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Abstract. We show that recently constructed invariants of 3-dimensional manifolds and of hyper-
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Key words: characteristic classes of foliations, symplectic geometry, hyperkähler manifolds, invari-
ants of finite type, supermanifolds.

0. Introduction

Recently L. Rozansky and E. Witten (see [RW]) proposed a topological quantum
field theory depending on a compact oriented 3-dimensional manifoldM and on
a compact hyperkähler manifoldX. In the caseH 1(M,Q) = 0 (i.e. whenM is
a rational homology 3-sphere), the partition functionZ(M,X) ∈ C of this field
theory can be calculated using finitely many terms of the perturbation theory. As a
function ofM this is so called invariant of finite type, of order 2n where 4n is the
dimension ofX.

More generally, for every connected finite 3-valent graph0 with 2n vertices,
endowed with a cyclic order in the star of each vertex, Rozansky and Witten as-
sociated a functionX 7→ Z0(X) on the space of isometry classes of hyperkähler
manifolds of dimension 4n. This function is given by an integral overX of cer-
tain invariant polynomial in coefficients of the curvature tensor of the hyperkähler
metric onX.

Here I propose a simple construction of RW invariants. It consists of two steps:

(1) With every 3-valent graph endowed with cyclic orders at vertices, or with
every oriented rational homology 3-sphereM, we associate a cohomology class of
the Lie algebra of formal Hamiltonian vector fields in an arbitrary finite-dimensional
symplectic vector space. This cohomology class is stable. Stable cohomology groups
under the question are called Graph Cohomology groups, because they can be
calculated via certain complex constructed from finite graphs. Universal finite type
invariants of links and of rational homology 3-spheres take values in a subspace of
the Graph Cohomology.

This construction is known already for a while, see [Ko1] for the general over-
view, [BN] for the discussion of 3-valent graphs and finite type invariants of links,
and [LT] for the construction of invariants of homology 3-spheres.
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116 MAXIM KONTSEVICH

(2) It is known from early seventies that cohomology groups of Lie algebras
of formal vector fields give characteristic classes of foliations (see [BR], [BH]). In
the case of Hamiltonian vector fields we get characteristic classes of symplectic
foliations, i.e. of foliations endowed with a symplectic structure in the transversal
direction. Formally, any complex manifold can be considered as a foliation in anti-
holomorphic direction. Analogously, a holomorphic symplectic manifoldX gives
a formal complex-valued symplectic foliation. Applying a small modification of
the standard construction of characteristic classes we get a homomorphism from
the Lie algebra cohomology to the cohomology of coherent sheavesH •(X,OX).
This construction could have been invented 25 years ago.

RW invariants can be read from these characteristic classes. Moreover, it follows
directly from our description that one does not need the hyperkähler metric onX in
the construction. One can formulate it in purely holomorphic terms (or in algebro-
geometric terms ifX is algebraic). An easy argument shows that numbersZ(M,X)

orZ0(X) are deformation invariants of hyperkähler manifoldsX.
As a by-product, we obtain a construction of finite type invariants of 3-manifolds

based on symplectic foliations instead of hyperkähler manifolds.
This paper is an extended version of my letters to V. Ginzburg and to E. Witten

(January 1997). Recently M. Kapranov, stimulated by these letters, found a differ-
ent approach to RW invariants. He noticed that cohomology classes inH •(X,OX)

associated with all 3-valent graphs can be written down in terms of just one class,
so called Atiyah class. His construction is shorter than mine, but basically is the
same. M. Kapranov wrote a beautiful and detailed exposition (see [Ka]) with many
interesting deviations from the main theme. Still, I think that it is reasonable to give
an account of the original geometric approach. Strictly speaking, my present paper
contains no really new ideas. Nevertheless, I hope that it could help to clarify the
picture.

0.1. NOTATIONS

Letgbe a Lie algebra overR, k ⊂ gbe a finite-dimensional Lie subalgebra ofgand
K be a Lie group (not necessarily connected) with the Lie algebrak. We assume
also that an action ofK by automorphisms ofg is given, such that the induced
action ofk = Lie(K) is the adjoint action. LetV be a(g,K)-module. Relative co-
homology groupH •(g,K;V ) is defined as the cohomology group of the complex
of K-invariant skew-symmetric polylinear maps fromg to V vanishing if one of
the arguments belongs tok

Ci(g,K;V ) := (Hom(∧i(g/k), V )K, i > 0.

