easily prove Theorem I. 9.

Chapter II. Formal Lie (F)-groups and (F)-algebras

Using the formal analytic mappings, we define the notion of formal Lie
(F)-groups and formal Lie (F)-algebras and establish the one-to-one cor-
respondence between the isomorphic classes of formal Lie (F)-groups and of
formal Lie (F)-algebras. If the parameter (F)-vector spaces are of finite
dimension, formal Lie (F)-algebras are usual Lie algebras. If, moreover, the
multiplications are convergent, a formal Lie (F)-groups are local Lie groups.
Thus our theory generalizes the classical theory of correspondence between

local Lie groups and Lie algebras. Since our arguments closely follow that of
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the classical theory, only sketches of proofs will be given. A field K of
characteristic zero will be fixed throughout this chapter.

1. Definitions

DeriniTiON II. 1. Let H be a (F)-vector space. A formal analytic mapping
G of H+ H into H is called a formal Lie (F)-group in the parameter space H,

if it satisfies the following conditions:

(1°) The multiplication ‘G of °H is associative and 0 is the unit element.
We shall write a * 8 in stead of °‘G(a, §), where a, B=°H;

(2°) There is a formal analytic mapping J of H into itself such that, for
and a in °H, °J («) is the inverse of «. We shall write a~' instead of “J(«a).

We shall use the same letter °G to denote the group structure defined in
‘H by the above multiplication.

Let G; and G, be formal Lie (F)-groups in parameter spaces H; and H.,
respectively. If there is a formal analytic mapping F of H; into H, such that
‘F is a homomorphism of the group ‘G into °G., then °F is called a represen-
tation of G, into G:. Let G; be a formal Lie (F)-group. If F’ is a represen-
tation of G; into G, then it is clear that F/°F is a representation of G, into
G;. G, and G; are said to be isomorphic if there are representations F and
F' of G, into G: and of G: into G,, respectively, such that F'oF and FoF' are
the identity mappings.

Let G be a formal Lie (F)-group in the parameter space H. Let us use
letters a, 3, 7, . . . to denote elements in “‘A. In the remainder of this section,
we shall keep G fixed and shall use the same notations. Then there are formal
analytic mappings V and W of H+ H into H such that

"V(a, B) = [a/au(a M MB)]u:o:
‘Wia, B) =[0/ou(a™* (a + uB8))Ju-o.

(For the meaning of the above 9/9u, consult the sentences following Theorem
1. 5). We have

(17) a*uB=a+uVia, 3) (mod #°),
(18) atuB=a (' Wla, 3)) (mod #°),
(19) [o/oula+ (B+ur)) Ju-0="Via<p, ‘W, 1)),
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(31]

From these formulae one finds easily that

(20) Vi, ‘Wla, B)) =Wla, ‘V(a, B)) =5.

For any element a =&t+ &85+ - - - + gtt4+ - -+ in °H, where & are in
Hfor r=1,2,..., and for any = in K, denote by «+z the element (#&)f+
coe 4 (dE)F+ --- in ‘H A curve « in H, that is, an element in °H, is

called a one-parameter subgroup of G if for any %, and #. in K we have the
equality :

(acu) (s u) = a (ug+ us).

A formal Lie (F)-group is said to be under a canonical coordinate system, if

c

for any ¢ in H, ‘¢ is a one-parameter subgroup, where °¢ is the curve £t.

Tueorem Il 1. Let G be a formal Lie (F)-group. Then there is a formal
Lie (F)-group G' which is isomorphic to G and which is under a canonical

coordinate system.

Proof. By Theorem 1. 5 there is a formal analytic mapping F of H into
itself such that

(%) d°F(a, ) ="V(‘F(a), a)

Set Hi=H.=H,=H. Denote by F' and F" the formal analytic mapping of
H, + H, into H; such that ‘F'(«, 8) =‘F(a+3) and ‘F"(a, 3) = F(a)* ‘F(§),
respectively. Fix 2 in H and set a=Cu;=u %, 3=°. Then, by (x) we
find that o/ou “F'(a, up) = V(F'(«a, u8), 3), and by (*) and (19) that 3/ou
F'"(a, uf) =V (°F"(a, uB), 3). Since ‘F'(a, 0) =°F"(a, 0) = F(a), Lemma
I. 1 implies that “F'(«, up) = ‘F"(a, up) for any #» in K. Hence ‘F(?) is a
one-paramenter subgroup of G for any £ in H. Since ‘V(0, a) = a for any a
in °H, (dF), is the identity mapping. By Theorem I. 2, F is an isomorphism
of H onto itself. Then it is clear that there is a formal Lie (F)-group G’ in
the parameter space H such that F is an isomorphism of G' onto G. Then it
is easy to see that (¢ is under a canonical coordinate system.

One finds easily the following:

Prorosition II. 1. If G is under a canonical coordinate system, then for
any « in ‘H,

Via, a) ="Wla, a) =a,
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DeriniTiON II. 2. A formal analytic mapping L of H+ H into H is called
a formal Lie (F)-algebra in the parameter space H if, by the multiplication °L
in °H, °H forms a Lie algebra. We shall write, as customary, L«, R] instead of
‘Lia, B).

