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Abstract Using degeneration and Schubert calculus, we consider the problem of computing the number
of linear series of given degree d and dimension r on a general curve of genus g satisfying prescribed
incidence conditions at n points. We determine these numbers completely for linear series of arbitrary
dimension when d is sufficiently large, and for all d when either r=1 or n= r+2. Our formulas generalise
and give new proofs of recent results of Tevelev and of Cela, Pandharipande and Schmitt.
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1. Introduction

Having fixed positive integers r and s and setting g= rs+s and d= rs+r, in a celebrated

paper [3], Castelnuovo computed the number of linear series of type grd on a general curve
C of genus g. By degeneration to a g-nodal rational curve, he argued that this number

equals the degree of the Grassmannian Gr(r+1,d+1) in its Plücker embedding, that is,

g! · 1! ·2! · · · · · r!
s! · (s+1)! · · · · · (s+ r)!

.

A rigorous modern presentation of Castelnuovo’s argument1 was first carried out by

Griffiths and Harris [11]. More generally, the theory of limit linear series developed by
Eisenbud and Harris [6, 7] allows one to compute the number of linear series on a general

curve with ramification conditions imposed at fixed marked points, see also [18] for a

more recent treatment.

Motivated by two recent papers of Tevelev [19] and Cela, Pandharipande and Schmitt
[5], we consider a variant of this problem, where we impose incidence conditions on the

1The fact that Castelnuovo provided a plausibility argument rather than a complete proof has
been immediately recognised. We quote from the Zentralblatt MATH review [14] of [3]: Das
Resultat, welches Herr Castelnuovo bekommen hat, gibt mit grosser Wahrscheinlichkeit den
wahren Wert, weil sein Forderungssatz . . .sehr leicht angenommen werden kann; doch können
wir unseren Wunsch nicht unterdrücken, die obige Aufgabe auf einspruchsfreie Weise aufgelöst
zu sehen.
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2858 G. Farkas and C. Lian

corresponding maps to projective spaces. Let [C,x1, . . . ,xn]∈Mg,n be a general n-pointed

complex curve of genus g. We denote by Gr
d(C) the variety of linear systems �= (L,V ) of

type grd on C. A general � ∈Gr
d(C) corresponds to a regular map φ� : C → P

r. Evaluation
at the points x1, . . . ,xn induces a rational map:

ev(x1,...,xn) : G
r
d(C) ���

(
P
r
)n

//PGL(r+1) =: Pn
r , (1)

to the moduli spaces of n points in P
r.2 We study the degree Lg,r,d of the map ev(x1,...,xn)

in the case when this map is generically finite and both spaces have nonnegative
dimension. Since Gr

d(C) is a smooth variety of dimension ρ(g,r,d) = g− (r+1)(g−d+r),

whereas dim(Pn
r ) = rn− r2 − 2r as long as n ≥ r+ 2, one expects ev(x1,...,xn) to be

generically finite precisely when:

n=
dr+d+ r− rg

r
. (2)

Equivalently, Lg,r,d may be understood as the degree of the morphism:

τ :Mg,n(P
r,d)→Mg,n× (Pr)n,

where Mg,n(P
r,d) is the moduli space of degree d maps f :C → P

r, with smooth domain

and distinct marked points x1, . . . ,xn ∈C, and the map τ remembers the pointed domain

and the images of the xi under f. Again, the map τ is expected to be generically finite
exactly when (2) holds, and Brill-Noether theory guarantees that this is indeed the case

as long as d > 0.

If y1, . . . ,yn ∈ P
r are general points, Lg,r,d counts the number of morphisms f : C → P

r

of degree d satisfying f(xi) = yi for i= 1, . . . ,n. When the points yi are considered up to

projective equivalence, these incidence conditions are intrinsic to �. For large d, it turns

out there is a very simple formula for this degree:

Theorem 1.1. Suppose d≥ rg+ r, or equivalently, n≥ d+2. Then:

Lg,r,d = (r+1)g.

We remark that the hypothesis n ≥ d+2 is automatically satisfied whenever g ≤ 1.

Indeed, if instead n ≤ d+1 and g ≤ 1, then d+1 ≥ n = d+1+ d
r − g ≥ d+ d

r , hence,

n≤ d+1≤ r+1, a contradiction. On the other hand, we will also see that the inequality
d≥ rg+r is sharp in the sense that Lg,r,d = (r+1)g−(d+1) when d= rg, see Remark 3.4.

When r = 1, the special case d = g + 1 was studied under the guise of scattering

amplitudes by Tevelev [19], who found the strikingly simple formula Lg,1,g+1 = 2g. This
raised the possibility, confirmed by Theorem 1.1, that in the range when d is relatively

large, the degree Lg,r,d has a simple expression. Using Hurwitz space techniques, Cela,

Pandharipande and Schmitt [5] obtained general formulas for Lg,1,d, which they called
Tevelev degrees ; in particular, when d≥ g+1, they found again, Lg,1,d = 2g.

2The geometric invariant theory (GIT) quotient
(
P
r
)n

//PGL(r+1) depends on a choice of
linearisation, but our main point of study, the degree of ev(x1,...,xn), is independent of this
choice.
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The result of Theorem 1.1 can be compared to a certain virtual count of Bertram,
Daskalopoulous and Wentworth [1, Theorem 2.9] in the range d > 2g− 2, predating the

theory of virtual fundamental classes on moduli spaces of stable maps.

When either r = 1 or n = r+2, or under the hypotheses of Theorem 1.1, we obtain
a more general formula for Lg,r,d in terms of Schubert calculus. For a positive integer

a, we recall the notation σa for the class of the special Schubert cycle of codimension a

consisting of those (r+1)-planes V ∈Gr(r+1,d+1) meeting a fixed subspace W ⊆C
d+1

of dimension d−a. We also recall that σ1r denotes the class of the special Schubert cycle
of codimension r consisting of those (r+1)-planes V ∈Gr(r+1,d+1) whose intersection

with a fixed codimension 2 linear subspace U ⊆C
d+1 has dimension at least r. Our main

result is as follows:

Theorem 1.2. Suppose that either:

• d≥ rg+ r, (i.e. the same hypothesis as in Theorem 1.1),
• d= r+ rg

r+1 (in which case, n= r+2), or
• r = 1.

In each of these cases,

Lg,r,d =

∫
Gr(r+1,d+1)

σg
1r ·

⎡⎣ ∑
α0+···+αr=(r+1)(d−r)−rg

(
r∏

i=0

σαi

)⎤⎦ .

In particular, comparing Theorem 1.1 with 1.2 when d ≥ rg+ r yields a nontrivial
combinatorial identity3 .

In the second case, in which d is as small as possible, we have (r+1)(d− r) = gr, so

the second term is interpreted to be 1, and Theorem 1.2 recovers Castelnuovo’s formula
for s = g/(r+1). On the other hand, when gr > (r+1)(d− r) (equivalently, n < r+2),

the summation is interpreted to be zero, so that Lg,r,d = 0. Indeed, this corresponds to

the case dimGr
d(C) = dim(Pn

r )< 0, in which we find no such morphisms f : C → P
r.