This complex is a subcomplex of the standard cochain complex ofg with coef-
ficients inV . The differential inC•(g,K;V ) is induced from the standard differ-
ential inC•(g;V ).

153909.tex; 8/08/1998; 7:28; p.2

https://doi.org/10.1023/A:1000619911308 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000619911308
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For the case of trivial coefficients the cochain complexC•(g,R) can be inter-
preted as the complex of (left)G-invariant differential forms onG, whereG is
any Lie group with the Lie algebra equal tog. Analogously, the relative cochain
complexC•(g,K;R) can be identified with the complex ofG-invariant differential
forms onG/K.

For n > 0 we denote by Ham2n the Lie algebra of formal Hamiltonian vector
fields in the standard symplectic vector spaceR2n. This Lie algebra is endowed
with the topology of the inverse limit of finite-dimensional vector spaces. Elements
of Ham2n are in one-to-one correspondence with formal Hamiltonians modulo
constants

Ham2n ' R[[p1, . . . , pn, q1, . . . , qn]]/R.
We denote by Ham02n the subalgebra of Ham2n consisting of formal vector fields

vanishing at zero

Ham2n/Ham0
2n ' R2n.

Lie algebra Ham02n contains subalgebrasp(2n,R) consisting of linear Hamil-
tonian vector fields. The Lie group Sp(2n,R) acts on Ham02n. Thus, we can define
cohomology groups with coefficients in the trivial one-dimensional module

Hi
2n := Hi

cont(Ham0
2n,Sp(2n,R);R).

Here the subscript ‘cont’ means that we consider only continuous cochains, i.e.
polylinear functionals depending on finitely many terms in the Taylor expansions
at zero (Gelfand–Fuks cohomology).

1. From graphs to cohomology

Let 0 be a 3-valent graph with 2N vertices. We associate with it (up to a sign) an
elementI0 in H 2N

2n for anyn.
Lie algebra Ham02n is a semi-direct product ofsp(2n,R) and of the subalgebra

Ham1
2n consisting of HamiltoniansH ∈R[[pi, qi]] such that the Taylor series of

H starts at terms of order at least 3. Thus, the relative cochainsCicont(Ham0
2n,

Sp(2n,R);R) can be identified with Sp(2n,R)-invariant cochains of Ham12n with
trivial coefficients.

The group Sp(2n,R) acts semi-simply on Ham12n, and on its cochain complex.
It implies that we have a canonical identification

Hi
2n ' (H i

cont(Ham1
2n;R))Sp(2n,R).

The first cohomology group of Ham12n (i.e. the co-abelianization) is non-trivial,
it contains Sym3(R2n). The corresponding 1-cochain associates to a formal Hamil-
tonianH its third Taylor coefficient. Using cup-products we construct cohomology
classes in higher degrees

∧2N(Sym3(R2n))→ H 2N
cont(Ham1

2n;R).
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118 MAXIM KONTSEVICH

The map from above is evidently Sp(2n,R)-equivariant. Now, any 3-valent
graph0 with 2N vertices (the number of vertices of0 is necessarily even) gives,
up to a sign, an invariant tensor in∧2N(Sym3(R2n)). We use graph as a scheme for
contracting indices. Applying isomorphisms as above we get relative cohomology
classI0.

For general discussion of Graph Cohomology and its relation with cohomology
of Lie algebras of formal vector fields we refer the reader to [Ko2].

2. Characteristic classes of flat bundles

Before going further we remind a general construction of characteristic classes of
flat bundles. In Section 3 we will apply it to foliations.

LetX be a smooth manifold,G be a finite-dimensional Lie group with the Lie
algebrag. LetE→ X be a principalG-bundle endowed with a flat connection∇.

