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Abstract

Sharp results for the coefficient estimates, distortion theorems, radius of convexity, arc-length and
area of the image curve are obtained for the class R(A, B) of regular functions whose derivative is
subordinate to (1 + Az)/(\ + Bz), -1 *C B < A < 1, in the unit disc E = {z: | z | < 1}. We also
establish a convolution theorem for this class.

1980 Mathematics subject classification (Amer. Math. Soc): 30 A 32, 30 A 34, 30 A 42.

Keywords and phrases: quasi-subordination, subordination, majorization, subclass of univalent func-
tions, convolution (Hadamard product).

1. Introduction

Let U denote the class of functions

(1.1) w(z)=5c/
k=\

which are regular inE — (z: \z\< 1} and satisfying there the conditions w (0) = 0
and | w(z) \< 1.

Let S denote the class of functions

(1.2) f(z) = z+ i
k = 2

regular and univalent in E.
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Let R(A, B) denote the class of functions f(z) — z + 2J?=2 akz
k which are

regular in E and satisfying there

(1.3) f(zL±J£f ( z ) < t -KB<A<\,zGE.

Obviously / ? (+ l , - l ) coincides with R, the class of functions f(z) — z +
2J°=2 akz

k regular in E and satisfying Re/'(z) > 0, z G E. Thus /?(^, B) is a
subclass of R(\, -1). To avoid repetition we lay down, once for all, that -1 < B <
A^l, and z e E.

Let us set

(1.4) f'(z) = P(z) = I + ^pkz
k.

k=\

Then by definition of subordination, / e R(A, B) if and only if f\z) has the

representation

An easy computation shows that/ G /?(v4, B) if and only if

(1.6) \f'{z)-\\<\A-Bf'{z)\.

Alexander [1] and Wolff [17] made an early study of the class R. It follows
from the Noshiro-Warschawski theorems [12, 16] that functions of the class R are
equivalent in E. Hence R(A, B) is a subclass of S.

MacGregor [9] investigated the properties of the class R, and subsequently, the
same author [10] studied the subclass R(l) of R of regular functions /(z)
satisfying the condition

(1.7) | / ' ( z ) - l | < l .

The first author [5, 6] developed some properties of the subclass S(a) of R of
regular functions/(z) which satisfy the condition

(1.8) | / ' ( z ) - « | < « , ( « > * ) .

Padmanabhan [13] investigated the subclass R(a) of R of regular functions/(z)
satisfying

f'(z) - 1
(1.9)

f'(z) + 1
<a, 0 <a < 1.

Capling and Causey [4] also studied the class R(a) and improved some of the
results due to Padmanabhan [13].

The following observations are obvious:
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( i i i ) / t ( l , l / a - l ) = S (a ) , ( a> i ) ,
(iv) R(a, -a) = R(a), (0 < a < 1).
Thus, R(A, B) contains all the above mentioned classes, and therefore the view

of Brickman [3, page 341], "idea of subordination has unified the geometric
theory of functions" is strengthened.

In this paper, we obtain sharp result for coefficient estimates, distortion
theorems, radius of convexity, arc-length and area of the image curve for the class
R(A, B). We also prove that if

00 00

/(*) = * + 2aHz\ h(z)=z+ 2bnz"
n=2 n=2

belong to R(A, B), then so does F(z) = z + ^2~=2
 nanKz"-

Results due to MacGregor [9, 10], Padmanabhan [13], Capling and Causey [4]
and the first author [5, 6] follow as special cases from our theorems.

2. Some preliminary lemmas

LEMMA \. If g(z) and G(z) are regular in | z |< 1 and g(z) is subordinate to G(z)
(g(z) < G(z)) with g(0) = G(0), then for X > 0, 0 < r < 1,

(2.1) f \ ( \ [
Jo Jo

This lemma is due to Littlewood and its proof can be found in [7, page 484,
Theorem 2; 8(1944), Theorem 210].

Robertson [14] introduced the concept of quasi-subordination. Let g(z) and
G(z) be analytic in E. Let <f>(z) be analytic and |<|>(z)|< 1 in E, such that
g(z)/<j>(z) is regular and subordinate to G(z), for z e E. Then g(z) is said to be
quasi-subordinate to G(z), written as g(z) <q G(z), z BE.

