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Character Degree Graphs of Solvable
Groups of Fitting Height 2

Mark L. Lewis

Abstract. Given a finite group G, we attach to the character degrees of G a graph whose vertex set is
the set of primes dividing the degrees of irreducible characters of G, and with an edge between p and
q if pq divides the degree of some irreducible character of G. In this paper, we describe which graphs
occur when G is a solvable group of Fitting height 2.

1 Introduction

Let G be a finite group. We write cd(G) = {x(1) | x € Irr(G)} for the set of
(irreducible) character degrees of G, and take p(G) to be the set of primes that divide
degrees in cd(G). The degree graph A(G) is the graph with vertex set p(G). There is
an edge between p and q if pq divides some degree a € cd(G). These graphs have been
studied in a number of places. For basic information on these graphs, we suggest [1,
Theorem 14], [2, Section 30], and [8, Sections 18 and 19]. We study the relationship
between the group structure of G and the graph structure of A(G). In particular,
we continue the investigation of the relationship between the Fitting height of G and
A(G).

In [4], we said that a graph I" occurring as the degree graph of a solvable group
had bounded Fitting height if there was an upper bound on the Fitting heights of the
groups G such that A(G) = I'. We proved that I" had bounded Fitting height if and
only if I" had at most one vertex that was adjacent to all the other vertices in I'. In
[6, 8], this study went further into specific bounds for certain families of graphs.

In this paper, we want to look at the lower bound on the Fitting height of G when
A(G) = I'. We know that if G is nilpotent (i.e., has Fitting height 1), then A(G) is
a complete graph. Thus, if A(G) is not a complete graph, then G must have Fitting
height at least 2. In this paper, we study the graphs that arise when G has Fitting
height 2. In fact, we will classify which graphs can occur in this case.

We now state the main theorem of this note.

Theorem A Let I" be a graph with n vertices. There exists a solvable group G of Fitting
height 2 with A(G) = T if and only if the vertices of degree less than n — 1 can be
partitioned into two subsets, each of which induces a complete subgraph of T and one of
which contains only vertices of degree n — 2.

The next corollary restates Theorem A in a manner that is practical to check. (No-
tice that Corollary B is weaker than Theorem A.)
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Corollary B If G is a solvable group with n = |p(G)| and A(G) contains two vertices
of degree less than n — 2 that are not adjacent, then the Fitting height of G is at least 3.

Proof In Theorem A, we prove that if G is solvable of Fitting height 2, then all the
vertices with degree less than n—2 form a complete graph, and so they will be adjacent
to each other. Since this does not happen, G must have Fitting height at least 3. ®

Notice that if G is solvable and A(G) is disconnected where each connected com-
ponent has at least two vertices, then G must have Fitting height at least 3. In fact,
this was proved in [5, Theorem 5.3].

The distance between two connected vertices in a graph is the number of edges
in a path between the two vertices that contains the fewest number of edges. We say
that the diameter of a graph is the largest distance between connected vertices in the
graph. This means that the diameter of a graph is the largest diameter of a connected
component. Palfy has proved that if G is solvable and A(G) is disconnected, then
the diameter of A(G) is at most 1 (see [8, Corollary 18.8]). Thus, diameters bigger
than 1 only occur when A(G) is connected. In [7], we found a solvable group G so
that A(G) has diameter 3. Before that, it had been conjectured that the diameter of
A(G) is at most 2 when G is solvable. Based on Theorem A, we can prove this is true
when G is solvable of Fitting height 2.

Corollary C If G is a solvable group of Fitting height 2, then A(G) has diameter at
most 2.

Proof If A(G) has diameter 3, then we can find primes p and g with the distance
between p and q equal to 3. Let n = |p(G)|. It is easy to see that p is not adjacent
to q or any neighbor of g, so its degree is less than n — 2. Similarly, q has degree less
than n — 2. Now, A(G) has two nonadjacent vertices of degree less than n — 2, so by
Corollary B, G must have Fitting height at least 3, which is a contradiction. ]

2 Examples

In this section, we prove the backward direction of Theorem A by constructing ex-
amples of solvable groups with Fitting height 2 that have the desired graphs. We
begin by considering the construction of groups with Fitting height 2 and having a
disconnected graph.

Lemma 2.1 Let p,qi,...,q, be distinct primes so that p is odd. Then there is a
solvable group G of Fitting height 2 so that A(G) has two connected components: {p}
and {qi,...,qn}

Our work here is based on the construction found in [9, Example 3.4].