Assume thatE is trivial as a topologicalG-bundle. Let us choose a smooth
trivialization ofE. Then the connection∇ is given by a 1-formA onX with values
in g, satisfying the Maurer–Cartan equation

dA+ 1
2[A,A] = 0.

We can considerA as a linear map fromg∗ = C1(g;R) to�1(X). Let us extend
it to the map from the whole cochain complex ofg⊕

i

∧i(g∗) =
⊕
i

Ci(g;R)

to⊕i�i(X) using cup-products on the cochain complex and on differential forms.
The Maurer–Cartan equation guarantees that this map is a morphism of complexes.
Thus, we have a map of cohomology groups

Hi(g;R)→ Hi(X,R).

This map does not change if we choose another trivialization ofE in the same
homotopy class of trivializations. The proof is immediate because in such a situ-
ation we have a flat connection in the trivializedG-bundle over the productX ×
[0,1].

Another way to describe the same construction is to use the naturalG-invariant
g-valued 1-formAE onE satisfying the Maurer–Cartan equation. It gives a homo-
morphismHi(g,R)→ Hi(E,R). A trivialization ofE gives a sections:X→ E

of E. Then we can restrict cohomology classes fromE to s(X).
For semisimple groupG and for primitive classes inHi(g;R) we get odd-
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dimensional characteristic classes for flat connections in topologically trivail bun-
dles, essentially Chern–Simons secondary characteristic classes. For connected
nilpotent groupG we get characteristic classes unambiguously for all bundles,
becauseG is contractible and allG-bundles are topologically trivial.

Suppose now that we fix a Lie subgroupK of G such that the bundleE is
topologically equivalent to a bundle induced from aK-bundle. In other words, the
bundle with fiberG/K associated withE, has a continuous section. Analogously
to the previous construction, we can define a map

Ci(g,K;R)→ �i(X).

The induced map on cohomology

Hi(g,K;R)→ Hi(X,R)

depends only on the homotopy class of an identification ofE with an induced
bundle (i.e. of the section of the associatedG/K-bundle).

If the inclusionK ⊂ G is homotopy equivalence then there is unique homotopy
class of identifications. For example, flat connections in complexn-dimensional
vector bundles have characteristic classes (Chern–Simons classes)

csi ∈H 2i+1(gl(n,C), U(n);R)→ H 2i+1(X,R), 06 i 6 n− 1.

The next generalization consists in consideration of an infinite-dimensional
groupG, e.g. a projective limit of finite-dimensional groups. Also, one can con-
sider ‘Lie groups’ which are formal manifolds in some directions. The algebra
of functions on such a ‘group’ is the algebra of formal power series in several
variables with coefficients in usual smooth functions on a Lie group. In algebraic
geometry one can consider for these purposes a mixture of pro- and ind- schemes.
Any pair (g,K) (as in the definition of relative cohomology, see subsection 0.1)
produces a partially formal Lie group.

An important example is the ‘Lie group’ Fdiff(Rn) (formal diffeomorphisms of
Rn). Its Lie algebra is the Lie algebraWn of formal vector fields inRn. The under-
lying topological space of FDiff(Rn) is the group all continuous automorphisms of
topologicalR-algebraR[[x1, . . . , xn]] (i.e. the group of formal diffeomorphisms
of Rn fixing 0). Functions on the group FDiff(Rn) are formal power series on
n-dimensional space

Rn ' R
〈
∂

∂x1
, . . . ,

∂

∂xn

〉
,

with coefficients in smooth functions on spaces of jets of a finite order of diffeo-
morphisms ofRn fixing 0.
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120 MAXIM KONTSEVICH

3. Foliations and flat bundles

If X is a smooth manifold andF is a foliation of codimensionn onX, then we
construct a linear map

Hi
cont(Wn,O(n,R);R)→ Hi(X,R).

Namely, we have a principal bundle overX with the structure group equal to the
group of formal diffeomorphisms ofRn fixing 0. The fiber of this bundle at each
pointx ∈X consists of identifications of formal neighborhoods ofx in the space of
leavesU/F , whereU is sufficiently small neighborhood ofx inX, with the formal
neighborhood of 0 inRn. This bundle carries a natural flat connection only along
F . We can consider the associate principal FDiff(Rn)-bundle. This bundle carries
a natural flat connection along all directions inX.

