Ergod. Th. & Dynam. Sys. (1986), 6, 639-644
Printed in Great Britain

On connection-preserving actions of
discrete linear groups

ROBERT J. ZIMMER
Department of Mathematics, University of Chicago, Chicago, IL 60637, USA

(Received 22 July 1985 and revised 31 January 1986)

Abstract. We study actions of arithmetic groups on compact manifolds which
preserve a connection.

1. Introduction

Let G be a connected semisimple Lie group with finite centre such that R-rank (G') =
2 for every simple factor G' of G. Let g be the Lie algebra of G and d(g) the
minimal dimension of a non-trivial (real) representation of 4. Suppose 'c G is a
lattice subgroup. In [9], [10], [11] we proved the following result.

THEOREM 1.1. Let M be a compact manifold with dim (M) < d(g). Then every smooth
action of I' on M which preserves a volume density and a connection must also preserve
a Riemannian metric.

Margulis [3] has described the structure of the compact Lie groups K admitting a
dense image homomorphism I'> K. (See also [11].) Thus theorem 1.1 has the
following consequence.

CoROLLARY 1.2. Let T be a lattice in SL (n, R) (n=3). Let M be a compact manifold
with dim (M) <n. Then any action of I' on M preserving a volume density and a
connection is finite, i.e. is an action by a finite quotient of T'.

Thus the action of SL(n,Z) on R"/Z" is a volume preserving affine action which
is non-finite of minimal dimension. The point of this note is twofold. First, we
examine affine actions of lattices in SL (n, R) on manifolds of dimension exactly n.
In this direction we have:

THeEOREM 1.3. Let ' SL (n,R) (n=3) be a lattice and M a compact Riemannian
manifold with dim (M) = n. Suppose T acts on M by volume preserving affine transfor-
mations. If the T action is not finite, then M is flat and T is commensurable to (a
conjugate of) SL (n, Z). In particular, if ' is cocompact, any volume preserving affine
action on a compact Riemannian n-manifold is finite.

Secondly, we prove a strengthened version of theorem 1.1 for irreducible lattices.
Namely, we have:

THEOREM 1.4. Let G, T be as in theorem 1.1, with T irreducible [12]. Let D(g) be
the minimal dimension of a faithful (real) representation of 4. Suppose M is a compact
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manifold with dim (M) < D(g). Then for every smooth action of I on M preserving
a volume density and a connection we have either:

(1) T also preserves a Riemannian metric on M; or

(2) there is a non-trivial action of G, the universal covering of G, on M by volume
preserving affine transformations.

We remark that by [10, theorem 5.5], if M admits a non-trivial volume-preserving
G-action, then dim (M) = dim (G’) for some simple factor G’ of G. Thus, theorem
1.4 implies the existence of a I'-invariant Riemannian metric in a suitable dimension
range. In particular, it includes theorem 1.1. As an example of where conclusion
(2) can arise, we remark that if H is a simple factor of G, and A< H is a cocompact
lattice, then there is an H-invariant connection on H/A coming from the invariant
pseudo-Riemannian metric defined by the Killing form. By projecting I' into H, we
obtain an action of I', and one can clearly arrange matters so that the dimension
range dim (M) < D(g) is satisfied.

The author would like to thank D. Sullivan for suggesting that ergodicity could be
used to prove flatness. This was basic for the proof of theorem 1.3.
This research was partially supported by NSF Grant DMS-8301882.

2. Proof of theorem 1.3
We shall freely use (with references) the notions and results discussed in [11], and
[12]. For simplicity, we shall assume that the manifold is orientable so that its
volume density defines an SL (n, R)-structure on M. The more general case of a
structure defined by the matrices with |det]=1 follows in a similar manner, with
only technical changes.

Let P(M) be the principal bundle of special frames on M with respect to the
volume form. We can measurably trivialize P(M)-> M, i.e. choose a measurable
isomorphism of bundles P(M) = M x SL(n, R). Under this isomorphism, the natural
I" action on P(M) can be described on M XSL(n,R) via a measurable cocycle
a:I'xM->SL (n,R). (See [10], [11]] for discussion.) Let (E, &) be an ergodic
component of the I' action on M. Since I preserves a volume density on M, we can
suppose E < M is a I'-invariant Borel set and that u is a I'-invariant probability
measure. Let H = SL (n, R) be the algebraic hull of «|I'x E [12]. (Thus on E, « is
equivalent to a cocycle into H, but not into any proper algebraic subgroup of H.)
By passing to an ergodic finite extension p: E' > E, we can assume that the algebraic
hull of a’:T'x E'>SL(n,R), given by a'(y, y)=a(y, p(¥)), is H°, the Zariski
connected component of H [12, prop. 9.2.6]. Let & be a cocycle equivalent to a'
and taking all values in H®. Write H®= LX U where L is reductive and U is the
unipotent radical. Let 8: ' x E'» L/ Z(L) be the composition of 8 with the projection
of H° onto L/Z(L), where Z(L) is the centre of L. Let L' be a simple factor of
L/Z(L) and B’ the projection of B8 onto L'. Since the algebraic hull of 8’ is L', the
super-rigidity theorem for cocycles [12], [7], [8] implies that either L’ is compact
or B’ is equivalent to a cocycle of the form (y, m)— 7(y) where 7:SL (n,R)~> L’
is an R-rational homomorphsim. In the latter case (since dim (L’) = dim (SL (n, R))

https://doi.org/10.1017/50143385700003746 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700003746