Proof Now, p is relatively prime to q; - - - g, so p is a unit modulo ¢; - - - g,. In par-
ticular, there exists a positive integer m so that p” = 1(modq; - - g,), and hence,
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q1 - -+ qn divides p™ — 1. Let E be the extra-special p-group of order p and ex-
ponent p. It is well known that E has an automorphism o of order g - - - g, that
centralizes the center of E. We take G to be the semi-direct product of (o) acting
on E. One can show that cd(G) = {1, p™,q1 - - - q.} (see [9, Example 3.4]), and thus,
A(G) has two connected components: {p} and {qi,...,qn}- [ |

The following theorem is the backwards direction of Theorem A. Notice that the
group G constructed is a direct product of groups with disconnected graphs with
groups whose graphs have a single vertex.

Theorem 2.2 Let 1" be a graph with n vertices and suppose that the vertices with degree
less than n — 1 can be partitioned into two subsets U and V that both yield complete
subgraphs of I and every vertex in V has degree n — 2. Then there is a solvable group G
with Fitting height 2 so that A(G) = I

Proof We begin by labeling the vertices in U = {u,...,u,}. If v € V, then v has
degree n — 2, so there is exactly one vertex not adjacent to v. Since v is adjacent to
the rest of V, it follows that v is not adjacent to some vertex in U. It follows that if
we let V; be the set of vertices in V' that are not adjacent to u;, then Vi, ..., V, will
partition V. Let m be the number of vertices with degree n — 1.

We now find py, ..., p, to be distinct odd primes, and we choose 7y, ..., 7, to
be sets of primes so that |7;| = |V;| and so that these sets are pairwise disjoint and
contain none of the primes p,, ..., p,. Finally, we choose distinct primes s, . . ., sy,
to be disjoint from {py, ..., p, }Um U- - -Um,. Using Lemma 2.1, we can find for each
i=1,...,r,asolvable group N; of Fitting height 2 so that A(N;) has two connected
components: {p; } and ;.

For j = 1,...,m, we can use Dirichlet’s theorem to find a prime ¢; so that s;
divides t; — 1. We let S; be the semi-direct product of a cyclic group of order s; acting
on a cyclic group of order ¢;. It is well known that cd(S;) = {1,s;}, and S; has Fitting
height 2.

We take

G=N; X+ XN, X8 X---xS§.

It is not difficult to see that there is a graph automorphism between I and A(G) so
that u; corresponds to p;, the set V; corresponds to 7;, and the vertices of degree n— 1
in I" correspond to the s;’s. As G is a direct product of groups of Fitting height 2, it
will also have Fitting height 2. ]

3 A(G) When G Has Fitting Height 2

In this section, we prove the forward direction of Theorem A. In particular, we show
that all the graphs that arise as A(G) when G has Fitting height 2 are included among
the graphs for the groups constructed in Section 2. If # is a positive integer, then 7(n)
is the set of primes that divide #.
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Throughout this section, G will be a solvable group of Fitting height 2 with Fitting
subgroup F. The first lemma shows that every vertex in A(G) lies in one of two
complete subgraphs.

Lemma 3.1 If G is a solvable group of Fitting height 2 and F is the Fitting subgroup of
G, then p(G) = p(F) U n(|G:F|) and p(F) and 7(|G: F|) induce complete subgraphs of
A(G). In particular, if A(G) is not a complete graph, then p(F) contains a prime that is
not adjacent to some prime in 7(|G: F|).

Proof If y € Irr(G) and 8 € Irr(F) is an irreducible constituent of xp, then
m(0(1)) C p(F) and 7(x(1)/0(1)) C 7(|G:F|). It follows that p(G) C p(F) U
7(|G:F|).

By the discussion on [8, p. 254], there is a character degree in cd(G) which is divis-
ible by all the primes in 7(|G:F|). This implies that 7(|G: F|) C p(G) and w(|G:F|)
induces a complete subgraph of A(G). Since F is a direct product of its Sylow sub-
groups, there is a degree in Irr(F) and hence in Irr(G) that is divisible by all the primes
in p(F). This implies p(F) C p(G) and p(F) induces a complete subgraph of A(G).