As a topological group FDiff(Rn) is the same as Aut(R[[x1, . . . , xn]]) (because
formal coordinates do not change the topology). The group Aut(R[[x1, . . . , xn]])
is homotopy equivalent to GL(n,R), being a pro-nilpotent extension of it. The
group GL(n,R) is homotopy equivalent to its subgroup O(n,R). Thus, we get
characteristic classes as above.

What we explained above is the standard construction of characteristic classes
of foliations (see [BR], [BH]), phrased in slightly new terms.

4. Application to Hamiltonian vector fields

Let us suppose now that the foliationF is endowed with the transversal symplectic
structure and has codimension 2n instead ofn as above. To have such a structure
is the same as to have a closed degenerate 2-formω onX of constant rank 2n. The
foliation F is given by the kernel ofω.

4.1. REMARK

As a side remark, we want to notice that the natural source of degenerate 2-forms is
the variational principle. On the set of solutions of Euler–Lagrange equations one
has naturally a closed 2-form, which could be degenerate in some cases. The stan-
dard point of view is opposite to this. People usually consider Poisson manifolds,
i.e. bivector fields satisfying the Jacobi identity as a degeneration of symplectic
geometry. In general, Poisson manifolds describe a limiting behavior of quantum
mechanics.

For a foliationF one can introduce the de Rham complex alongF

�iF (X) := 0(X,∧i(T ∗F )),
whereTF denote the tangent bundle toF . This complex is a quotient complex of
the de Rham complex ofX. CohomologyHi

F (X) of the complex�•F (X) is quite
a wild object, non-computable in simple terms in general.
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As in Section 3, we have a principal bundle overX with the structure group

Autcont

(
R[[pi, qi]],

∑
dpi ∧ dqi

)
.

This bundle carries a natural flat connection alongF . The structure group is homo-
topy equivalent to the subgroup Sp(2n,R), and also to a smaller subgroupU(n).
Hence, we have natural maps

Hi
2n = Hi

cont(Ham0
2n,Sp(2n,R);R)

→ Hi
cont(Ham0

2n, U(n);R)→ Hi
F (X).

FoliationF has a natural transversal volume element ‘vol’ represented by the
differential formωn/n! whereω is the closed 2-form definingF . Multiplication
by this volume element gives a morphism of complexes and of cohomology spaces

vol ∧ :�iF (X)→ �i+2n(X), H i
F (X)→ Hi+2n(X,R).

Thus, we get characteristic classes with values in the de Rham cohomology of
X in degrees shifted by 2n. Alternatively, there is an analogous map for Lie algebra
cohomology

vol ∧ :Hi
2n→ Hi+2n

cont (Ham2n,Sp(2n,R);R).

5. Groups of symplectomorphisms

Let (Y, ω) be a compact symplectic 2n-dimensional manifold. Let us denote by
Sympl(Y ) (or Sympl(Y, ω)) the group of symplectomorphisms ofY , and by
sympl(Y ) the Lie algebra of Hamiltonian vector fields onY . A version of the con-
struction of characteristic classes of foliations gives the following homomorphism

Hi
2n = Hi

cont(Ham0
2n,Sp(2n,R);R)

→ Hi
cont(Ham0

2n, U(n);R)→ Hi(Sympl(Y )δ,R).

Here the upper indexδ means that we consider Sympl(Y ) as a discrete group.
This homomorphism takes values in the group of characteristic classes of flat

non-linear symplectic bundles. LetE → B be a smooth bundle with a flat con-
nection and a covariantly constant symplectic form on fibers. We assume that
fivers are isomorphic as symplectic manifolds toY . Such a structure is given by
a homomorphism (up to a conjugacy)

π1(B)→ Sympl(Y )δ

The total spaceE carries a symplectic foliation. By constructions described above
in Section 4 we get classes with values inHi+2n(E,R). Fibers of the bundleE →
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122 MAXIM KONTSEVICH

B are compact and naturally oriented. Thus, we can integrate cohomology classes
along fibers landing at the spaceHi(B,R).