The case of intermediate d when r > 1 is the most subtle, and will be addressed in later

work.

For r = 1, Theorem 1.2, via Giambelli’s formula, yields the following explicit formulas

for Lg,1,d, the last of which agrees with the results of [5, Theorem 6], see Proposition 3.7
for details.

Lg,1,d =
∑

α0+α1=2d−2−g

∫
Gr(2,d+1)

σg
1 ·σα0

·σα1

=

⌊
2d−g−2

2

⌋∑
i=0

(2d−g−2i−1)2

g+1

(
g+1

d− i

)

= 2g −2

g−d−1∑
i=0

(
g

i

)
+(g−d−1)

(
g

g−d

)
+(d−g−1)

(
g

g−d+1

)
.

3A combinatorial proof of this identity has been given by Gillespie, Reimer and Berg [10] after
our paper appeared on arXiv, see §4 for a discussion.
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Here, we adopt the convention that
(
g
j

)
= 0 when j < 0, so in particular, we have again

that Lg,1,d = 2g when d≥ g+1.
To prove Theorems 1.1 and 1.2, we proceed via a standard degeneration to a flag curve

consisting of a rational spine and g+1 tails, one of which being rational and on which

all the marked points specialise, the remaining g tails being elliptic curves. We reduce
to a concrete problem in genus zero in §2, and then handle this problem via Schubert

calculus in §3; care needs to be taken to avoid degenerate solutions, particularly excess

contributions from constant maps f : P1 → P
r obtained from linear series with base points

at some of the points xi. Because such excess contributions in our setup persist when the

hypotheses of Theorem 1.2 are not satisfied (see Remark 3.6), the general computation

of Lg,r,d remains open.

Our method in the case r = 1 also allows us to recompute the more general counts
of Cela, Pandharipande and Schmitt [5], where some points of the source curve are

constrained to have the same image. If r = 1 and 1 ≤ k ≤ d,n, let L′
g,d,k be the number

of morphisms f : C → P
1 as before, but where we take y1 = y2 = · · · = yk, and the yi

otherwise general. (Note that our indexing differs from that of [5], where d is written

as g+1+ � for some � ∈ Z and k is called r, whereas we have reserved the variable r to

denote the dimension of the target projective space.) We find:

Theorem 1.3.

L′
g,d,k =

∫
Gr(2,d+1)

σg
1σk−1 ·

⎡⎣ ∑
i+j=2(d−1)−g−(k−1)

σiσj

⎤⎦
−
∫
Gr(2,d)

σg
1σk−2 ·

⎡⎣ ∑
i+j=2(d−2)−g−(k−2)

σiσj

⎤⎦ .

The second term is taken to be zero when k = 1. Note that L′
g,d,1 = Lg,1,d, so

Theorem 1.3 agrees with Theorem 1.2 in the case r = 1. From here, the formulas of

[5, Theorem 6] can be recovered by recursion, see Corollary 5.1. We sketch the proof of

Theorem 1.3 in §5.1; a more general statement with detailed proofs is given in [4, §6].
Finally, we remark that the degeneration technique also allows one to impose

ramification conditions at additional fixed points p1, . . . ,pm ∈ C, see §5.2.

Relation to other work. We discuss results related to this circle of ideas that

appeared after our paper was published on arXiv. The count of Theorem 1.1 agrees

with a virtual count of maps C → P
r in Gromov-Witten theory as computed by Buch

and Pandharipande [2], the so-called virtual Tevelev degrees of Pr. We consider the map

τ : Mg,n(P
r,d)→Mg,n× (Pr)n be the map remembering [(C,x1, . . . ,xn)] and the points

yi = f(xi). Then, under assumption (2), we have [2, §1.3]:

τ∗([Mg,n(P
r,d)]vir) = (r+1)g · [Mg,n× (Pr)n].

for all d. When d < rg+ r, the virtual count includes excess contributions we wish to

exclude in our counts Lg,r,d.
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More generally, when P
r is replaced by an arbitrary target variety X, the corresponding

virtual degrees are expressed in terms of the quantum cohomology of X (see [2, Theorem

1.3]). It is expected that for all Fano varieties X, the virtual count of maps of sufficiently

large degree is enumerative, as in Theorem 1.1, see [13] for partial results in this direction.

2. Reduction to genus zero

In this section, we reduce the enumerative problem to genus zero via a standard limit
linear series degeneration, see for example [12, 18]. We begin by recalling some notation,

while assuming throughout some familiarity with basics of the theory of limit linear

series [7].
We recall the usual notation for Schubert cycles in the Grassmannian Gr(r+1,d+

1) := Gr(r+1,V ), where V is a (d+1)-dimensional vector space, following [9, §4]. For
a nonincreasing sequence μ := (μ0 ≥ μ1 ≥ ·· · ≥ μr) and a flag F : V = Vd+1 ⊃ Vd ⊃ . . . ⊃
V1 ⊃ V0 = 0, we introduce the Schubert cycle:

Σμ =Σμ(F) :=
{
Λ ∈Gr(r+1,d+1) : dim

(
Λ∩Vd−r+1+i−μi

)
≥ i+1, for i= 0, . . . ,r

}
.

Note that codim
(
σμ,Gr(r + 1,d + 1)

)
= |μ| = μ0 + · · · + μr. If μ = (1, . . . ,1,0) =: 1r,

in projective terms, Σ1r consists of r -dimensional subspaces L = P(Λ) ⊂ P(V ) ∼= P
d

intersecting a fixed codimension 2 subspace along an r -dimensional locus. We set

σμ := [Σμ] ∈ CH|μ|(Gr(r+1,g+1)
)
.

For a smooth curve C and a linear series �= (L,V ) ∈Gr
d(C), we denote by:

α�(p) :=
(
0≤ α�

0(p)≤ α�
1(p)≤ ·· · ≤ α�

r(p)≤ d− r
)

the ramification sequence at a point p ∈ C. Keeping with the tradition of [7] or [11],

we write ramification indices of linear series nondecreasingly, whereas indices indexing

Schubert cycles are written nonincreasingly. We formalise this practice as follows:

Definition 2.1. For any partition μ = (μ0 ≥ μ1 ≥ ·· · ≥ μr), denote by μ the tuple of

components of μ in reverse (increasing) order, that is, μ= (μr, . . . ,μ0).