We now assume A(G) is not a complete graph, so there exists a prime p € p(G)
that is not adjacent to some prime in p(G). If p € p(F), then since p is adjacent
to the other primes in p(F), it must not be adjacent to some prime in 7(|G:F|). If
p € w(|G:F|), then there is a prime g € p(G) that is not adjacent to p. Since p is
adjacent to all the primes in w(|G:F|), it follows that g € p(F), and q is a prime in
p(F) that is not adjacent to some prime in 7(|G: F|). [ |

We now look at the structure of G in terms of a prime p € p(F) that is not adjacent
to some other prime in p(G). Using Lemma 3.1, it is not difficult to see that p must
be a subset of 7(|G: F|).

Theorem 3.2  Let G be a solvable group of Fitting height 2 with Fitting subgroup F. Let
p be a prime in p(F) such that p is not adjacent in A(G) to some prime in p(G) —{p}.
Let p be the primes in p(G) — {p} that are not adjacent to p. Then G has a normal
nonabelian Sylow p-subgroup P, and if H is a Hall p-subgroup of G, then PH is normal
in G. Furthermore, the graph A(PH) has two connected components {p} and p.

Proof ByLemma 3.1, we know that p(G) = p(F)Un(|G:F|) and p(F) and w(|G:F|)
induce complete subgraphs of A(G). It follows that every prime in p(F) N 7w (|G:F|)
is adjacent in A(G) to every other prime in p(G). Hence, p does not lie in 7(|G: F|),
and so p does not divide |G: F|. Let P be a Sylow p-subgroup of G, then it follows that
P C F. Since F is nilpotent, P is characteristic in F, and P is normal in G. Because p
is in p(F), we see that P is not abelian.

The primes in p are not adjacent to p, so the intersection p N p(F) must be empty.
Let H be a Hall p-subgroup of G. Since G/F is nilpotent, M = FH is normal in G. We
know A(M) is a subgraph of A(G) and p(M) = p(F) U p. In particular, p is the set
of primes in p(M) that are not adjacent to p. Let Q be the Hall {p} U p-complement
of F, and note that M = PHQ.
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We can find a character 6§ € Irr(P) with (1) > 1. For any character A € Irr(Q),
let T be the stabilizer of @ x X in M. We know that F C T, and |M: T| divides every
degree in cd(M|6 x A). (We define cd(M|0 x A) to be the degrees of the irreducible
constituents of (§ x A\)M.) On the other hand, p divides every degree in cd(M|6 x
A), so it follows that no prime in p will divide any degree in cd(M|6 x A), and in
particular, no prime in p divides [M:T|. Since [M:F| is a p-number, we conclude
that T = M. Therefore, every character in Irr(Q) is invariant in M, and thus, every
character in Irr(Q) is stabilized by H. Because |H| and |Q| are coprime, this implies
H centralizes Q. As P necessarily centralizes Q, we deduce that M = PH X Q. Now,
PH is a characteristic subgroup of M, and hence, PH is normal in G. We now see that
A(PH) is a subgraph of A(G) with p(PH) = {p}Up. Thus, A(PH) is a disconnected
graph with connected components {p} and p. [ |

Finally, we look at all of the primes in p(F) that are not adjacent to some prime in

p(G) — {p}.

Corollary 3.3  Let G be a solvable group of Fitting height 2, and let F be the Fitting
subgroup of G. Let n = |p(G)|, and let 7, be the primes in p(F) of degree less than n— 1.
Label the primes in 7, as {p1,..., p,}. For each i, let p; be the primes in p(G) not
adjacent to p,. Then there exists a normal subgroup N of G so that N = N} X - -+ X N,
where for each i the group N; is a Hall {p;} U p;-subgroup of G.