Analogously, one can construct homomorphisms for the Lie algebra cohomol-
ogy

Hi
2n = Hi

cont(Ham0
2n,Sp(2n,R);R)

→ Hi
cont(Ham0

2n, U(n);R)→ Hi(sympl(Y ),R).

We refer the reader to [F]. In general, it seems that there is a natural homomor-
phism fromHi

cont(Ham0
2n, U(n);R) to the Van Est cohomology of Sympl(Y ) (the

cohomology of a subcomplex of continuous cochains of the group Sympl(Y )).

5.1. EXAMPLE OF A FLAT SYMPLECTIC BUNDLE

There is a natural series of finite-dimensional bundles with flat symplectic con-
nections. The base is the moduli space of complex curves of genusg > 2, the
fiber is the moduli space of irreducible unitary local systems (or, generally, flat
connections with compact structure groups) on a surface of genusg. There is a
standard symplectic form on the moduli space of flat connections which is defined
purely topologically. Of course, sometimes such moduli spaces are non-compact,
or singular after the compactification. Modulo these technical difficulties, this ex-
ample gives a series of homomorphisms, labeled by compact Lie groups, from the
Graph Cohomology to the cohomology of moduli spaces of curves.

As a side remark we mention that in [Ko2] we constructed another homomor-
phism which maps the Graph Cohomology to thehomologygroups of moduli
spaces of curves.

6. Complex geometry and foliations

Let X be a complex manifold of dimensionN . We denote bỹX the underlying
smooth manifold of dimension 2N . It is well-known that the almost-complex struc-
ture ofX can be considered as a vector subbundleT 0,1 of the complexified tangent
bundleTX̃ ⊗ C. The integrability of almost complex structures is equivalent to the
formal integrability ofT 0,1. Thus, we get formally a ‘complex foliation’ oñX.

There is still a better point of view. In order to describe it we introduce an auxil-
iary ‘complex manifold’X̃C. The underlying topological space of this manifold̃XC

is X̃. The sheaf of functions oñXC is the sheaf of complex-valued smooth functions
on X̃ considered as an algebra overC. We look at this sheaf as at a completion of
the sheaf of holomorphic functions on complex manifoldX × X defined in small
neighborhoods of the closed subsetXdiag := {(x, , x) | x ∈X} of X×X. From this
picture it is clear that̃XC has formally the structure of the product of two manifolds,
and carries two transversal foliations. We would like to forget about one of them
and leave the other. Thus, holomorphic functions onX are functions constant along

153909.tex; 8/08/1998; 7:28; p.8

https://doi.org/10.1023/A:1000619911308 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000619911308


ROZANSKY–WITTEN INVARIANTS VIA FORMAL GEOMETRY 123

∂-foliation. Also, the de Rham complex along∂-foliation is nothing but the stan-
dard Dolbeault complex ofX. Absence of higher cohomology groups for ‘coherent
sheaves’ oñXC can be viewed as a Stein property. In algebraic geometry we would
call such spaces affine schemes.

Let us return to symplectic geometry. IfX carries a holomorphic symplectic
form ω, then onX̃C we have a holomorphic symplectic foliation. Now we can
apply the same construction as in Section 4 and get a map

Hi
2n ⊗ C := Hi

cont(Ham0
2n ⊗ C,Sp(2n,C);C)→ Hi

∂
(X̃) = Hi(X,O).

It is almost evident from our description that this construction is complex-analytic,
i.e. if (X,ω) holomorphically depends on parameters then corresponding classes
also depend holomorphically. Moreover, the construction can be phrased in the
langauage of algebraic geometry, see [Ka].

A small extension of this construction involves cohomology with non-trivial
coefficients. For example, we have natural maps

Hi
cont(Ham0

2n ⊗ C,Sp(2n,C);∧j (C2n))→ Hi(X,�j).

Corresponding graph complexes are associated with graphs with free legs. Part
of these graph cohomology spaces corresponding to 3-valent graphs appears as
universal Vassiliev invariants of knots, see [BN]. Definitely there are other non-
trivial cohomology classes corresponding to graphs of higher valency, as follows
from simple estimates of Euler characteristics of Graph Complexes.

