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Character Degree Graphs of Solvable
Groups of Fitting Height 2

Mark L. Lewis

Abstract. Given a finite group G, we attach to the character degrees of G a graph whose vertex set is

the set of primes dividing the degrees of irreducible characters of G, and with an edge between p and

q if pq divides the degree of some irreducible character of G. In this paper, we describe which graphs

occur when G is a solvable group of Fitting height 2.

1 Introduction

Let G be a finite group. We write cd(G) = {χ(1) | χ ∈ Irr(G)} for the set of

(irreducible) character degrees of G, and take ρ(G) to be the set of primes that divide

degrees in cd(G). The degree graph ∆(G) is the graph with vertex set ρ(G). There is

an edge between p and q if pq divides some degree a ∈ cd(G). These graphs have been

studied in a number of places. For basic information on these graphs, we suggest [1,

Theorem 14], [2, Section 30], and [8, Sections 18 and 19]. We study the relationship

between the group structure of G and the graph structure of ∆(G). In particular,

we continue the investigation of the relationship between the Fitting height of G and

∆(G).

In [4], we said that a graph Γ occurring as the degree graph of a solvable group

had bounded Fitting height if there was an upper bound on the Fitting heights of the

groups G such that ∆(G) = Γ. We proved that Γ had bounded Fitting height if and

only if Γ had at most one vertex that was adjacent to all the other vertices in Γ. In

[6, 8], this study went further into specific bounds for certain families of graphs.

In this paper, we want to look at the lower bound on the Fitting height of G when

∆(G) = Γ. We know that if G is nilpotent (i.e., has Fitting height 1), then ∆(G) is

a complete graph. Thus, if ∆(G) is not a complete graph, then G must have Fitting

height at least 2. In this paper, we study the graphs that arise when G has Fitting

height 2. In fact, we will classify which graphs can occur in this case.

We now state the main theorem of this note.

Theorem A Let Γ be a graph with n vertices. There exists a solvable group G of Fitting

height 2 with ∆(G) = Γ if and only if the vertices of degree less than n − 1 can be

partitioned into two subsets, each of which induces a complete subgraph of Γ and one of

which contains only vertices of degree n − 2.

The next corollary restates Theorem A in a manner that is practical to check. (No-

tice that Corollary B is weaker than Theorem A.)
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Corollary B If G is a solvable group with n = |ρ(G)| and ∆(G) contains two vertices

of degree less than n − 2 that are not adjacent, then the Fitting height of G is at least 3.

Proof In Theorem A, we prove that if G is solvable of Fitting height 2, then all the

vertices with degree less than n−2 form a complete graph, and so they will be adjacent

to each other. Since this does not happen, G must have Fitting height at least 3.

Notice that if G is solvable and ∆(G) is disconnected where each connected com-

ponent has at least two vertices, then G must have Fitting height at least 3. In fact,

this was proved in [5, Theorem 5.3].

The distance between two connected vertices in a graph is the number of edges

in a path between the two vertices that contains the fewest number of edges. We say

that the diameter of a graph is the largest distance between connected vertices in the

graph. This means that the diameter of a graph is the largest diameter of a connected

component. Pálfy has proved that if G is solvable and ∆(G) is disconnected, then

the diameter of ∆(G) is at most 1 (see [8, Corollary 18.8]). Thus, diameters bigger

than 1 only occur when ∆(G) is connected. In [7], we found a solvable group G so

that ∆(G) has diameter 3. Before that, it had been conjectured that the diameter of

∆(G) is at most 2 when G is solvable. Based on Theorem A, we can prove this is true

when G is solvable of Fitting height 2.

Corollary C If G is a solvable group of Fitting height 2, then ∆(G) has diameter at

most 2.

Proof If ∆(G) has diameter 3, then we can find primes p and q with the distance

between p and q equal to 3. Let n = |ρ(G)|. It is easy to see that p is not adjacent

to q or any neighbor of q, so its degree is less than n − 2. Similarly, q has degree less

than n − 2. Now, ∆(G) has two nonadjacent vertices of degree less than n − 2, so by

Corollary B, G must have Fitting height at least 3, which is a contradiction.

2 Examples

In this section, we prove the backward direction of Theorem A by constructing ex-

amples of solvable groups with Fitting height 2 that have the desired graphs. We

begin by considering the construction of groups with Fitting height 2 and having a

disconnected graph.

Lemma 2.1 Let p, q1, . . . , qn be distinct primes so that p is odd. Then there is a

solvable group G of Fitting height 2 so that ∆(G) has two connected components: {p}
and {q1, . . . , qn}.

Our work here is based on the construction found in [9, Example 3.4].