On connection-preserving actions 641

by construction), we must clearly have that H® is locally isomorphic to SL (n, R),
and that H®- L' is simply a (possibly trivial) covering. In case L’ is compact for
each simple factor L' of L/ Z(L), H® will be amenable. However, I" has Kazhdan’s
property, and the algebraic hull of o’ is H°. Therefore, H® is itself compact [12,
theorem 9.1.1]). We may therefore deduce that either:

(i) the algebraic hull of a’ is compact; or

(ii) there is a cocycle 8:T'x E’'> PSL (n, R) such that m° a’'~ 8 and such that
6(v, y)=m(A(y))forall y, yeI'x E’, where 7:SL(n, R) > PSL (n, R) is the covering,
and A is an automorphism of SL (n, R). Let P’ be the pullback of P(M)—> E to a
bundle over E’. Under condition (i), it is clear that there is a I'-invariant probability
measure on P’ (cf. [10]), and hence via projection, a I'-invariant probability measure
on P(M). However, since I' preserves a connection, this implies that " acts isometri-
cally with respect to some Riemannian metric on M [9], [10], [11]. If K is the full
group of isometries of this metric, then K is a compact Lie group of dimension at
most n(n-+1)/2. However, via results of Margulis [3], any compact Lie group K
admitting a dense range homomorphism I' > K where I' is a lattice in SL (n, R) must
satisfy dim (K)=dim (SL (n,R)) = n>—1. (See [11] for a proof.) Thus, since n=3,
the I' action will be finite. To prove theorem 1.3, it therefore remains to consider
case (ii) above.

Let W be the space of pairs of vectors in R", with two pairs (v, w), (v', w')
identified if v'=—v and w'=—w. Let W), be the bundle of such pairs with the
corresponding identifications in the tangent bundle of M. Thus W, is a bundle
over M with fibre W. Let W', be the pullback of W), — E to a bundle over E’. We
note that the natural SL (n, R) action on W factors to an action of PSL (n, R). Thus,
the I'-action on WY, over E’ can be described via the cocycle 6 in (ii) by the action
of I' on E'x W given by

v (y, w)=(vy, 0(y, y)w) = (yy, m(A(y))w).

The curvature of the Riemannian connection on M is a horizontal sl (n, R)-valued
2-form R on P(M). Since the connection is Riemannian, for each X, Y e TP(M),,
R(X, Y) is in the Ad (SL (n, R))-orbit of a skew symmetric matrix. If ¢ :sl (n,R) >R
is a homogeneous Ad (SL (n, R))-invariant polynomial, then ¢ o R is a I'-invariant
R-valued function on TM® TM (vanishing at 0), and in particular defines a
I'-invariant function f,: Wy, > R. If the I'-action on W), over each ergodic com-
ponent E is still ergodic, then we will clearly have f,=0 a.e. on each ergodic
component. Since ¢(R(X, Y))=¢(B) for some skew symmetric B in the same
Ad (SL (n, R))-orbit as R(X, Y), it follows that R =0 a.e. over each ergodic com-
ponent, and hence by continuity, this would imply flatness. Thus M would be finitely
covered by a flat torus. It then follows readily that I is commensurable to (a conjugate
of) SL (n,Z). Therefore, to prove the theorem, it suffices to show that ' acts
ergodically on Wy, over E. To see this, it clearly suffices to see that I'" acts ergodically
on Wiy, i.e. on E’'x W. Since SL (n,R) acts transitively on an open conull set in
W, and has a non-compact stabilizer on this orbit (recall n =3), it suffices to verify
the following lemma.
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LeMMA 2.1. Let G be a connected simple Lie group with finite centre, I' c G a lattice,
H < G a non-compact closed subgroup, and X an ergodic I'-space with finite invariant
measure. Then T acts ergodically (via the diagonal action) on X x G/ H.

Proof. Let Y be the G-space induced from the I'-space (X X G/H), ie. Y=
(XxG/HxG)/T. (See [5], [12] for discussion.) Then as a G-space Y=
((XxG)/T)x G/H). The I'-action on X x G/H is ergodic if and only if the
G-action on Y is ergodic, and this in turn is equivalent to ergodicity of the H-action
on (X x G)/T (cf. [12, prop. 2.2.2]). However, the space (X x G)/I" is an ergodic
G-space with finite invariant measure, and since H is non-compact, ergodicity of
H on this space follows by Moore’s ergodicity theorem [12]. This completes the
proof.