We introduce the proper stack of limit linear series of type grd:

σ : G̃r
d →Mct

g

over the moduli space Mct
g of curves of compact type. For a curve C of compact type, we

denote by G
r

d(C) the variety of limit linear series on C. For pairwise distinct smooth points

p1, . . . ,pn ∈ Creg and Schubert indices αi =
(
0≤ αi

0 ≤ ·· · ≤ αi
r ≤ d− r

)
, where i= 1, . . . ,n,

we set:

G
r

d

(
C,(p1,α

1), . . . ,(pn,α
n)
)
:=

{
� ∈G

r

d(C) : α�(pi)≥ αi, for i= 1, . . . ,n
}
,

viewed as a generalised degeneracy locus of expected dimension:

ρ(g,r,d,α1, . . . , . . . ,αn) := g− (r+1)(g−d+ r)−
n∑

i=1

r∑
j=0

αi
j . (3)
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We now consider a degeneration to the following flag curve of genus g, already considered
in [7]. Let [C0,x1, . . . ,xn] be the n-pointed genus g curve of compact type consisting of a

rational spine Rsp to which general elliptic tails E1, . . . ,Eg are attached at general points

p1, . . . ,pg ∈ Rsp, respectively, and a further rational component R0 also attached at a
general point x0 of Rsp. The marked points x1, . . . ,xn specialise to general points of R0.

Let C → (B,b0) be the versal deformation space of [C0,x1, . . . ,xn] and denote by

τ1, . . . ,τn : B → C the sections corresponding to the n marked points. We may assume

that each point of B parametrises an n-pointed curve of genus g of compact type. We
further consider the induced moduli map B →Mct

g forgetting the markings and let:

σB : G̃r
d/B := G̃r

d ×Mct
g
B →B

be the corresponding family of limit linear series and consider the evaluation map:

ev : G̃r
d/B ���B×Pn

r ,
(
Cb,�

)
�→

(
b,
(
φ�(τ1(b)), . . . ,φ�(τn(b))

))
, (4)

where φ� denotes the rational map to P
r corresponding to the aspect of the limit linear

series � on the component of Cb on which all the marked points τ1(b), . . . ,τn(b) lie.

Using [8, Theorem 1.1], it follows that G̃r
d/B is smooth of dimension 3g−3+n+ρ(g,r,d)

over B and every limit linear series on C0 smooths to a linear series on a neighboring
smooth curve. It follows that deg(ev) = Ld,g,r. We will determine this degree by looking

at the scheme-theoretic fibre ev−1(b0,y1, . . . ,yn), where y1, . . . ,yn are general points in P
r

considered up to projective equivalence. We will show in Lemma 3.2 that every point
[C0,�] ∈ ev−1(b0,y1, . . . ,yn) corresponds to a limit linear series � ∈ G

r

d(C0) which is base

point free at each point x1, . . . ,xn. In particular, ev−1(b0,y1, . . . ,yn) is disjoint from the

indeterminacy locus of the map ev defined in (4).

To that end, we wish to count limit linear series � on C0 of degree d and rank r, subject to
the condition that, after twisting down base points on the R0-aspect, the points x1, . . . ,xn

have prescribed images in P
r. For a limit linear series � on C0, we denote by �R0

,�Rsp
and

�Ei
its corresponding aspects. By the additivity of the Brill-Noether number for � encoded

in the very definition of a limit linear series, we have the following inequality:

ρ(g,r,d)≥ ρ
(
�R0

,α�R0 (x0)
)
+ρ

(
�Rsp

,α�Rsp (x0),α
�Rsp (p1), . . . ,α

�Rsp (pg)
)

+

g∑
i=1

ρ
(
�Ei

,α�Ei (pi)
)
.

Since over the curve [C0,x1, . . . ,xn] the map ev evaluates the R0-aspect of each
limit linear series, it follows that we must only consider the components of G

r

d(C0)

in which �R0
varies in a family of dimension ρ(g,r,d) = dimPn

r . This happens

when the remaining aspects of � satisfy ρ
(
�Ei

,α�Ei (pi)
)
= 0 for i = 1, . . . ,g and

ρ
(
�Rsp

,α�Rsp (x0),α
�Rsp (p1), . . . ,α

�Rsp (pg)
)
= 0.

This implies that on each elliptic tail Ei, the ramification sequence at the node pi must

be equal to (d− r−1, . . . ,d− r−1,d− r). Indeed, we need α
�Ei
r (pi) = d− r, or else:

α
�Ei
0 (pi)+ · · ·+α

�Ei
r (pi)≤ r(d− r−1),
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but also α
�Ei
r−1(pi)≤ d− r−1, or else Ei would carry a linear series of rank 1 and degree

1. We therefore have a unique choice of the Ei-aspect, precisely �Ei
= (d−r−1)pi+

∣∣(r+
1)pi

∣∣, for i = 1, . . . ,g. By compatibility of the aspects of limit linear series, we find that

α�Rsp (pi) = (0,1, . . . ,1) for i= 1, . . . ,g, that is, �Rsp
has a simple cusp at each of the points

pi, . . . ,pg.
From here, on Rsp, the ramification sequence of � at the point x0:(

α
�Rsp

0 (x0), . . . ,α
�Rsp
r (x0)

)
must satisfy the equality:

r∑
j=0

α
�Rsp

j (x0) = (r+1)(d− r)− rg,

whereas the R0-aspect of � satisfies:

r∑
j=0

α
�R0
j (x0) = rg. (5)

Let μ = (μ0 ≥ ·· · ≥ μr) := α
�Rsp
r (x0), that is, we write the partition

(
α
�Rsp
r (x0), . . . ,

α
�Rsp

0 (x0)
)
, where the ramification indices are given in descending order, and let λ be the

complement of μ in (d−r)r+1, that is, λj = d−r−μj , for j = 0,1, . . . ,r. Summarising the

discussion so far, for each limit linear series � on C0 contributing towards the degree of
the map ev, one has:

α�R0 (x0) = λ. (6)

The number of possible aspects �Rsp
on Rsp with ramification sequence μ at x0 and

cusps at p1, . . . ,pg is given by:

βλ :=

∫
Gr(r+1,d+1)

σg
1r ·σμ.

The transversality of the intersection follows from [6], see also [15], that is, for a general
choice of the points p1, . . . ,pg and x0, one has precisely βλ distinct linear series on Rsp with

these property. Since σλ′ ·σμ = 0, for any Schubert index λ′ �= λ with |λ′| = rg, whereas

σλ ·σμ = 1, we can write:

σg
1r =

∑
|λ|=rg

βλ ·σλ ∈ CHg
(
Gr(r+1,d+1)

)
. (7)

Definition 2.2. Given a partition λ =
(
λ0 ≥ ·· · ≥ λr

)
with |λ| = rg and general points

y1, . . . ,yn ∈ P
r, we define Lg,r,d,λ to be the number of maps f : P1 → P

r of degree d−λr

sending xi to yi for i= 1, . . . ,n and with ramification sequence given by λ at x0.

Such maps are obtained by twisting the R0-aspect of each limit linear series � on C0 by

the order λr of its base point x0. Our degeneration shows:
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Proposition 2.3. For a general n-pointed curve [C,x1, . . . ,xn] of genus g, the degree of

the map ev(x1,...,xn) is given by the formula:

Lg,r,d =
∑

|λ|=rg

βλLg,r,d,λ.