Proof Now, p is relatively prime to q1 · · · qn, so p is a unit modulo q1 · · · qn. In par-

ticular, there exists a positive integer m so that pm ≡ 1 (mod q1 · · · qn), and hence,
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q1 · · · qn divides pm − 1. Let E be the extra-special p-group of order p2m+1 and ex-

ponent p. It is well known that E has an automorphism σ of order q1 · · · qn that

centralizes the center of E. We take G to be the semi-direct product of 〈σ〉 acting

on E. One can show that cd(G) = {1, pm, q1 · · · qn} (see [9, Example 3.4]), and thus,

∆(G) has two connected components: {p} and {q1, . . . , qn}.

The following theorem is the backwards direction of Theorem A. Notice that the

group G constructed is a direct product of groups with disconnected graphs with

groups whose graphs have a single vertex.

Theorem 2.2 Let Γ be a graph with n vertices and suppose that the vertices with degree

less than n − 1 can be partitioned into two subsets U and V that both yield complete

subgraphs of Γ and every vertex in V has degree n − 2. Then there is a solvable group G

with Fitting height 2 so that ∆(G) = Γ.

Proof We begin by labeling the vertices in U = {u1, . . . , ur}. If v ∈ V , then v has

degree n − 2, so there is exactly one vertex not adjacent to v. Since v is adjacent to

the rest of V , it follows that v is not adjacent to some vertex in U . It follows that if

we let Vi be the set of vertices in V that are not adjacent to ui , then V1, . . . ,Vr will

partition V . Let m be the number of vertices with degree n − 1.

We now find p1, . . . , pr to be distinct odd primes, and we choose π1, . . . , πr to

be sets of primes so that |πi | = |Vi| and so that these sets are pairwise disjoint and

contain none of the primes p1, . . . , pr. Finally, we choose distinct primes s1, . . . , sm

to be disjoint from {p1, . . . , pr}∪π1∪· · ·∪πr. Using Lemma 2.1, we can find for each

i = 1, . . . , r, a solvable group Ni of Fitting height 2 so that ∆(Ni) has two connected

components: {pi} and πi .

For j = 1, . . . , m, we can use Dirichlet’s theorem to find a prime t j so that s j

divides t j −1. We let S j be the semi-direct product of a cyclic group of order s j acting

on a cyclic group of order t j . It is well known that cd(S j) = {1, s j}, and S j has Fitting

height 2.

We take

G = N1 × · · · × Nr × S1 × · · · × Sm.

It is not difficult to see that there is a graph automorphism between Γ and ∆(G) so

that ui corresponds to pi , the set Vi corresponds to πi , and the vertices of degree n−1

in Γ correspond to the s j ’s. As G is a direct product of groups of Fitting height 2, it

will also have Fitting height 2.

3 ∆(G) When G Has Fitting Height 2

In this section, we prove the forward direction of Theorem A. In particular, we show

that all the graphs that arise as ∆(G) when G has Fitting height 2 are included among

the graphs for the groups constructed in Section 2. If n is a positive integer, then π(n)

is the set of primes that divide n.
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Throughout this section, G will be a solvable group of Fitting height 2 with Fitting

subgroup F. The first lemma shows that every vertex in ∆(G) lies in one of two

complete subgraphs.

Lemma 3.1 If G is a solvable group of Fitting height 2 and F is the Fitting subgroup of

G, then ρ(G) = ρ(F) ∪ π(|G : F|) and ρ(F) and π(|G : F|) induce complete subgraphs of

∆(G). In particular, if ∆(G) is not a complete graph, then ρ(F) contains a prime that is

not adjacent to some prime in π(|G : F|).

Proof If χ ∈ Irr(G) and θ ∈ Irr(F) is an irreducible constituent of χF , then

π(θ(1)) ⊆ ρ(F) and π(χ(1)/θ(1)) ⊆ π(|G : F|). It follows that ρ(G) ⊆ ρ(F) ∪
π(|G : F|).

By the discussion on [8, p. 254], there is a character degree in cd(G) which is divis-

ible by all the primes in π(|G : F|). This implies that π(|G : F|) ⊆ ρ(G) and π(|G : F|)
induces a complete subgraph of ∆(G). Since F is a direct product of its Sylow sub-

groups, there is a degree in Irr(F) and hence in Irr(G) that is divisible by all the primes

in ρ(F). This implies ρ(F) ⊆ ρ(G) and ρ(F) induces a complete subgraph of ∆(G).

