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THE FILLING DISKS OF AN ALGEBROID FUNCTION
IN THE UNIT DISK
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Abstract

Using potential theory, we prove the existence of filling disks of an algebroid function of finite order
defined in the unit disk.
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1. Introduction and main result

The value distribution theory of meromorphic functions, due to Nevanlinna (see [1] for
standard references), was extended to the corresponding theory of algebroid functions
by Selberg [2], Ullrich [4] and Valiron [5] around 1930. Investigating the filling
disks of an algebroid function is a basic problem in value distribution theory. For an
algebroid function defined on the z-plane, the existence of its filling disks was proved
by Sun in [3]. Compared with the case of C, it is interesting to investigate algebroid
functions defined in the unit disk, and there are some essential differences between
these two cases. Thus we raise the following question.

QUESTION 1.1. Is there any similar result for the algebroid functions defined in the
unit disk?

This paper investigates this problem, and we confine our attention to algebroid
functions defined in the unit disk 1= {z : |z|< 1}.

Let w = w(z), z ∈1, be the ν-valued algebroid function defined by the irreducible
equation

Aν(z)w
ν
+ Aν−1(z)w

ν−1
+ · · · + A0(z)= 0, (1.1)

where Aν(z), . . . , A0(z) are entire functions with no common zeros. The single-
valued domain of definition of w(z) is a ν-valued covering of the z-plane,
a Riemann surface, denoted by R̃z . A point in R̃z , whose projection in the z-plane
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is z, is denoted by z̃. The part of R̃z that covers the disk {z : |z|< r} is denoted by
|̃z|< r .

Define

S(r, w)=
1
π

∫ ∫
|̃z|≤r

[
|w′(z)|

1+ |w(z)|2

]2

dω.

Then S(r, w) is called the mean covering number of |̃z| ≤ r into the w-sphere under
the mappingw = w(z) and S(r, w) is a conformal invariant. Let n(r, a) be the number
of zeros of w(z)− a, counted according to their multiplicities in |̃z| ≤ r , and let
n(E, w = α) denote the number of zeros of w(z)= α in E , each zero being counted
only once.

Let

N (r, a)=
1
ν

∫ r

0

n(t, a)− n(0, a)

t
dt +

n(0, a)

ν
log r

and

m(r, a)=
1

2πν

∫
|̃z|=r

ν∑
j=1

log+
∣∣∣∣ 1
w j (reiθ )− a

∣∣∣∣ dθ, z = reiθ ,

where |̃z| = r is the boundary of |̃z| ≤ r . The characteristic function of w(z) is
defined by

T (r, w)=
1
ν

∫ r

0

S(t, w)

t
dt.

In view of [5],
T (r, w)= m(r, w)+ N (r,∞)+ O(1).

The order of the algebroid function w(z) is defined by

ρ = lim sup
r→1−

log T (r, w)

log 1
1−r

.

In this paper we assume that 0< ρ <+∞, V is the w-sphere, and C is a constant
whose value depends on the context. Let n(r, R̃z) be the number of the branch points
of R̃z in |̃z| ≤ r , counted with the branch order. Write

N (r, R̃z)=
1
ν

∫ r

0

n(t, R̃z)− n(0, R̃z)

t
dt +

n(0, R̃z)

ν
log r.

In view of [4], we know that

N (r, R̃z)≤ 2(ν − 1)T (r, w)+ O(1).

Valiron was the first to introduce the concept of a proximate order ρ(1/(1− r)) for
a meromorphic function w(z) with finite positive order, and

U

(
1

1− r

)
=

(
1

1− r

)ρ(1/(1−r))
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is called the type function of w(z) or T (r, w). Then ρ(1/(1− r)) is nondecreasing,
piecewise continuous and differentiable, and

lim
r→1−

ρ

(
1

1− r

)
= ρ,

lim
r→1−

U ( k
1−r )

U ( 1
1−r )
= kρ (k is a positive constant),

lim
r→1−

T (r, w)

U ( 1
1−r )
= 1,

lim
r→1−

( 1
1−r )

ρ−ε

U ( 1
1−r )

= 0, 0< ε < ρ.

For an algebroid function w(z) of finite positive order, we can apply the same
method to get its type function U (1/(1− r)).

In this paper, we give a positive answer to the above question by proving the
following theorem.