An equivalent condition for this is

g(z)=*(z)G(w(z)), \<t>(z)\< l,wGU,zEE.

If <j>(z) = 1, then g(z) = G(w(z)) so that g(z) < G(z) in E. If w(z) - z, then
g(z) = <f>(z)G(z), we say that g(z) is majorized by G(z) and we write it as
g(z) « G(z), z e E.

LEMMA 2. Ifg(z) = l^=odkz
k <qG{z) = l?=0Dkz

k, then

(2.2) 2 K I 2 < 2 I'M2 (« = 0, l ,2 , . . . ) .
k=0 k=0

This lemma is due to Robertson [14].
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In particular (2.2) holds also when

(i) g(z) < G(z),
(n)g(z) «G(z).
By the application of Lemma 2, we establish

LEMMA 3. Forf e R(A, B), iff'(z) = P(z) = 1 + lf=lpkz
k, then

(2.3) \pn\*(A-B), n>\.

The bounds are sharp.

PROOF. From (1.5) we have

,k

k=\ L k=\
By the application of Lemma 2(2.2), we get

n n 1

k=\ k=\

or

\Pn |
2 < {A - Bf - (1 - 2?2)V \pk |

2 < {A - B)\
k=\

This yields (2.3).
Equality signs in (2.3) are attained for the functions Pn(z) defined by

_ , , 1 +ASzn , „, ,

In order to determine the radius of convexity, we need the following two
lemmas.

LEMMA 4. For w G Uand \z\= r,we have

2 - ' w ( z ) | 2

(2.4) \zw'(z)-w(z)\<^—

This result is due to Singh and Goel proved in [15].

LEMMA 5. Let

_ , _ , _ ! +Bw(z)
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Then for \z\- r < 1,

(\~r2)\p(z)\

AB(A + g)r2

-Br)
2 [(1 -ABr2)-({\ -A){\ - B)(\ +Ar2)(\ + Br2))l/2],

R} >R0,A

where

Oft R -LzlL ni - (1 ~ *)(l + Br2)
(2.6) * . - T ^ . *°-(l

The bounds are sharp.

PROOF. It is easy to see that the transformation

1 + Bw{z)

maps | w{z) |< r onto the circle \p(z) — a |< </, where

a n d d =fl^ and d l
(l-A2r2) (l-A2r2)

Putting ^(z) = i?e'* (- f < 0 < f) and denoting the left hand side of (2.5) by

B/R)cos6+ ^—

(1 -r2) (1 -r2)R "

For extreme values of T(R, 6), dT/dR - 0 = 97/30 which yield respectively

~ B/R2)

and

(2.8)
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where

(2.9) L(R) = (AR + B/R) + 1{)~ ^ .

(1 - r1)

Now we prove that L(R) remains positive. If B > 0, A > 0, then L{R) > 0.

We now consider the case when B < 0. The following cases arise.

Case I. B < 0, A > 0. Using the fact that 0 < cos 0 < 1, it follows from (2.7)
that

L'(R) = (A — B/R2) > 0 and hence L(R) attains its minimum value at

( 1 _ D2_2 \ >/2

1 ~ = * 2 , say.
1 — A r I

Now

L(R2) =[(1 - r 2 ) ( ^ + B) + 2(1 - /l2r2)1 / 2(l - B2r2)x/2\

X
(1 r2)[(l - A2r2)(l -B2r2)]V2

which is positive provided

(2.12) (1 - r2)(A +B) + 2((1 - A2r2){\ - B2r2))X/2 > 0.

If (A + B) > 0, there is nothing to prove, so we assume (A + B) < 0. (2.12) will
hold if

4(1 - A2r2){\ - B2r2) - (A + B)2(\ - r2)2 > 0

or if

[(1 + B)(l +Ar2){\ +A)(\ +Br2)][2(\ + ABr2) - (A + B)(l + r2)] >0

which is always true.