Proof. We have already explained that Lg,r,d is the degree of the map ev: G̃r
d/B ���

B×Pn
r . Having fixed general points y1, . . . ,yn ∈ P

r, the fibre over (b0,y1, . . . ,yn) ∈B×Pn
r

of the map ev is then scheme-theoretically isomorphic to the variety of limit linear series
� ∈ G

r

d(C0), whose R0-aspect maps the marked points xi to yi for i = 1, . . . ,n. From

the discussion above, it follows that G
r

d

(
C0

)
contains βλ components all isomorphic to

the variety Gr
d

(
R0,(x0,λ)

)
; the remaining components of G

r

d(C0) do not contribute to the

degree of ev. Finally, observe that Lg,r,d,λ is precisely the contribution to the degree of
the map ev corresponding to the component Gr

d

(
R0,(x0,λ)

)
.

3. Counting linear series with assigned incidences on P
1

Having reduced both Theorems 1.1 and 1.2 to a question on rational curves, we use

Schubert calculus to complete their proofs.

Let us first sketch the argument. The set of maps P
1 → P

r counted by the number
Lg,r,d,λ naturally sits inside the projective space P

(r+1)(d+1)−1 parametrising morphisms

f = [f0, . . . ,fr] of degree d, as given by the intersection of the conditions:

(i) f(xi) = yi for i= 1, . . . ,n,

(ii) f has ramification at least λ at x0.

The conditions f(xi) = yi cut out linear subspaces, while, upon summing over all λ

with the multiplicities βλ, the ramification conditions at x0 cut out an intersection of g

subvarieties of degree r+1. The expected degree of the intersection is therefore (r+1)g,
and we show in the proof of Theorem 1.1 that this intersection is indeed transverse when

d≥ rg+ r.

In general, however, the intersection described above has many excess components.
Under the conditions of Theorem 1.2, we remove these excess contributions by passing to

a certain incidence correspondence dominating P
(r+1)(d+1)−1 to compute Lg,r,d.

3.1. Proof of Theorem 1.1

For a complex polynomial u = a0 + · · ·+ adt
d, we denote by c(u) the column vector of

its coefficients. Let P
(r+1)(d+1)−1 be the projective space parametrising (r+1)-tuples

(f0, . . . ,fr) of polynomials of degree d in one variable viewed as sections of OP1(d), up to

simultaneous scaling, and not all zero. When not all polynomials fi are zero and have no

common zeroes, they define a map f = [f0, . . . ,fr] of degree d from P
1 to P

r.
We introduce the map:

π : P(r+1)(d+1)−1 ���Gr(r+1,d+1), (8)

remembering the linear series spanned by f0, . . . ,fr, whenever they are linearly indepen-

dent. The indeterminacy locus of this map is irreducible of codimension d− r+1, for an
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(r+1)-tuple of polynomials (f0, . . . ,fr) lies in the indeterminacy locus of π if and only if

the (r+1)× (d+1)-matrix of coefficients
(
c(f0), . . . ,c(fr)

)
has rank at most r.

For a Schubert variety Σλ = Σλ(F) ⊆ Gr(r+1,d+1) of codimension at most rg in
Gr(r+1,d+1), let Σ̃λ := (π1)∗

(
π∗
2(Σλ)

)
be the closure of its pullback under P(r+1)(d+1)−1.

Because the codimension of Σλ is lower than that of the indeterminacy locus of π (by our

assumption, d− r+1 > rg), the cycle Σ̃λ has the expected codimension of |λ| = rg and
defines a well-defined class σ̃λ ∈ CHrg

(
P
(r+1)(d+1)−1

)
. Using (7) we have the formula:

σ̃g
1r =

∑
|λ|=rg

βλσ̃λ.

Recall that we have fixed n general points y1, . . . ,yn ∈ P
r. The condition on maps

f : P1 → P
r that f(xi) = yi for i = 1, . . . ,n impose nr linear conditions on the matrix

of coefficients
(
c(f0), . . . ,c(fr)

)
. Observe that this condition is automatically satisfied for

those i for which xi is a base point of f. The points y1, . . . ,yn having been chosen to be

general, these linear conditions are independent. Since (r+1)(d+1)− 1−nr = rg, the

conditions f(xi) = yi give rise to a linear subspace:

L∼= P
rg ⊆ P

(r+1)(d+1)−1.

Now, let Σλ(x0) =Gr
d

(
P
1,(x0,λ

)
) be the Schubert variety of Gr(r+1,d+1) parametris-

ing linear series on P
1 with ramification sequence at least λ at x0. We wish to intersect its

pullback Σ̃λ(x0) with L on P
(r+1)(d+1)−1. We call a point [f0, . . . ,fr] in this intersection

generic if 〈f0, . . . ,fr〉 is a linear series of rank r with ramification sequence exactly λ,
and which defines a (nondegenerate) morphism f : P1 → P

r after twisting down the base

points at x0 with f(xi) = yi (in particular, 〈f0, . . . ,fr〉 has no base points away from x0).

Remark 3.1. We have already seen above that the condition d≥ rg+r ensures that the

classes σ̃g
1r and σ̃λ live in codimension strictly smaller than that of the indeterminacy

locus of π. However, as we will see in Lemma 3.2, the same condition d ≥ rg+ r also

ensures that L contains no points corresponding to degenerate maps f : P1 → P
r. In fact,

this is already evident in the case of constant maps; indeed, suppose instead that d≥n−1.

Then, we may take the nonzero polynomials f0, . . . ,fr to vanish at x1, . . . ,xn−1, and after
twisting away all base points, the resulting map f : P1 → P

r to be the constant map with

image yn. Then, f = [f0, . . . ,fr] lies on the one hand in L, and on the other hand in the

indeterminacy locus of π.

Lemma 3.2. The intersection points of Σ̃λ(x0) with L are generic in the previous sense.

In particular, the intersection occurs away from the indeterminacy locus of π.

Proof. We construct the locus L ‘relatively’, allowing the points y1, . . . ,yn to vary, and
show that, for dimension reasons, the locus where L∩ Σ̃λ(x0) contains nongeneric points

cannot dominate the space of choices of the yi. In particular, if the yi are chosen to be

general, we obtain the desired conclusion.
More precisely, let V ⊆ (Pr)n be the open subset of collections of points y1, . . . ,yn ∈ P

r,

where the yi are in linearly general position, that is, no m of the yi lie on a linear

space of dimension m−2 if 2≤m≤ r+1. Consider the product V ×P
(r+1)(d+1)−1, where
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the second factor parametrises maps f = [f0, . . . ,fr] as before, and the closed subscheme

V × Σ̃λ(x0) of the expected dimension rg as defined above. We then define the locus,

abusively denoted L⊆ V ×P
(r+1)(d+1)−1, of maps f satisfying f(xi) = yi for i= 1,2, . . . ,n,

by relativising the above construction.