Because L is bilinear, one can see easily that L is everywhere defined
with respect to the discrete topology of K, so we identify L with the bilinear
mapping of H+ H into H. We shall write [, 7] instead of L(%, ) for any ¢,
» in H. We define representation and isomorphisms of formal Lie (F)-algebras
in the obvious way.

A formal Lie (F)-group G being given, we consider a formal analytic
mapping Vi of H + H into H such that

EV1((1, B) = [a/aucV(ua, B)]u:o.
We define a formal analytic mapping L of H+ H into H by the formula:
(21) ‘L(a, )= —Vila, B) +°Vi(B, a).

We shall show that L is a formal Lie (F)-algebra in the parameter space H.
L is called the formal Lie (F)-algebra associated with the formal Lie (F)-
group G.

Since ‘V(0, a) = a, it is clear that (ua)*(uB) =ua+u3+u’°Vila, B) +

Therefore we can write
(22) (ua) * (uB) =ua +uB+u* Vila, B) +°Y (a, B) (mod u*).
Lemma II. 1. For any a, B, and v in °H,

‘Vila, ‘Vi(B, 1)) = Vi(°Vila, B), 7)
=Y(a, V=Y (B, 1)+ Y(a+B, 7v)— Y(a, B+71).

Proof. Calculating the both side of the equality: (ma)-«((%B3)- (ur))
= (\ua) (%3 )+(ur) modulo %' by the formula (22) and equating the coefficients

of #° we obtain the formula.

TueoreMm 1. 2. The formal analytic mapping L defined by (21) is a
formal Lie (F)-algebra.

Proof. 1t is clear that L is bilinear and skew-symmetric. Therefore it is

sufficient to prove Jacobi’s identity :
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[Ca, 31, r1+T108, 71, a1+ [y, &7, g1=0.

for any «, 3, and 7 in “H. Now set Z(a, $, v)="Vila, “Vi(B, 1))+ Vi(B, “V
(r, ) +Vily, “Vila, B) = Vil Vila, B), v) = Vi(*Vi(B, 1), &) = “Vi(*Wi(r, ),
8). Then by Lemma II. 1 one find that Z(a, 3, 7) = (Y(a +8, 7) — Y(r, a +B))
+(Y(B+7, e+ Y(a+71, B))—(Y(a, B+7)+ Y(B, a+7)). Therefore we see
that Z(a, B, 1) =Z(83, a, v). Now if we express the left hand side of Jacobi’s
identity in terms of the function °V;, then we find that it is equal to — Z(«, B,
+ZB, a, 1) =0.

2. The fundamental theorems

Tueorem II. 3. Let G, be a formal Lie (F)-group, (r=1, 2). Denote by
L, the formal Lie (F)-algebra associated with G,. Let F be a representation of
G, into G.. Then (dF), is a representation of L, into L.

Proof. Since °F is a homomorphism of the groups, it is easy to see that
‘V(°F(a'), (d°F)y(B)) =d°Fia’, ‘V(a’, 3)). Putting a’ = ua and differentiating
with respect to u, one finds that ‘Vi((d°F)e(a), (d°F)o(B)) = (d°F)y(‘Vila, B))
+ [0/ou(d°F(ua, ))1u-¢. Then the theorem follows, because [0/0%# (d°F (ua,
B))Ju-o = [0/0u (d°F(uB, a))lu-o=[3"/0udv “Flua +v8))1525.

Let G be a formal Lie (F)-group in the parameter space H. Denote by
[a, 5] the commutator in the associated formal Lie (F)-algebra L. Denote by
W' a formal analytic mapping of H+ H+ H into H defined by the formula:

‘W'a; B, 1)=[0/ou’W(a+uB, v)lu-0.
Lemma II. 2. For any a, B, and 7 in °H,
—Wa; 8, 1)+ Wia; 7, B)=[Wla, 1), ‘Wla, B)].

Proof. Set Y(u, v)=a '+ (a+uB+wvr). Then by (19), [0/ov Y (%, v)Jv-0
=Vu'Wla, 8), ‘Wla, 1) +u°W'(a; B, 7)) modulo #°. Therefore [9/ou 9/ov
Y(ut, ©)Ju=v-0="Vi*W(a, B), ‘W(a, ) +°W'(a; B.7). Because 9/ov(d/ou
Y(u, v))=03/ou(d/ovY (u, v)), we have the required equality.

Putting « =0 in Lemma II. 2, we find the formula:
(23) La, 81=Wila, B) — ‘Wi(B. a).

where ‘W(a, 3)=“W'"0; «a, 3.
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ProrosiTioN II. 2. Set °Z(«) = ‘W (a, a). Then
EWa, B), (a, B))= —[‘W(a, B), ‘Z(a)1+d°Z(a, R).

Proof. Calculate [0/ou°Z(a + uB)] and apply Lemma II. 2. In particular

we have

ProrosiTioN II. 2. If G is under a canonical coordinate system, then
(%%) aW(a, B), (a, B)) = —[*W(a, B), al+ 8.
Proof. Apply Proposition II. 1 to the above formula.