The construction of M. Kapranov of characteristic classes associated with 3-
valent graphs can be phrased as follows. The Atiyah classαT , introduced in [Ka],
is the image inH 1(X,Sym3 TX) of a natural class (see Section 1) in

H 1
cont(Ham0

2n ⊗ C,Sp(2n,C);Sym3(C2n)).

Together with the symplectic formω, which is an element ofH 0(X,∧2(T ∗X)) (or,
ofH 0

cont(Ham0
2n⊗C,Sp(2n,C);∧2(C2n))), one can construct characteristic classes

contracting indices in the tensor product of copies ofαT and ofω.

7. Hyperkähler manifolds

If X is a compact hyperkähler manifold then we have 3 complex structuresI , J ,K
onX. Let us pick one of them, sayI . Complex manifoldXI carries a holomorphic
symplectic formωI . We can construct numerical invariants multiplying character-
istic classes of(XI , ωI ) in Hi(XI ,�

j) by appropriate powers of the holomorphic
symplectic form and of the cohomology class of the Kähler form, and then inte-
grating overX. In [Ka] the reader can find arguments showing that we get the same
formulas as in the paper of Rozansky and Witten.

For 3-valent graphs the number which we get is invariant under deformations
preserving the cohomology class of the Kähler form. The argument is that
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(1) Z0(X,ω) is a holomorphic function on the moduli space of complex symplec-
tic manifolds with fixed polarization, depending only on the symplectic form
modulo the multiplication by a constant scalar,

(2) by twistor construction one can produce a lot of rational curves in these moduli
spaces,

(3) holomorphic functions onCP 1 are constant.

The moduli space of complex structures on a compact hyperkähler manifold
is a locally symmetric Hermitean spaces of non-compact type. Thus, hyperkähler
manifolds should have degenerations to (possibly) simpler objects. Eventually, one
expects that one can get a combinatorial objects at the limit, something like toric
varieties. These combinatorial objects should produce weight systems for Vassiliev
invariants.

8. Supersymmetric formulation

We have seen two sources of linear functionals on Graph Cohomology (and invari-
ants of knots and rational homology 3-spheres); symplectic foliations and complex
symplectic manifolds. Another (standard) construction of invariants uses a finite-
dimensional Lie algebrag endowed with an invariant non-degenerate scalar prod-
uct, see [BN]. A bit more general construction (see [Kol]) involves homotopy Lie
algebras with scalar products.

In this section we demonstrate that all these constructions are special cases of
one universal construction.

The main notion here is the notion of a differentialZ/2Z-graded supermani-
fold, or of aQ-manifold in short (the terminology is borrowed from [AKSZ], the
letterQ comes from the standard notation for the generator of BRST symmetry in
mathematical physics). By definition, aQ-manifold is a super manifold endowed
with the action of super Lie groupR0|1. In other terms, theQ-structure is given
by an odd vector fieldQ∈50(TX) satisfying the equation[Q,Q] = 0. One
defines complexQ-manifolds analogously, (with possible versions like infinite-
dimensional manifolds, or partially formal manifolds, like our spacesX̃C as in
Section 6).

Basic examples ofQ-manifolds are

(1) X = an ordinary manifold withQ = 0,
(2) X = 5TY = Spec(⊕i�i(Y )), the odd tangent space to an ordinary manifold

Y . Vector fieldQ is the de Rham differential,
(3) X = 5TF Y = Spec(⊕i�iF (Y )), an extension of the previous example to the

case of foliated manifold(Y,F ),
(4) X = 5T 0,1ỸC = Spec(⊕i�0|i(Y )) for complex manifoldY , with Q equal to

the Dolbeault differential∂,
(5) X = 5g= Spec(⊕i ∧i (g)∗), whereg is a Lie algebra, with theQ equal to the

standard differential in the cochain complex ofg with trivial coefficients,
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(6) a tautological extension of the previous example to homotopy Lie algebras.
Homotopy Lie algebras are defined as formalQ-manifolds such that the vector
fieldQ vanishes at the origin.