We now assume ∆(G) is not a complete graph, so there exists a prime p ∈ ρ(G)

that is not adjacent to some prime in ρ(G). If p ∈ ρ(F), then since p is adjacent

to the other primes in ρ(F), it must not be adjacent to some prime in π(|G : F|). If

p ∈ π(|G : F|), then there is a prime q ∈ ρ(G) that is not adjacent to p. Since p is

adjacent to all the primes in π(|G : F|), it follows that q ∈ ρ(F), and q is a prime in

ρ(F) that is not adjacent to some prime in π(|G : F|).

We now look at the structure of G in terms of a prime p ∈ ρ(F) that is not adjacent

to some other prime in ρ(G). Using Lemma 3.1, it is not difficult to see that ρ must

be a subset of π(|G : F|).

Theorem 3.2 Let G be a solvable group of Fitting height 2 with Fitting subgroup F. Let

p be a prime in ρ(F) such that p is not adjacent in ∆(G) to some prime in ρ(G) −{p}.

Let ρ be the primes in ρ(G) − {p} that are not adjacent to p. Then G has a normal

nonabelian Sylow p-subgroup P, and if H is a Hall ρ-subgroup of G, then PH is normal

in G. Furthermore, the graph ∆(PH) has two connected components {p} and ρ.

Proof By Lemma 3.1, we know that ρ(G) = ρ(F)∪π(|G : F|) and ρ(F) and π(|G : F|)
induce complete subgraphs of ∆(G). It follows that every prime in ρ(F) ∩ π(|G : F|)
is adjacent in ∆(G) to every other prime in ρ(G). Hence, p does not lie in π(|G : F|),

and so p does not divide |G : F|. Let P be a Sylow p-subgroup of G, then it follows that

P ⊆ F. Since F is nilpotent, P is characteristic in F, and P is normal in G. Because p

is in ρ(F), we see that P is not abelian.

The primes in ρ are not adjacent to p, so the intersection ρ∩ ρ(F) must be empty.

Let H be a Hall ρ-subgroup of G. Since G/F is nilpotent, M = FH is normal in G. We

know ∆(M) is a subgraph of ∆(G) and ρ(M) = ρ(F) ∪ ρ. In particular, ρ is the set

of primes in ρ(M) that are not adjacent to p. Let Q be the Hall {p} ∪ ρ-complement

of F, and note that M = PHQ.
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We can find a character θ ∈ Irr(P) with θ(1) > 1. For any character λ ∈ Irr(Q),

let T be the stabilizer of θ × λ in M. We know that F ⊆ T, and |M :T| divides every

degree in cd(M|θ × λ). (We define cd(M|θ × λ) to be the degrees of the irreducible

constituents of (θ × λ)M .) On the other hand, p divides every degree in cd(M|θ ×
λ), so it follows that no prime in ρ will divide any degree in cd(M|θ × λ), and in

particular, no prime in ρ divides |M :T|. Since |M :F| is a ρ-number, we conclude

that T = M. Therefore, every character in Irr(Q) is invariant in M, and thus, every

character in Irr(Q) is stabilized by H. Because |H| and |Q| are coprime, this implies

H centralizes Q. As P necessarily centralizes Q, we deduce that M = PH × Q. Now,

PH is a characteristic subgroup of M, and hence, PH is normal in G. We now see that

∆(PH) is a subgraph of ∆(G) with ρ(PH) = {p}∪ρ. Thus, ∆(PH) is a disconnected

graph with connected components {p} and ρ.

Finally, we look at all of the primes in ρ(F) that are not adjacent to some prime in

ρ(G) − {p}.

Corollary 3.3 Let G be a solvable group of Fitting height 2, and let F be the Fitting

subgroup of G. Let n = |ρ(G)|, and let π1 be the primes in ρ(F) of degree less than n−1.

Label the primes in π1 as {p1, . . . , pr}. For each i, let ρi be the primes in ρ(G) not

adjacent to p1. Then there exists a normal subgroup N of G so that N = N1 × · · · × Nr

where for each i the group Ni is a Hall {pi} ∪ ρi-subgroup of G.

Proof For i = 1, . . . , r, let Pi be a Sylow pi-subgroup and Hi be a Hall ρi-subgroup

of G. We set Ni = PiHi , and by Theorem 3.2, Ni is the normal Hall {pi} ∪ ρi-sub-

group of G. We claim that if i 6= j, then ρi ∩ ρ j is empty. Suppose that this is not

the case. In particular, suppose we have a prime q ∈ ρi ∩ ρ j . Let Q be a Sylow

q-subgroup of G. We know from Theorem 3.2, that ∆(Ni) has two connected com-

ponents. By [5, Lemma 4.1], we know that any solvable group with Fitting height 2

and a disconnected graph has a unique nonabelian normal Sylow subgroup, and this

Sylow subgroup has an abelian quotient. It follows that Ni/Pi is abelian, and so PiQ

is a normal subgroup of Ni . Since PiQ is a Hall subgroup, it is characteristic in Ni ,

and thus, normal in G. Similarly, P jQ is a normal subgroup of G. This implies that