Case II. B < 0, A < 0. Consider the case when L\R) = (A - B/R2) < 0.
Since 0 < cos 6 < 1, it follows from (2.7) that

(1 - B){\ + Br2) ^ R 2 < \-B2r2

+Ar2) "" 1 - A2r2

An easy computation would show that this does not hold.

https://doi.org/10.1017/S1446788700024733 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024733


[7 ] A subclass of univalent functions 7

Now, consider the case when (A - B/R2) s* 0. If A - B/R2 = 0, then from

(2.7), we have

(\-A2r2) A

and it implies (A — B)(l + ABr2) = 0 which is evidently not possible. Thus the
only case needed to be considered is when (A — B/R2) > 0. Therefore, by (2.10),

T=1$<R'<B/A-
The minimum value of L(R) occurs at R = R2 and L(R2) > 0 if

(1 - r2)(A +B) + 2[(1 - A2r2){\ - B2r2)]i/2 > 0

which holds as proved in Case I (when A + B is negative). For extreme values,
from (2.8) and (2.7), we get

\- Br2) _ D 2

(1 - ^ ) ( 1 + ^ r 2 )

It can be easily verified that T(R,6) attains its maximum value at (0 = 0,
R = Ro). So

T(R,6)<T(R0,0)

[(1 - ABr2) - ((1 - ,0(1 - 20(1 + Ar2)(\ + Br2))'/2}.
( 1 - r 2 )

It is easy to see that Ro > a - d — (1 + Br)/{\ + Ar). But Ro is not always
less than or equal to a + d. In case Ro f£ [a = d, a + d], the maximum of
T(R,Q) is attained at

and equals

B)r2-4ABr+(A+B)

If /?, < Ro, equality sign in (2.5) holds for the function

i \ ] + B z

If /?, > Ro, A =£ 1, equality sign in (2.5) holds for the function

_ 1 - (1 + B)zcos 6 + Bz2

1 - (1 +A)zcos6 + Az2
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where

(2 13) R = l " ^ +B)rcos$ + Br2

0 1 - (1 + A)rcos 0 + Ar2'

Hence the lemma is established.

3. Coefficient estimates

THEOREM 3.1. Letf £ R(A, B) then

(3.1) | f l J < ( l_L!) , n > 2 .

The bounds are sharp for the functions f(n_ X){z) defined by

(3-2) f(H-Jz) ~-

PROOF. (3.1) follows on equating the coefficients of z" in (1.4) and then using
(2.3).

THEOREM 3.2. / / / £ R(A, B) and if \i is a complex number, then

(3.3) \a,

The estimate is sharp.

PROOF. On equating the coefficients of z2 and z3 in (1.5), we get

(3.4) c, =
2a2

( 3 ' 5 )

(A-B)'-

3 f , AB

-2 (A-B)P 3{A-B)"2[
Also

Therefore, for every complex number v, we have

<l+(lvl-l)\C]l
2

< max{l, | « |} ,
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since | c, |< 1. The estimate (3.6) is sharp for w(z) = z and w(z) = z2 respectively
for | v | < 1 and | v \ < 1. From (3.4) and (3.5) we have

(3-7) , f l 3 - , f l i , = ( l ^ l
3

where
4

c-, — v>c\

or

(3-8) v = B +

3(A-B)

3(A -

(v-B)

(3.7) in conjunction with (3.6) and (3.7), yields (3.3). (3.3) is sharp, being attained
for the function/,(z) and/2(z) defined, respectively, by

1 + Az
a n d

1 +Az2

4. Distortion theorems

THEOREM 4.1. LetfG R(A, B), then for \ z |= r < 1,

(4-1) I / ' ( Z ) I < T T ^ ;

1 - ^ r
(4.2)

(4.3)

(4-4)

Re/'(z)
1 - Br'

r — —r
2 '

All the estimates are sharp.

= 0,

= 0.

PROOF. From (1.5), it is easy to establish (4.1) and (4.2). Using (4.1),
l + At ,
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which yields (4.3). Again using (4.2),

|/(z) |> f Re f'(te^) dt > \r]^~dt

which gives (4.4). (4.1) and (4.3) are sharp, being attained for the function

/.(*) =
z+jz2, 5 = 0.

