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MAHONY'S INTRIGUING STIFF EQUATIONS
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Professor John Mahony, F.A.A., was a talented and unusual Australian applied math-
ematician (c/ Fowkes and Silberstein [6]), trained in Manchester in the early 1950s
under James Lighthill and Richard Meyer. He may be best remembered today for his
early work on multiple scales ([8]), for the soliton equation named after him and his
collaborators Brooke Benjamin and Jerry Bona ([2]) and for the many students and
colleagues he influenced positively. This note concerns certain illustrative examples
listed in the three-part paper Stiff Systems of Ordinary Differential Equations by John
and his then postdoc John Shepherd, published in the Journal of the Australian Math.
Society (Series B) ([9]). After skimming their eighty-seven pages, it is hard to tell
how thoroughly they understood the behavior of solutions to their sample problems
(though these descriptions remain the most compelling parts of the papers). I can now
admit that, sometime in the late 1970s, I recommended that (perhaps an early version
of some of) these papers not be published in (I think) a SIAM journal. I am now glad
Series B accepted them. Indeed, with regard to Mahony ([8]), Fowkes and Silberstein
([6]) reported "It is likely, in fact, that the JAMS paper was rejected by other more
prestigious journals. This was often the case with John's work; partially because his
material was almost always a departure from conventional wisdom, but also because
John's writing could be rather formal and obscure." The junior author of the 1981
papers now has achieved considerable mastery of the subject area, but couldn't have
been expected to then take the helm from the opinionated Mahony who had initiated
the study through his successful proposal to the Australian Research Council.

Stiff equations occur as numerically-challenging initial value problems for systems
of ordinary differential equations. Due to the work of Bill Gear, Germund Dahlquist,
Larry Shampine and other numerical analysts in the 1970s, sophisticated software to
solve them is now routinely available. The close (but still partially veiled) relationship
between singular perturbations and stiffness has long been of mutual interest to the
asymptotics and numerics communities (e.g., [1, 7] and [10]). In particular, those of
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us aiming to develop asymptotic approximations of solutions need to use stiff codes
to see what happens as a critical positive parameter (e, say) tends to a limiting value
(like zero). Likewise, asymptotic solutions for stiff problems can provide valuable
insight to those designing efficient computational algorithms to overcome stiffness.

When I discussed such matters with Michael Osborne of the Australian National
University in the (northern) summer of 1996, he suggested that I look at Mahony's
papers with both Shepherd and John Norbury. When I did, I remembered that I had
long ago vowed to analytically figure out how the solutions to their problems behaved.
My favorite examples were ey = t(l — y2) and ey = t(g2(t) — y2) on t > —1 for
g(t) > 0 and g(t) > 0. The first problem is separable and has the exact solution

For y(— 1) < 1 and y(— 1) ^ —1, it features an 0(e)-thick region of non-uniform
convergence abutting t = —\ and has the limiting solution — 1 for |r| < 1 with a
sudden jump to 1 occurring in an 0(e) neighborhood of ? = 1 if y(— 1) > — 1 and
to - c o if y(— 1) < —1. Since the limit —1 is linearly unstable on 0 < t < 1, the
delayed jump is an example of the relatively rare phenomenon of a canard ([3]). For
the second problem, however, when — g ( - l ) < y ( - l ) < g(—1), the second jump
from — g(t) to g(t) occurs in a thicker 0(V?) neighborhood of t = 0 (as Leonid
Kalachev and I worked out by matching or "patching").

FIGURE 1.

That's not obvious, however, from the sketch provided by Mahony and Shepherd
(reproduced as Figure 1). Indeed, the qualitative value of their figures is problematic
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since, as they said, "in the figures we have not used very large slopes to indicate
boundary or interior layers." The obvious question is where the shock is located when
g(t) = I + at for some positive, but asymptotically small, a. As the clever authors
knew, "the system is then able to remember exponentially small terms, and these
control the position of interior layers."

Let me limit attention to the first equation considered by Mahony and Shepherd;
namely €y = t2(t2 — y2) on t > — 1 (cf. their Figure 2). Leonid Kalachev and I used
MATLAB to plot solutions for e = 10"2 and 10"4 and y(-l) = 0 (cf. Figures 3 and
4).

FIGURE 2.

We found an initial layer of O(e) thickness near t = — 1 and an outer limit \t\ for
\t\ < 1, except for some smearing of the anticipated corner layer at t = 0, where
the appropriate outer limit must switch from -t to +t. Indeed, a breakdown when
y = O(el/4) and t = O(el/4) must be expected since, for example, the left outer
expansion YL(t, e) = -t - \et~* + | e V + . . . becomes disordered there as its
terms attain comparable sizes. As a (singularly perturbed) Riccati equation, it's
natural (though highly nontrivial) to convert the given ODE to a linear second-order
equation which can be classically solved in terms of the modified Bessel functions
h/s(t4/4e) and AT3/8(f

4/4e) and their first derivatives (see [5] or [12]). Imagine my
surprise when Grant Keady pulled me to his office (after I'd given a talk in Perth) to
show me how a student version of MAPLE immediately provided the solution

L ^3/8 if n
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for a constant CL! The initial value y{— 1) clearly determines a unique O(e~&) value
CL, provided y(—1) > —1. Asymptotic approximations for the Bessel functions
show the usual O(e) thick initial layer at t = — 1 and the outer solution yL(t, e) for
- 1 < t < 0. The poles the Kv's and /_5/g have at t = 0 show that y has a removable
singularity there with the limit ye(0) ~ r(5/8)(8e)1/4/ T(3/8) for all allowed initial
values. Since ye (0) = 0, the jump in the MAPLE plot there was wrong. It missed
Mahony and Shepherd's insight that the solution was smooth at the origin. This meant
that it should have instead used

* ( ' ) =

for t > 0 with a new constant CR. Indeed, matching at t — 0 forces us to take CR to
asymptotically be r(3/8)r(5/8), thereby providing the expected outer solution

YK{t, c) = t- V 3 + ...

for t > 0. As the MATLAB solutions showed, the solution isn't even in t. Because
the O(e1/4) solution isn't so small near t = 0, numerical difficulties aren't even
severe until e is really very small. Then, however, one must be careful to make sure
the computed solution switches from the limit — t to +t there (cf. the related knee
problem of Dahlquist et al. ([4]) noting their concern about numerical superstability).

The vision Mahony and Shepherd had was "to consider properties of solutions
of a few simple first-order systems as a guide to what might be expected in higher-
order systems." That hope remains today as we finally come to somewhat more fully
appreciate the value of the intriguing examples they introduced.

In closing, let me acknowledge the help of numerous friends worldwide, who all
continue to find Mahony's problems provocative.
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