Proof Fori=1,...,r, let P; bea Sylow p;-subgroup and H; be a Hall p;-subgroup
of G. We set N; = P;H;, and by Theorem 3.2, N; is the normal Hall {p;} U p;-sub-
group of G. We claim that if i # j, then p; N p; is empty. Suppose that this is not
the case. In particular, suppose we have a prime g € p; N p;. Let Q be a Sylow
q-subgroup of G. We know from Theorem 3.2, that A(NN;) has two connected com-
ponents. By [5, Lemma 4.1], we know that any solvable group with Fitting height 2
and a disconnected graph has a unique nonabelian normal Sylow subgroup, and this
Sylow subgroup has an abelian quotient. It follows that N;/P; is abelian, and so P;Q
is a normal subgroup of N;. Since P;Q is a Hall subgroup, it is characteristic in Nj,
and thus, normal in G. Similarly, P;Q is a normal subgroup of G. This implies that
M = P;P;Q = (P;Q)(P;Q) is a normal subgroup of G. It is not difficult to see that
p(M) = {pi, pj,q}. Since q is not adjacent to p; or pj, it will follow that A(M) has
two connected components {p;, pj} and {q}. Now, M is a solvable group with Fit-
ting height 2 where A(M) is disconnected and M has two normal nonabelian Sylow
subgroups (P; and P;). As we mentioned earlier, this violates [5, Lemma 4.1]. There-
fore,ifi # j, then p;Np;is empty, and hence, N;\N; = 1. Setting N = N|N, - - - N,,
weobtain N = N; X --- X N,. [ |

Before proceeding to the proof of the forward direction of Theorem A, we con-
sider consequences of Theorem 3.3. Assume the notation of Corollary 3.3. Suppose
A(G) has no vertex that is adjacent to all the other vertices in A(G). It follows that
p(G) = U'_,({pi} U p;), and thus, by Itd’s theorem [3, Corollary 12.34], N has nor-
mal abelian complement Q in G. In particular, G = N; X --- X N, X Q, and by
Theorem 3.2, A(N;) is a disconnected graph. We cannot obtain a similar conclusion
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without the hypothesis that G has Fitting height 2, since the group constructed in [7]
has no vertex adjacent to all the other vertices in A(G) but the group clearly cannot
be written as a direct product as above.

Under the hypotheses of Corollary 3.3, it is tempting to conjecture that G =
N; X -+ X N, x Q where each p(N;) = {p;} U p; and p(Q) is the set of primes
that are adjacent to all the other vertices in A(G). Unfortunately, this is not true. Let
pbeaprime, let i be an integer, and let a divide p’ —1 and b divide p'+1. Noritzsch [9,
Examples 5.8] constructed a group G of Fitting height 2 where cd(G) = {1, p’a, ab}.
Clearly, G cannot be a direct product as above. It is not difficult to choose our pa-
rameters so that a and b will be relatively prime.

The following is a more detailed statement of the forward direction of Theorem A.
Thus, this theorem proves the forward direction of Theorem A.

Theorem 3.4 Let G be a solvable group of Fitting height 2, let F be the Fitting subgroup
of G, let my be the primes in p(F) that are not adjacent to some prime in w(|G: F|), and let
7, be the primes in 7(|G: F|) that are not adjacent to some prime in p(F). If n = |p(G)|,
then the vertices of degree less than n — 1 in A(G) are partitioned into the sets m, and
2, each of which yields a complete subgraph in A(G) and every prime in m, has degree
n—2.

Proof By Lemma 3.1, p(G) = p(F) U 7(|G:F|) and each of p(F) and = (|G:F|)
yields a complete subgraph of A(G). It follows that any prime in p(F) whose degree
in A(G) is less than n — 1 will be nonadjacent to some prime in 7(|G: F|) and thus lie
in 7ry. Similarly, any prime in 7(|G: F|) with degree less than # — 1 in A(G) will not
be adjacent to some prime in p(F), and thus, will lie in 7.

Since every prime in p(G) is in p(F) or (| G: F|), and any prime in both 7| and 7,
will be in both p(F) and 7 (|G:F|), it is easy to see that any prime in both p(F) and
7(|G:F|) will have degree n — 1, so m; and 7, partition the vertices in A(G) having
degree less than n— 1. Since m; C p(F) and m, C 7(|G: F]), they must yield complete
subgraphs of A(G). Finally, we know that each prime in 7, is adjacent to all the other
primes in 7 (|G: F|).

Label the primes in 7 as {pi,..., p,}, and define p; to be the primes in p(G)
that are not adjacent to p;. Observe that m, = p; U --- U p,. Let N; be a Hall
{pi} U pi-subgroup of G. By Corollary 3.3, there is a normal subgroup N so that
N = Nj x .-+ X N,. By Theorem 3.2, each A(N;) has two connected components
{pi} and p;. This implies that each prime in p; is adjacent in A(N) (and hence A(G))
to every prime in 7, except p;. It follows that every prime in 7, must be adjacent to
all but one of the primes in p(F), so each prime in 7, will have degree n — 2. [ |
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