We have a forgetful map ψ : L∩ Σ̃λ(x0) → V , and wish to show that the locus of

nongeneric points of source does not dominate V ; to do so, we show that the locus
of nongeneric points has dimension strictly less than that of V.

First, consider the locus on L∩ Σ̃λ(x0) of nongeneric f = [f0, . . . ,fr] ∈ L∩ Σ̃λ(x0) away

from the indeterminacy locus of π. Suppose that f has base points of total order k away
from x0, . . . ,xn and order k′ on x1, . . . ,xn, and that k+k′ > 0. We see upon twisting down

by these base points that the locus of such f has the expected codimension (r+1)(k+k′)
in Σ̃λ(x0), and the incidence conditions f(xi) = yi impose at least (n− k′)r additional

conditions inside V ×Σ̃λ(x0). In total, we find that the locus of possible f has codimension
strictly greater than rg+ rn in V × Σ̃λ(x0), and therefore cannot dominate V. Similarly,

a parameter count shows that f cannot have ramification sequence strictly more than λ

at x0.
Consider now a point of L∩ Σ̃λ(x0), for which dim〈f0, . . . ,fr〉 ≤ r. We show again by

counting parameters that no such f can exist. By twisting away base points at x0 (which

decreases the number of moduli and the number of conditions by the same amount), we
may assume that f is base point free at x0. We may also assume that f has no base

points away from x1, . . . ,xn. Suppose now that f has k (simple) base points among these

xi, we label them as xn−k+1, . . . ,xn; we twist down our linear series to have degree d−k,

and lose the corresponding k linear conditions. Note that in this case, the ramification
condition at x0 can no longer be imposed in terms of f0, . . . ,fr alone, since by assumption,

the resulting map f : P1 → P
r is degenerate, that is, the corresponding linear series

has dimension r′ < r. Note, however, that if the remaining yi do not themselves live
in a linear subspace of P

r of dimension r′, then this is impossible; we therefore need

n−k ≤ r′+1.

Then, it must be true that if x1, . . . ,xn−k are general points of P1, there exists a map
f : P1 → P

r′ of degree d−k with f(xi) = yi for i= 1, . . . ,n−k. Therefore, we have:

(d−k+1)(r′+1)−1≥ r′(n−k).

Rearranging yields:

k ≤ d− r′(n−d−1).

On the other hand, because n−k ≤ r′+1, we find:

(d−n+1)≥ r′(n−d−2).

However, by assumption, we have n ≥ d + 2 and r′ ≥ 0, so we have reached a

contradiction.

Lemma 3.3. For a general choice of the points x1, . . . ,xn ∈ P
1 and y1, . . . ,yn ∈ P

r, the

intersection of Σ̃λ(x0) and L is transverse.
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Proof. Let Mn,d,r be the open subscheme of the space Homd(P
1,Pr)× (P1)n parametris-

ing elements ([f : P1 → P
r],x1, . . . ,xn), where f is a nondegenerate morphism of degree d

and the xi are pairwise distinct points that in addition are distinct from a fixed point

x0 ∈ P
1.

One may construct Mn,d,r as an open subset of a (P1)n-bundle over P(r+1)(d+1)−1. We

have a smooth, regular map χ : Mn,d,r →Gr(r+1,d+1), from which we can pull back the
smooth, open Schubert cycle of linear series with ramification exactly λ at x0 to obtain

the smooth subscheme Yn,d,r parametrising the morphisms we wish to count. Finally, the

projection φ : Yn,d,r → (P1)n+1× (Pr)n remembering the marked points and their images
on the source is generically unramified of finite degree.

By construction, any nonzero tangent vector to the intersection Σ̃λ(x0) and L in the

generic locus yields a nonzero relative tangent vector of φ. Thus, when the points xi,yi
are general, there are no such tangent vectors, and the intersection is transverse.

We are now in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By the above discussion summarised in Proposition 2.3, it

suffices to intersect nr linear conditions with σ̃g
1r on P

(r+1)(d+1)−1 and compute the degree,
that is:

Lg,r,d =
∑

|λ|=rg

βλL · σ̃λ = L · σ̃g
1r = deg

(
σ̃g
1r

)
= deg

(
σg
1r

)
,

where the last two degrees are computed on Gr(r + 1,d+ 1) and on P
(r+1)(d+1)−1,

respectively.

Theorem 1.1 then follows from the fact that the degree of σ̃1r is r + 1. To see

this, note that on Gr(r + 1,d+ 1), the Schubert cycle Σ1r is the locus of (r + 1)-
planes intersecting a fixed codimension 2 subspace P ⊆ H0(P1,O(d)) in a subspace

of dimension at least r. Identifying P
(r+1)(d+1)−1 with the space of (r+ 1)× (d+ 1)

matrices, whose entries are taken up to simultaneous scaling, the pullback of Σ1r may be
identified with the determinantal locus of matrices, such that the (r+1)× 2 submatrix

formed by the first two columns has rank 1. This, in turn, is the pullback under linear

projection from P
(r+1)(d+1)−1 of the Segre embedding P

1×P
r → P

2r+1. Denoting by h1

and h2 the pullbacks to P
1 ×P

r+1 of the hyperplane classes of P
1 and P

r+1, observe

that:

deg
(
P
1×P

r
)
= (h1+h2)

r+1 =

(
r+1

1

)
h1h

r
2 = r+1.

This completes the proof.

Remark 3.4. The inequality d ≥ rg+ r in Theorem 1.1 is sharp. Indeed, the largest

possible value of d outside of this range is d = rg, corresponding to d = n− 1. In this

case, following the proof of Theorem 1.1 shows that our intersection of cycles inside
P
(r+1)(d+1)−1 contains an additional zero-dimensional locus of constant maps [f0, . . . ,fr],

where each fi is a constant multiple of the degree d = n− 1 polynomial vanishing at

all of the points x1, . . . ,xn except one, xi, and the image of f is the point yi. There is
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one such map for each of the marked points xi, so we find that Lg,r,d = (r+1)g −n =

(r+1)g − (d+1).

Remark 3.5. It is interesting to observe that on a smooth curve C of genus g, a general
stable vector bundle E of rank r+1 and degree d has precisely (r+1)g line subbundles

of maximal degree d′, where d−(r+1)d′ = r(g−1) (see [16] or [17]). The reinterpretation

of the numbers Lg,r,d from this point of view will be pursued elsewhere.

3.2. Proof of Theorem 1.2

We recast the calculation of the previous section in the following light: we consider

the incidence correspondence on P
(r+1)(d+1)−1 ×Gr(r + 1,d+ 1) of (r + 1)-tuples of

degree d polynomials, spanning a r+1-dimensional subspace of H0(P1,OP1(d)), then

pullback Schubert cycle conditions on the Grassmannian side and linear conditions on
the projective space side. This incidence correspondence is defined by pulling back the

diagonal under the map:

(π, id) : P(r+1)(d+1)−1×Gr(r+1,d+1) ���Gr(r+1,d+1)×Gr(r+1,d+1),

and the condition d≥ rg+ r is needed in order to prevent the indeterminacy locus from
being too large. In this section, we obtain formulas for Lg,r,d in the cases r = 1 and g ≥ 1

by shrinking this base locus.