3. Proof of theorem 1.4

We shall need the notion of an amenable action of a locally compact group for
which we refer the reader to [12] as a general reference. We collect a number of
facts we shall need.

LeMMA 3.1. Suppose a locally compact group T acts properly on a locally compact
second countable space. Then the action is amenable with respect to any I'-quasi-
invariant measure.

We recall that an action is proper if for any compact sets A, B, {ge'|gAn B# J}
is precompact. Any such action clearly has compact (in particular, amenable)
stabilizers, and has locally closed orbits. (In the terminology of [1], it defines a type
I equivalence relation.) The lemma then follows by standard arguments.

The next result about amenability follows easily from the results of [6].

LEMMA 3.2. Suppose I', Q are locally compact groups and that T’ X Q acts on a measure
space (X, w), leaving u quasi-invariant. Suppose further that Q is an amenable group
and that the Q-action is smooth in the sense of ergodic theory, i.e. that the quotient
space X/ Q is countably separated. (See {12, chapter 2].) Then the action of I on X
is amenable if and only if the action of T on X /Q is amenable.

Proof. Since Q is amenable, there is a relatively I'-invariant mean for X » X/Q in
the sense of [6]. The lemma then follows from results in [6].

We also recall the main result of [13].

LEmMA 3.3 [13, corollary 1.2]). Suppose H is a connected semisimple Lie group and
that ' H is a countable dense subgroup. Then the action of T on H is not amenable.

The last fact about amenability we require is the following. A proof is straightforward
given the techniques of [12, § 4.3].

LEMMA 3.4. Suppose that X, Y are G-spaces (with quasi-invariant measure), and
suppose that the measure on X is finite and invariant. Then the action on Y is amenable
if and only if the diagonal action on X x Y is amenable.

We now proceed to the proof of the theorem. The connection on M defines in a
natural way a Riemannian metric on the manifold P(M) [11, § 2], where the latter
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is, as in the preceding section, the bundle of special frames on M. Let A be the full
isometry group of P(M) with this metric. It is well known that A has the structure
of a Lie group acting smoothly and properly on P(M). (See [2].) Every volume
preserving affine transformation of M defines an element of A, and in particular
we have a natural homomorphism I'> A. Let ' be the closure of the image of I in
A and B = (I}, its connected component. The elements of [ can be identified with
volume preserving affine transformations of M. The subgroup I'» B<T is normal,
and hence by a result of Margulis [4] (see also [12]), is either finite or of finite
index. If it is of finite index, it is itself an irreducible lattice in G. In this case, since
B is a connected Lie group, Margulis superrigidity [3], [12] implies that either:

(1} B contains a subgroup locally isomorphic to a factor of G; or

(2) B is amenable.

In case (1) we of course have a non-trivial volume preserving affine action of G on
M. In case (2), since ' B has Kazhdan’s property and is dense in B, B must be
compact {12, cor. 7.1.10.]. Therefore, in this case, we have the existence of an
invariant Riemannian metric on M.

It therefore remains to show that the situation in which the normal subgroup
'~ B is finite cannot actually occur. In this case, I will be a discrete subgroup of
A. Since A acts properly on P(M), it follows from lemma 3.1 that the I" action on
P(M) is amenable with respect to any I'-quasi-invariant measure on P(M). Now
let Ec M. a:1'x E->SL(n,R), H H° L, U, E', ', 8, B be defined as in the proof
of theorem 1.3. We further set a;, to be a cocycle equivalent to « taking all values
in H. The uction of " on E X H given by y- (x, h) = (yx, ag(y, x)}h) is (measurably)
isomorphic to the action of I" on an invariant subset of P(M ), and hence is amenable.
It follows readily that the action of I on E’'x H® given by v -(y, h) = (yy, (¥, y)}h)
is also amenubic. By lemma 3.2, we deduce that the action of I' on E'XL/Z(L)
given by v- {1, a) == (yy, B(¥, y)a) is amenable as well. Let L' be the product of the
non-compact simple factors of L/Z(L). By lemma 3.2 again, the corresponding
action of I" on E'> L’ (defined by the cocycle obtained by projecting 8 onto L'),
is amenable. However, the algebraic hull of this cocycle is L' itself. It therefore
follows from the super-rigidity theorem for cocycles [12] that this cocycle is
equivalent to one of the form (y, y)— w(y) for some R-rational epimorphsim
m:G— L. Therefore the action of T on E'x L' given by y- (y, a) = (yy, w(vy)a) is
amenable. By lemma 3.4, the I'-action on L’ defined by the homomorphism = is
amenable. However, the Lie algebra of L' admits a faithful representation on R"
Since n <2 D(4), the homomorphism = has a kernel of positive dimension. Since I'
is an irreducible lattice in G, it follows that 7(I") is dense in L’. However, by lemma
3.3, this implies that the I" action on L’ is not amenable. This contradiction completes
the proof.
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