(4.2) and (4.4) are sharp for the function

A 2 5 = 0.

Let W be any complex number such that

W\<

= 0.

By Rouche's Theorem it follows that /(z) and/ (z) — W have the same number
of zeros in | z | < r, that is, precisely one. Hence we have the following:

COROLLARY. Every function f(z) in R(A, B) maps E onto a domain which covers
the disc

W\<
= 0.

5. Argument of / ' ( z )

THEOREM 5.1. If f £ R(A, 5) then

(5.1) |arg/'(z)|<sin-

The result is sharp.

1 - ABr2 '
z = r.
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PROOF. It is easy to show that/'(z) = (1 + Aw(z))/(\ + Bw(z)) maps | w(z) |
r onto the circle

(5.2)
(1 -ABr2)

- B2r2

(A-B)r

(1 -B2r2)

(5.1) is an immediate consequence of (5.2). The result is sharp, being attained for
the function fo(z) defined by

,„ s 1 + A8z
(5.3)

where

8= -r
- (A + B)r

1 + BSz '

- A2r2)(\ -A2r2)(\

1 + ABr2

6. Convex set of functions

THEOREM 6.1. Iffandh e R(A, B), then

Xf+(\-X)h<=R(A,B), (O

PROOF. By definition,

(6.1) f'(z

(6-2) *'<*-,+&•

Since (1 + Az)/{\ + Bz) is convex univalent in E, it follows by a result due to
Bernardi [2, page 57, Example 2] that

1 + Az
1 + Bz'
1 +Az

Hence

Xf'(z) + (I - X)h'(z) < \

Xf + (1 -X)h' GR(A,B).

7. Radius of convexity

THEOREM 7.1. Letf e R(A, B), then
(i) for Ao < A < l , / ( z ) is convex in \z\< r0,

where r0 is the smallest positive root of

(7.1) ABr2 - 2Ar + 1 = 0;
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(ii) for - 1 < A < A0,f(z) is convex in | z \ < r,, where rx is the smallest positive
root of
(7.2)

A{\ - r2) - [(1 - ^5r2) - ((1 - ,4)(1 - B){\ + Ar2){\ + Br2))V2] = 0;

_ (2 + B - IB2) + (20 - 36B + 21ff2 - 4B3)i/2

°~~ 2(4 - IB - 52)

77ie results are sharp.

P R O O F . Differentiating logarithmically, (1.5) yields

(7.3) together with Lemma 4 gives

(7.4)

-W '*-\«')t
Aw(z))(l + Bw{z)) (1 - r2) | (1 + Aw(z))(\ + Bw(z))

Puttingp(z) — (1 + Bw(z))/(1 + Aw(z)), and using Lemma 5,

2A _ AB(A + B)r2 - 4ABr + (A + B) <

^ - F (v4 -5 ) (1 -^ r ) ( l - 5 r ) ' ' ^ °'

I - ((1 - A)(l - B)(\ + Ar2){\ + Br2))l/2

.4 -
- 2

(l-r2)(A-B)

R{>R0,A*

(7.1) and (7.2) follow by equating the right hand sides of (7.5) to zero.
The equation Ro = Rt yields

(7.6) ABr4 - 2ABr3 + [2(A + B) - AB - l] r2 - 2r + 1 = 0.

Elimination of r between (7.1) and (7.6) leads to

(7.7) (A-IB- B2)A2 - (2 + B - 2B2)A - (l - B)1 = 0.
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(7.7), on verification of the signs, yields

(2 + B - IB2) + (20 - 365 + 2 1 5 2 - 4 5 3 ) 1 / 2

A = ^—7-^ ; — = AQ, say.
2(4-2B-B2) °

The results are sharp, being attained respectively, for the functions/,(z) and/9(z)
defined by

,,, x 1 + Az ,,, > I — (I + A)zcos0 + Az2

*«.\- fi\z)=-\+Bz' 1 - (1 + B)zcosO + Bz2'

where 6 is defined by (2.13).
REMARK 1. Radii of convexity for the classes R, R(l) and S(a), at once, follow

from (7.1).
REMARK 2. On taking A = a, B = -a (0 < a *£ 1) in (7.7), we get a4 - 4a3 -

4a2 + 4a + 1 = 0 which gives

say.