More precisely, for j = 0,1, . . . ,r, let ρj : P
(r+1)(d+1)−1 ��� P

d be the linear projection
remembering fj ∈ H0(OP1(d)), where we recall that (f0, . . . ,fr) is the (r+1)-tuple of

polynomials, whose coefficients are parametrised by P
(r+1)(d+1)−1. We now consider the

following incidence correspondence:

Z :=
{(

[u],Λ
)
∈ P

d×Gr(r+1,d+1) : u ∈ Λ
}

π1

������
����

����
����

��� π2

������
�����

�����
�����

P
d Gr(r+1,d+1)

If Q denotes the rank d− r tautological quotient bundle on Gr(r+1,d+1), then Z can

be realised as the degeneracy locus of the composition:

π∗
1

(
OPd(−1)

)
−→Od+1

Pd×Gr(r+1,d+1)
−→ π∗

2

(
Q
)
,

and thus has class:{
c
(
π∗
2Q

)
· c
(
π∗
1OPd(1)

)}
d−r

=
∑

i+j=d−r

π∗
2

(
σi

)
·π∗

1

(
Hj

)
∈ CHd−r

(
P
d×Gr(r+1,d+1)

)
,

where H is the hyperplane class on P
d, and where we have also used that cj(Q) = σj .

Because the codimension of the base locus of ρj is d+1> d− r, the closure:

Zj :=
(
ρj × idGr(r+1,d+1)

)−1
(Z)
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of the pullback of the correspondence Z has the same class, that is,
∑

i+j=d−r π
∗
2

(
σi

)
·

π∗
1

(
Hj

)
, where this time π2 : P

(r+1)(d+1)−1×Gr(r+1,d+1)→Gr(r+1,d+1) denotes the

second projection.

Proof of Theorem 1.2. We wish to compute the intersection inside P
(r+1)(d+1)−1 ×

Gr(r+1,d+1) of the nr linear conditions pulled back from P
(r+1)(d+1)−1 given by the

equations f(xi) = yi for i = 1, . . . ,n, the pullback under π2 of the Schubert cycles σλ,

where λ is a Schubert index with |λ|= rg, and the classes of the cycles Z0, . . . ,Zr defined
above. We proceed as in Lemmas 3.2 and 3.3.

First, we introduce the incidence correspondence:

X :=
{
([f0, . . . ,fr],Λ) ∈ P

(r+1)(d+1)−1 ×Gr(r+1,d+1) : fi ∈ Λ
}

π1

�������
�����

�����
�����

�
π2

������
�����

�����
�����

���

P
(r+1)(d+1)−1 Gr(r+1,d+1)

We first claim that the intersection π∗
2(σλ) ·π∗

1(L) in question is supported away from
the locus of (f,Λ) ∈ X , where f defines a degenerate map f : P1 → P

r′ , for some r′ < r.

When d≥ rg+ r, the same proof as in Lemma 3.2 applies.

Suppose that either r = 1 or n = d+2, there is such a (f,Λ) ∈ Z in our intersection,
and that k of the points x1, . . . ,xn are base points of the r′-dimensional linear system Λf

spanned by f0, . . . ,fr. As in the proof of Lemma 3.2, it must be the case that k≥ n−r′−1.

Denote the total ramification of Λf at x0 by t. Then,

t≤ dimGr(r′+1,d−k+1)

≤ dimGr(r′+1,d−n+ r′+2)

= (r′+1)(d−n+1).

Thus,

d≥ t

r′+1
+n−1

=
t

r′+1
+d+

d

r
−g,

whence

d≤ rg− rt

r′+1
.

On the other hand, we require that Λ ∈ σλ, where |λ|= rg, and Λf ⊆ Λ. Such a Λ can
only exist if:

t+(r− r′)(d− r)≥ rg,
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as dim(Λ/Λf ) = r−r′, and each dimension can contribute at most d−r to the ramification

of Λ at x0. Since r > r′, we obtain:

t+(r− r′)

(
rg− rt

r′+1
− r

)
≥ rg

t

(
1− (r− r′)r

r′+1

)
+(r− r′)(rg− r)≥ rg.

When r = 1, and thus r′ = 0, we obtain a contradiction. It remains to consider the case

n= r+2, in which case:

rg = (d− r)(r+1).

Then, comparing the inequalities:

t≤ (r′+1)(d−n+1) = (r′+1)(d− r−1)

t≥ rg− (r− r′)(d− r) = (d− r)(r+1)− (r− r′)(d− r)

also yields a contradiction.

Therefore, we are back in the situation of Lemma 3.2, in which all intersection points
occur where f is nondegenerate, and in particular, (f,Λ) lies away from the indeterminacy

of the ρj . The same parameter counts show that f indeed defines a map f : P1 → P
1 of

degree d with vanishing exactly λ at x0.

Furthermore, the intersection in question is transverse by exactly the same argument
as in Lemma 3.3, so it suffices to compute the degree of the intersection cycle on

P
(r+1)(d+1)−1×Gr(r+1,d+1). This equals:

∫
P(r+1)(d+1)−1×Gr(r+1,d+1)

π∗
2

(
σg
1r

)
·π∗

1

(
Hnr

)⎛⎝ ∑
i+j=d−r

π∗
2

(
σi

)
·π∗

1

(
Hj

)⎞⎠r+1

=

∫
Gr(r+1,d+1)

σg
1r ·

⎡⎣ ∑
α0+···+αr=(r+1)(d−r)−rg

(
r∏

i=0

σαi

)⎤⎦,
as desired.

Remark 3.6. While the proof of Theorem 1.2 shows that our refined incidence

correspondence avoids the constant maps of Remark 3.1 when r = 1 or n = r+2, this
is not the case in general. Indeed, suppose that r ≥ 2, n≥ r+3 and d≥ n−1. Then, take

f0, . . . ,fr to have simple zeroes at x1, . . . ,xn−1 and an order d−(n−1) zero at x0, such that

f = [f0, . . . ,fr] defines the constant map with image yn ∈ P
r. If λ is a Schubert index with

|λ|= rg, then the condition that f0, . . . ,fr ∈ Λ, where Λ ∈ Σλ(x0)⊆Gr(r+1,d+1), may

be satisfied as long as rg ≤ (d−n+1)+dimGr(r,d) = (d−n+1)+r(d−r). Substituting

rg = dr+ r+ d− rn, this is equivalent to n ≥ r2+r−1
r−1 = r+2+ 1

r−1 . When r ≥ 2 and

n≥ r+3, this is immediate.
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For r = 1, Theorem 1.2 can be used to recover (via simple manipulations) the explicit

formulas in terms of binomial coefficients for the degrees Lg,1,d. These numbers are also

determined in [5] using excess intersection on Hurwitz spaces of admissible covers.