TueoreM II. 4. Let G, be a formal Lie (F)-group (r=1, 2). Denote by
L, the formal Lie (F)-algebra associated with G,. Let F be a representation
of Ly into L.. If both G: and G, are under canonical coordinate systems, then

F is also a representation of G, into G.

Proof. Denote by H and H' the parameter space of G, and G, respectively.
Let A and B be formal analytic mappings of H+ H into H’ such that ‘A(«,
B) =°F(°W(a. 8)) and °Bla, B) =W (°F(a), °F(B)), respectively. Operating
°F on both side of (**), we find that d°A((a, 8), (a, 8)) = ~[‘Ala, 8), ‘F(a)]
+°F(B). Replacing a and 3 in (**) by °F(a) and °F(R), respectively, we see
that d°B((«a, B), (a, B)) = —[°B(a, B), ‘F{a)]1+°F(B). By Theorem L 5, ‘A(a,
B)=°Bla, B), ie. ‘F(‘W(a, B)) =°W(°F(8)). Operating ‘V(°F(a), ) on both
sides of the just proved formula and replacing 8 by ‘V(a, 7), we find that
CF(V(a, 1)) =°V(F(a), °F(7)). Then by (19) and Theorem I. 6, one sees
easily that F is a representation of G, into G,.

Tueorem II. 5. Let L be a formal Lie (F)-algebra. Then there is a formal
Lie (F)-group G such that L is the formal Lie (F)-algebra associated with G.

Proof. Let H be the parameter space of L. By Theorem I. 5 there is a
formal analytic mapping W of H+ H into H such that

(24) d°W(a, B), (a, B)) =[*W(a, B), al+ 8.

By construction ‘W (0, «)=a and ‘W(a, B) is linear with respect to the
variable 8. Set ‘W'(a; B, r) =[0/0u°W (a -+ uB, y)Ju-0. Replacing « in (24)
by a -+ ur and differentiating by «, we find that
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(23) [a/ach’(a+ua; 7, B)Ju-o
= =2WNa; 7, B) +[W'a; 7, 8), ad+[*W(a, 8), 7].

Putting a =0, we see that [, v1=2°Wi(r, 8), where ‘Wi(«a, B) =°W'(0; «, R).

Since the commutator is skew-symmetric, it follows that
(26) La, B1=Wi(B, a) — Wila, B).

Set Hi=H+ H, H,=H, and H;=H. Let F' be the formal analytic mapping
of H,+ H, into H; such that ‘F'(a, v, B) =W'(a; B, v) =W (a; 1, B)-[°W
(a, 1), ‘W(a, B)] for any («, 7)€ H, and < H,. Then (25), (26), Jacobi’s
identity, and the definition of W imply that

d°F'((a, 7, B), (0,0, B)) = —2°Fa, 1, B) +[°F'(a, 7, B), B],
that is,
ud/ou ‘F'(a, 7, u) +2°F'(a, 7, uB) =[‘F'(a, 7, uB), uBl.
Moreover ‘F'(a, 7, 0) =0 by (26). On the other hand, denoting by G’ the zero
mapping of H;+ H, into H;, we see that ‘G'(a, 7, uf) satisfies the same dif-

ferential equation as °F'(«, 7, #8). Therefore, by Lemma I. 2., we find that
F'(a, 7, B) =0, ie.

(27) Wia; B, 1)—Wia; 1, B)=["W(a. 1), ‘Wa, )]

By Theorem I. 3 there is a formal analytic mapping V of H+ H into H such
that

(28) B=V(a, ‘Wla, p)) =°W(a, ‘V(a, B)).

Set ‘V'(a; B, r)=[0/ouV(a+uB, v)Ju-0. Replacing a by a +uV(a, r) in
the first equality in (28), differentiaing with respect to %, and replacing B in
the resulting equality by ‘V(a, 8), we find that ‘V'(a; “Via, 1), B) = —V(a,
‘WHa; “‘Via, 8), ‘V(a, r)). Then by (27), we have the formula

(29) Via; “Via, B), 1) = V'a; Ve, 1), 8)=V(a, [B rD.

Let Y be the formal analytic mapping of H + H+ H into H such that ‘Y (a,
B, 1) =Via, ‘W(B, r)). Then (27) and (29) imply that Y satisfies the con-
ditions in Theorem I. 6.  Therefore there is a formal analytic mapping G of
H+ H into H such that
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dG((a, B), (0, 1)) =°Y(°Gla, B), B, 7)
= CV( CG(a, B)y (W(By T))’
‘Gla, 0) =a.

Then we find that G is a formal Lie (F)-group under a canonical coordinate
system such that the given L is the formal Lie (F)-algebra associated with G.

A Formal Lie (F)-group G, or a formal Lie (F)-algebra L, is said to be
convergent if the formal analytic mapping G, or L, is convergent. If G is
convergent, then the associated formal Lie (F)-algebra is convergent. However,
the converse is not always valid.
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