Hence
(i) for a0 < a < l,/(z) maps \z\< (21/2 — l) /a onto a convex domain;
(ii) for 0 < a < ao,f(z) maps

z <
( a 2 -

2a(l + a )

onto a convex domain. This result was established by Padmanabhan in [13] and
also by Capling and Causey in [4].

8. Arc-length and area of the image curve

THEOREM 8.1. Let / £ R(A, B) and Lr(f) denotes the length of the image of
| z | = r under f(z), 0 < r < 1, then
(8-1)

Lr(f)
•nr

A + B
B

(A-B)
151 log

1 + Br

+Arei9\d0, = Q.

The results are sharp.
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PROOF. In Lemma 1, set g(z) = f'(z), G(z) = (1 + Az)/(l + Bz) and X = 1.
Then

(8.2)

Now
•'o

1 + Are1"
1 + Brew d6.

z\ = r

By (8.2),

1 + Are'1

1 + Bre'»
dO

A+B _ {A - B){\ - B2r2)

2B 2B(l +2Br cos 0 + B2r

,. (A - B)rsin6

A+B

1 + 2BrcosO + B2r2

(A - B)r ri-n (l - B2r2)

dO

B

(A-B)r

— irr

— mr

A

A

+
B

+
B

B

B

2 |5 | ô 1 +2BrcosO + B2r2

'o 1 +2Brco$6 + B2r2

TT(A - B)r _ (A -

(A-B) AA-B)

dO

~ B)r p_
B Jo i 2Brcos6 + B2r2 d6

For 5 = 0, result is trivial.
The extremal function/0(z) is given by

(8.3)
1 +A8z
1 + B8z ' 181= 1.

COROLLARY. For the class R(a), we deduce, from (8.1),

This is a result established by Capling and Causey [4].
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T H E O R E M 8.2. / / / £ R(A, B), and if Ar(f) denotes the area of image of\z\=r
under f(z), 0 < r < 1, then

(8.4)

A,(f)
irr

mr' 1 +
A2r2

= 0.

The inequalities are sharp.

(8.4) are direct consequences of Lemma 1 (X = 2) and interior area theorem.
Equality sign is attained for the function fo(z) defined by (8.3).

COROLLARY. For the class R(a), we have from (8.4),

This is a result due to Capling and Causey [4].

9. Convolution

THEOREM 9.1. If f(z) = z + 2"= 2 anz" and h(z) = z + 2~=2 bnz" belong to the
class R(A, B), then so does

PROOF. Since/ e R(A, B), it follows by (1.6) that \f'(z) - 1 |< | A - Bf'(z) | .
It is equivalent to

(9-1) \f'{z)-b\<C

where b = (1 - AB)/{\ - B2), C = (A - B)/(\ - B2). It is easy to see that
1 - b< C < b. We know that if H(z) = l^=Qhnz

n is regular for | z |< 1 and
| H(z)\*z M, then, by [11, page 101],

(9.2) 2 \hn\2<M2.

Applying (9.2) to (9.1), we get (1 - b)2 + 2 ~ = 2 n2 \an\
2 < C2 or

(9.3) I •'!«.!'< (i>"J)1.

https://doi.org/10.1017/S1446788700024733 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024733


16

Similarly

(9.4)

Now

\F'(z)-b\2 =

R. M. God and Beant Singh Mehrok [16]

n = 2

n-\ ! 2 n2anbnz"-

l / 2 l / 2

(by Cauchy-Schwarz inequality)

, / oo

7 2 « 2 I « .

n = 2

oo

1/2 1/2

+ 1.
(1 -B 2 ) 3 4 ( l - 5 2 ) 4

[using (9.3) and (9.4)]

B2(A-B)2 , g(^t- ,g)3 1 (^ - f f ) 4

,3 + 4

B2(A-B)2

|
| 1

4

This gives on simplification, (A + B) < 2 which is true. Hence F E R(A, B).

REMARK. The first author [6] proved this theorem for the class S{a).
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