Proposition 3.7. For d≥ g+2
2 , we have:

Lg,1,d =
∑

α0+α1=2d−2−g

∫
Gr(2,d+1)

σg
1 ·σα0

·σα1

=

⌊
2d−g−2

2

⌋∑
i=0

(2d−g−2i−1)2

g+1

(
g+1

d− i

)

= 2g −2

g−d−1∑
i=0

(
g

i

)
+(g−d−1)

(
g

g−d

)
+(d−g−1)

(
g

g−d+1

)
,

where, in the last line, we take
(
g
j

)
= 0 when j < 0.

Proof. We use Giambelli’s formula σa,b = σa ·σb−σa+1 ·σb−1 ∈ CHa+b
(
Gr(2,g+1)

)
for

a≥ b, coupled with the formula (see e.g. [11, p. 269]∫
Gr(2,d+1)

σa,b ·σg
1 =

a− b+1

g+1
·
(
g+1

d− b

)
=

(
g

d− b−1

)
−
(

g

d− b

)
for all a≥ b with a+b= 2d−2−g. Substituting in the formula provided by Theorem 1.2

yields the claims.

3.3. Degrees of determinantal Schubert cycles

We note here that comparison of the incidence correspondences given above in the proofs

of Theorems 1.1 and 1.2 allows one to compute the degrees of pullbacks of Schubert cycles
of low codimension on Gr(r+1,d+1) to P

(r+1)(d+1)−1.

Proposition 3.8. Let Σλ be a Schubert cycle of codimension |λ| ≤ d−r in Gr(r+1,d+1),

and let Σ̃λ be the closure of its pullback under the rational map π : P(r+1)(d+1)−1 ���
Gr(r+1,d+1). Then, the degree of Σ̃λ is:

∫
Gr(r+1,d+1)

σλ ·

⎡⎣ ∑
α0+···+αr−|λ|=(r+1)(d−r)−rg

(
r∏

i=0

σαi

)⎤⎦ .

Proof. Let N = (r+1)(d+1)− 1− |λ|. Recall that the codimension of Σλ is strictly

smaller that the codimension of the indeterminacy locus of π. Accordingly, adopting the
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notation of the previous two sections, we have:

deg(Σ̃λ) =

∫
P(r+1)(d+1)−1

HN · [Σ̃λ]

=

∫
P(r+1)(d+1)−1×Gr(r+1,d+1)

π∗
1

(
HN · [Σ̃λ]

)
· [Z0] · · · [Zr]

=

∫
P(r+1)(d+1)−1×Gr(r+1,d+1)

π∗
1

(
HN

)
·π∗

2(Σλ) · [Z0] · · · [Zr]

=

∫
P(r+1)(d+1)−1×Gr(r+1,d+1)

π∗
1

(
HN

)
·π∗

2(Σλ) ·

⎛⎝ ∑
i+j=d−r

π∗
2

(
σi

)
·π∗

1

(
Hj

)⎞⎠r+1

=

∫
Gr(r+1,d+1)

σλ ·

⎡⎣ ∑
α0+···+αr=(r+1)(d−r)−rg−|λ|

(
r∏

i=0

σαi

)⎤⎦,
where we have used the equality:

π∗
1(Σ̃λ)∩Z0∩·· ·∩Zr = π∗

2(Σλ)∩Z0∩·· ·∩Zr

as subschemes of the incidence correspondence X .

4. Young tableaux interpretation

Comparison of Theorems 1.1 and 1.2 yields the following purely combinatorial statement.

Proposition 4.1. Suppose that g ≥ 0,r ≥ 1,d≥ rg+ r, and d is divisible by r. Then,∫
Gr(r+1,d+1)

σg
1r ·

⎡⎣ ∑
α0+···+αr=(r+1)(d−r)−rg

(
r∏

i=0

σαi

)⎤⎦= (r+1)g.

Indeed, both sides are equal to Lg,d,r whenever n = d− g + 1 + d
r is an integer.

However, when d ≥ g + r, both sides are independent of d ; for the left-hand side,

this can be seen in terms of Schubert calculus but will also be made transpar-

ent in the combinatorial interpretation that follows. In particular, Proposition 4.1

holds under the weaker inequality d ≥ g + r with no condition on the divisibility
by r.

We give a combinatorial interpretation of the left-hand side in terms of a Young

tableaux. Consider a filling of the boxes of a (r+1)× (d− r) grid with:

• rg red integers among 1,2, . . . ,g, with each appearing exactly r times, and
• (r+1)(d−r)−rg blue integers among 0,1, . . . ,r, with each appearing any number

of times,

subject to the following conditions:

• the red integers are top- and left- justified, i.e. they appear above blue integers in
the same column and to the left of blue integers in the same row,
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• the red integers are strictly increasing across rows and weakly increasing down
columns, and

• the blue integers are weakly increasing across rows and strictly increasing down
columns.

An example filling is given in the case (g,d,r) = (6,15,2) below.

1 2 3 4 6 0 0 0 0 0 0 0 0

1 3 5 6 0 1 1 1 1 1 1 1 1

2 4 5 0 2 2 2 2 2 2 2 2 2

Note that the rightmost d−r−g columns must be filled with the blue integers 0,1, . . . ,r
in order, so a filling as above is determined by the leftmost g columns, which are those

that may contain red integers. In particular, the number of such fillings is independent

of d when d ≥ r+ g. Now, we claim that this number of fillings is given exactly by the
intersection number on the left-hand side of Proposition 4.1. Indeed, by the Pieri rule,

the term σ1r corresponds to the transposed semistandard Young tableau given by the red

integers, and the broken strips formed by the blue entries equal to i correspond to the
Schubert cycle σαi

.

Proposition 4.1 therefore implies:

Proposition 4.2. Suppose d ≥ r+ g. Then, the number of fillings of a (r+1)× (d− r)

grid satisfying the above conditions is equal to (r+1)g.

A combinatorial proof of Proposition 4.2 via the Robinson-Schrensted-Knuth (RSK)

algorithm has been given by Gillespie, Reimer and Berg [10].

5. Variants

5.1. Linear series with fixed incidences and secancy conditions

We briefly explain how our methods also recover the more general Tevelev degrees of [5],

where some of the points xi are constrained to lie in the same fibre of f. Recall from §1
that, if 1≤ k ≤ n, we defined L′

g,d,k to be the number of morphisms f : C → P
1 of degree

d sending general points x1, . . . ,xn ∈ C to points y1, . . . ,yn ∈ P
1, where y1 = y2 = · · ·= yk,

but the yi are otherwise general.
More generally, we may fix integers 0 ≤ a ≤ k ≤ d, a general n-pointed curve

(C,x1, . . . ,xk,xk+1, . . . ,xn) of genus g, where n is given by (2), and consider the variety:

Gr,k−a
d,k (C,x1, . . . ,xk) :=

{
� ∈Gr

d(C) : dim �(−x1−·· ·−xk)≥ r−k+a
}
,

parametrising linear systems � whose induced map φ� : C ��� Pr has the property that:〈
φ�(x1), . . . ,φ�(xk)

〉∼= P
k−a−1.