ForQ-manifoldX we defineZ/2Z-graded cohomology groupH •Q(X) as the
cohomology Ker(Q)/Im(Q) of the differentialQ on the super vector spaceO(X)
of global functions onX for C∞, Stein, affine, . . . spacesX (and sheaf hyperco-
homology for the non-affine case). This cohomology group is equal to the space
of function in example (1), to the de Rham cohomology in example (2), to the
de Rham cohomology for foliations in example (3), to the Dolbeault cohomology
in example (4), and to the Lie algebra cohomology in example (5).

Instead of flat vector bundles in usual geometry it is convenient to speak about
Q-equivariant vector bundles. For example, any flat bundle over a manifoldY pro-
duces aQ-equivariant bundle over5TY . Any holomorphic bundle over complex
manifoldX produces aQ-equivariant bundle over5T 0,1X̃C. Any g-module gives a
Q-equivariant bundle over5g. We define in a uniform way cohomologyH •Q(X,E)
with coefficients in aQ-equivariant bundleE as Ker(Q)/Im(Q) in the super vector
space0(X,E).

Lie algebras, manifolds, foliations, complex structures, and rational homotopy
types are all alike.

9. Q-families of symplectic manifolds

The most general construction of characteristic classes including all previous cases
is the following. LetB be aQ-manifold andp:E→ B be aQ-equivariant bundle
whose fibers are symplectic supermanifolds (may be formal) of super dimension
(2n | k). We assume that the symplectic structure on fibers is alsoQ-equivariant.
Let s:B → E be aQ-equivariant section of this bundle. The formal completion
of E along s(B) is aQ-equivariant bundle overB of formal pointed symplectic
manifolds. Repeating with appropriate modifications constructions from Section 2,
we obtain a homomorphism

Hi
2n|k → H •Q(B).

Here super vector spacesHi
2n|k are defined for anyn, k > 0 starting with the

standard symplectic super vector spaceR2n|k with even coordinates(p1, . . . , pn,
q1, . . . , qn) and odd coordinates(ξ1, . . . , ξk) and with the symplectic form

n∑
i=1

dpi ∧ dqi +
k∑
j=1

dξj ∧ dξj .

Graph Cohomology maps to spacesHi
2n|k, as in the purely even case.

The general situation above can be described as a family of homotopy Lie alge-
bras with scalar products. Thus, RW invariants is a generalization of the standard
construction with homotopy Lie algebras from [Ko1] to the case of families.
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We repeat here this construction for the case of ordinary even Lie algebras.
If g is a Lie algebra with a non-degenerate invariant scalar product then5g is

a flat symplectic super manifold. The vector fieldQ from example (5) has square
equal to 0 by the Jacobi identity. Also,Q preserves the symplectic structure on5g
and vanishes at 0. The correspondingQ-bundle has the baseB equal to a pointpt
with the trivial action ofQ on it. The sections mapspt to 0.

Analogous constructions can be used in other geometric situations. The advan-
tage of symplectomorphism groups is the existence of a huge amount of stable
classes with possible significance for differential topology.

10. Topological quantum field theory

Up to now, 3-dimensional manifolds played very minor role in our exposition. We
replaced them from the beginning by cohomology classes of symplectomorphism
groups. In fact, in [AKSZ] a general Lagrangian was constructed, which uses as
input data an oriented odd-dimensional manifoldM and a symplectic manifold
X. The symmetry group of this Lagrangian is the product of symplectomorphism
group Sympl(X) and of certain super extension of the diffeomorphism group ofM.
Correlators in the corresponding topological quantum field theory can be extended
to cohomological correlators with values in

H •(BDiff (M),R)⊗H •(Symplδ(X),R).

It seems that the RW Lagrangian is essentially the same as the Lagrangian in
[AKSZ], applied to topological quantum field theories depending on parameters.

In the scheme presented in [AKSZ], one can replaceM by an odd-dimensional
complex Calabi–Yau manifold. The corollary is that finite-type invariants of ratio-
nal homology 3-spheres give holomorphic invariants of 3-dimensional Calabi–Yau
manifolds with holomorphic volume elements.

We are planning to discuss it in more details in a joint work with A. Schwarz.
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