M = PiP jQ = (PiQ)(P jQ) is a normal subgroup of G. It is not difficult to see that

ρ(M) = {pi, p j , q}. Since q is not adjacent to pi or p j , it will follow that ∆(M) has

two connected components {pi , p j} and {q}. Now, M is a solvable group with Fit-

ting height 2 where ∆(M) is disconnected and M has two normal nonabelian Sylow

subgroups (Pi and P j). As we mentioned earlier, this violates [5, Lemma 4.1]. There-

fore, if i 6= j, then ρi ∩ρ j is empty, and hence, Ni∩N j = 1. Setting N = N1N2 · · ·Nr ,

we obtain N = N1 × · · · × Nr.

Before proceeding to the proof of the forward direction of Theorem A, we con-

sider consequences of Theorem 3.3. Assume the notation of Corollary 3.3. Suppose

∆(G) has no vertex that is adjacent to all the other vertices in ∆(G). It follows that

ρ(G) =
⋃r

i=1
({pi} ∪ ρi), and thus, by Itô’s theorem [3, Corollary 12.34], N has nor-

mal abelian complement Q in G. In particular, G = N1 × · · · × Nr × Q, and by

Theorem 3.2, ∆(Ni) is a disconnected graph. We cannot obtain a similar conclusion
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without the hypothesis that G has Fitting height 2, since the group constructed in [7]

has no vertex adjacent to all the other vertices in ∆(G) but the group clearly cannot

be written as a direct product as above.

Under the hypotheses of Corollary 3.3, it is tempting to conjecture that G =

N1 × · · · × Nr × Q where each ρ(Ni) = {pi} ∪ ρi and ρ(Q) is the set of primes

that are adjacent to all the other vertices in ∆(G). Unfortunately, this is not true. Let

p be a prime, let i be an integer, and let a divide pi−1 and b divide pi +1. Noritzsch [9,

Examples 5.8] constructed a group G of Fitting height 2 where cd(G) = {1, pia, ab}.

Clearly, G cannot be a direct product as above. It is not difficult to choose our pa-

rameters so that a and b will be relatively prime.

The following is a more detailed statement of the forward direction of Theorem A.

Thus, this theorem proves the forward direction of Theorem A.

Theorem 3.4 Let G be a solvable group of Fitting height 2, let F be the Fitting subgroup

of G, let π1 be the primes in ρ(F) that are not adjacent to some prime in π(|G : F|), and let

π2 be the primes in π(|G : F|) that are not adjacent to some prime in ρ(F). If n = |ρ(G)|,
then the vertices of degree less than n − 1 in ∆(G) are partitioned into the sets π1 and

π2, each of which yields a complete subgraph in ∆(G) and every prime in π2 has degree

n − 2.

Proof By Lemma 3.1, ρ(G) = ρ(F) ∪ π(|G : F|) and each of ρ(F) and π(|G : F|)
yields a complete subgraph of ∆(G). It follows that any prime in ρ(F) whose degree

in ∆(G) is less than n−1 will be nonadjacent to some prime in π(|G : F|) and thus lie

in π1. Similarly, any prime in π(|G : F|) with degree less than n − 1 in ∆(G) will not

be adjacent to some prime in ρ(F), and thus, will lie in π2.

Since every prime in ρ(G) is in ρ(F) or π(|G : F|), and any prime in both π1 and π2

will be in both ρ(F) and π(|G : F|), it is easy to see that any prime in both ρ(F) and

π(|G : F|) will have degree n − 1, so π1 and π2 partition the vertices in ∆(G) having

degree less than n−1. Since π1 ⊆ ρ(F) and π2 ⊆ π(|G : F|), they must yield complete

subgraphs of ∆(G). Finally, we know that each prime in π2 is adjacent to all the other

primes in π(|G : F|).

Label the primes in π1 as {p1, . . . , pr}, and define ρi to be the primes in ρ(G)

that are not adjacent to pi . Observe that π2 = ρ1 ∪ · · · ∪ ρr. Let Ni be a Hall

{pi} ∪ ρi-subgroup of G. By Corollary 3.3, there is a normal subgroup N so that

N = N1 × · · · × Nr. By Theorem 3.2, each ∆(Ni) has two connected components

{pi} and ρi . This implies that each prime in ρi is adjacent in ∆(N) (and hence ∆(G))

to every prime in π1 except pi . It follows that every prime in π2 must be adjacent to

all but one of the primes in ρ(F), so each prime in π2 will have degree n − 2.
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