Then Gr,k−a
d,k (C,x1, . . . ,xk) is a determinantal variety of dimension:

ρ(g,r,d)−a(r+1−k+a).
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Fixing points y1, . . . ,yn ∈ P
r general with the property that:

dim 〈y1, . . . ,yk〉= k−1−a,

one can ask for the number of maps f : C → P
r of degree d, such that f(xi) = yi for

i = 1, . . . ,n. For any such map, the corresponding linear series � := f∗∣∣OPr (1)
∣∣ lies in

Gr,k−a
d,k (C,x1, . . . ,xk).

In the interest of simplicity, we deal only with the case:

r = 1, a= k−1,

in which case, this number equals L′
g,d,k. We only sketch the proof; we refer the reader

to [4, §6] for detailed proofs and more general statements.

Proof of Theorem 1.3. Consider a linear series V on our general curve C satisfying the
needed incidence conditions. We employ a further degeneration after that of §2, allowing
x1, . . . ,xk to coalesce onto a bubbled rational component Rk, attached to R0 at x, and

consider the resulting limit V0 on this bubbled curve.4 We find that the Rk-aspect of V0

must have ramification sequence (d−k,d−1) at x, and sends x1, . . . ,xk to the same point
after twisting down the base points at x.

It now suffices to count linear series on R0 with the aggregate ramification condition σg
1

at x0, the new ramification condition σk−1 at x, an additional linear incidence condition
at x (with image y1 = · · · = yk) and linear incidence conditions at xk+1, . . . ,xn. The

computation of §3.2 yields the count:∫
Gr(2,d+1)

σg
1σk−1 ·

⎡⎣ ∑
i+j=2(d−1)−g−(k−1)

σiσj

⎤⎦ .

However, we find the following extraneous solutions: if the linear series in question has

a base point at x, then we twist down, so that the new ramification sequence is (0,k−2),
and d decreases by 1; in addition, we lose the linear incidence condition at x. Therefore,

we see a (zero-dimensional) excess contribution of:∫
Gr(2,d)

σg
1σk−2 ·

⎡⎣ ∑
i+j=2(d−2)−g−(k−2)

σiσj

⎤⎦ .

Subtracting the above yields the formula for L′
g,d,k. One needs to check that there are no

additional degenerate contributions, and that the intersections are transverse as before,

but we omit the details.

Applying the Pieri rule to the formula of Theorem 1.3 yields the following recursions,

recovering [5, Proposition 7] after the change of coordinates Tevg,�,r = L′
g,g+�+1,r. These

recursions are then used in [5] to obtain explicit formulas in terms of binomial coefficients.

4As explained in [4, §6], one should more precisely consider the degeneration of the data of
both V and two (possibly linear-dependent) sections of V defining a map f : C → P

1. We do
not discuss the details here.
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Corollary 5.1. We have:

L′
g,d,1 = L′

g−1,d−1,1+L′
g−1,d,2

and

L′
g,d,k = L′

g−1,d−1,k−1+L′
g−1,d,k+1

for k > 1.

Remark 5.2. The proof of Theorem 1.1 may also be employed to show that L′
g,d,k = 2g

whenever n ≥ d+k+1. For general r, the number of linear series in question is (r+1)g

whenever n≥ d+a+2.
However, even when r = 1, the proof of Theorem 1.2 breaks down as soon as k > 1, as

we will see contributions from constant maps with value y1 = · · · = yk and base points

at xk+1 = · · · = xn. Thus, the additional degeneration as above is needed to obtain the
general formula for L′

g,d,k.

5.2. Linear series with imposed incidences and prescribed ramification

We fix a general pointed curve [C,p1, . . . ,pm,x1, . . . ,xn] ∈ Mg,m+n, general points
y1, . . . ,yn ∈ P

r, as well as m partitions λ1, . . . ,λm of length r + 1. We may consider

morphisms f : C → P
r of degree d satisfying f(xi) = yi for i = 1, . . . ,n, and f has

ramification sequence at least λj at pj for j = 1, . . . ,m. Suppose, for simplicity, that the
(r+1)-st part of each λj is zero, so that f has no base points. Equivalently, like in (1)

we can consider the evaluation map:

ev(x1,...,xn) : G
r
d

(
C,

(
p1,λ1

)
, . . . ,

(
pm,λm

))
��� Pn

r , (9)

and ask for its degree when the dimension of the two varieties in question are equal. Using

(3), we expect a finite number of such maps f : C → P
r whenever ρ(g,r,d,λ1, . . . ,λm) =

rn− (r2+2r), that is, when:

n=
dr+d+ r−λtot−gr

r
, (10)

where λtot := |λ1|+ · · ·+ |λm| is the total size of the partitions λj . Let Lλ1,...,λm

g,r,d be this

number, that is, the degree of the map given by (9).

Degenerating the general genus g curve C to a flag curve as in §2 so that the points
p1, . . . ,pm specialise to general points on the component Rsp, whereas x1, . . . ,xn specialise,

as before, to general points of the rational component R0, we reduce the computation to

the numbers Lg,r,d,λ, as defined in Definition 2.2, where now |λ| = rg+λtot. Following

the proof of Theorem 1.1, we obtain the following result.

Proposition 5.3. Suppose that d≥ rg+ r+λtot, or equivalently, n≥ d+2. Then,

Lλ1,...,λm

g,r,d = (r+1)g ·
m∏
j=1

deg(Σ̃λj
),
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where deg(Σ̃λj
) is the degree of the cycle Σ̃λj

on P
(r+1)(d+1)−1 obtained by tak-

ing the closure of the pullback of Σλj
(x0) ⊆ Gr(r + 1,d+ 1) under the rational map

π : P(r+1)(d+1)−1 ���Gr(r+1,d+1) (see Proposition 3.8).

Similarly, closely following the proof of Theorem 1.2, we obtain:

Proposition 5.4. Suppose that:

• d≥ rg+ r+λtot,
• n= r+2, or
• r = 1.

Then,

Lλ1,...,λm

g,r,d =

∫
Gr(r+1,d+1)

σg
1r ·

m∏
j=1

σλj
·

⎡⎣ ∑
α0+···+αr=(r+1)(d−r)−rg−λtot

(
r∏

i=0

σαi

)⎤⎦ .

Indeed, in both results, the only significant modification is that the total ramification

imposed at x0 after degeneration is rg+λtot, instead of rg. However, this number is equal

to dr+d+ r−nr in both cases, and from here, the proofs go through without change.
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