THEOREM 1.2. Suppose that w(z) is the ν-valued algebroid function of finite order ρ
in |z|< 1 defined by (1.1). Then there exists a sequence of disks

0n : {|z − zn|< rnσn}, n = 1, 2, . . . ,

where
zn = rneiθn , lim

n→∞
rn = 1, σn > 0 and lim

n→∞
σn = 0,

such that for each n, w(z) takes every complex number at least (1− r)−ρ+εn times
in 0n ∩ 4, except for those complex numbers contained in the union of 2ν spherical
disks each with radius (1− rn)

ρ/40, where limn→+∞ εn = 0, 1= {z : |z|< 1}.
The disks with the above property are called filling disks.

2. Two lemmas

LEMMA 2.1 [3]. Suppose that w(z) is the ν-valued algebroid function in {z : |z|< R}
defined by (1.1), and a1, a2, a3, . . . , aq(q ≥ 3) are distinct points given arbitrarily
in the w-sphere, and the spherical distance of any two points is no smaller than
δ ∈ (0, 1

2 ). Then for any r ∈ (0, R),

(q − 2)S(r, w)≤
q∑

j=1

n(R, a j )+ n(R, R̃z)+
215π40νR

(R − r)δ38 .

Combining potential theory with Lemma 2.1, we prove Lemma 2.2, which is crucial
to our theorem.

LEMMA 2.2. Suppose that w(z) is the ν-valued algebroid function of finite order ρ
satisfying 0< ρ <+∞ in |z|< 1 defined by (1.1). For any ε ∈ (0, ρ), 0< R < 1,
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there exists a0 ∈ (
1
2 , 1), such that for any a ∈ (a0, 1), we can write

rn = 1− an, m =

⌊
2π

1− a

⌋
, θq =

2π(q + 1)
m

,

�pq = {1− a p
≤ |z|< 1− a p+2

} ∩

{
|arg z − θq | ≤

2π
m

}
where p = 1, 2, 3, . . . , q = 0, 1, 2, . . . , m − 1 and bxc stands for the integer part
of x.

Then, among the pairs p, q, there exists at least one pair p0, q0 such that 1− a p0 >

R, and in�p0q0 the functionw(z) takes every complex number at least a−p0(ρ−ε) times
(each zero being counted only once), except for those complex numbers contained in
the union of 2ν spherical disks each with radius δ = a p0ρ/40.

PROOF. We argue by contradiction. If the result is false, then there exists a sequence
{ai }
∞

i=1 (0< ai < 1), where limn→∞ ai = 1. For any a ∈ {ai }, any

p > P = log(1− R)/log a and q ∈ {0, 1, 2, . . . , m − 1},

there exist 2ν + 1 complex numbers that satisfy the condition that the spherical
distance of any two of the points is no smaller than δ = a pρ/40. Let α j = α j (p, q)
for j = 1, . . . , 2ν + 1. For any p, q mentioned above,

n(�pq , w = α j ) < a−p(ρ−ε).

For any r > R, let T = blog(1− r)/log ac. Then 1− aT
≤ r < 1− aT+1.

For positive integers N and M , set

b = a1/M
∈ (0, 1), γpt = 1− bMp+t , t = 0, 1, 2, . . . , M − 1,

L pt = {γpt ≤ |z|< γp,t+1},

θq j =
2πq

m
+

2π j

Nm
,

4q j = {z : |z|< 1− aT , θq j ≤ arg z < θq, j+1}.

Then

{1− a ≤ |z|< 1− aT
} =

M−1⋃
t=0

T−1⋃
p=1

L pt

and

{|z|< 1− aT
} =

N−1⋃
j=0

m−1⋃
q=0

4q j .
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Thus there exist t0, j0 which are related to T . We can assume that t0 = 0, j0 = 0, such
that

T−1∑
p=1

n(L p0, R̃z)≤
1
M

n(1− aT , R̃z),

m−1∑
q=0

n(4q0, R̃z)≤
1
N

n(1− aT , R̃z).

Set

�0
pq =

{
1−

bMp
+ bMp+1

2
≤ |z|< 1−

bMp+M
+ bMp+M+1

2

}
∩

{
θq0 + θq1

2
≤ arg z <

θq+1,0 + θq+1,1

2

}
and

�pq = {1− bMp
≤ |z|< 1− bMp+M+1

} ∩ {θq0 ≤ arg z < θq+1,1}.

Then
�0

pq ⊂�pq ⊂�pq .

Since {�pq}p,q covers
⋃T−1

p=1 L p0 and
⋃m−1

q=0 4q0 twice at most, we obtain

T−1∑
p=1

m−1∑
q=0

n(�pq , R̃z)≤

(
1+

1
M
+

1
N

)
n(1− aT , R̃z).

Obviously, each �pq can be mapped conformally to the unit disk |ζ |< 1 such that
the center of �pq is mapped to ζ = 0, and the image of �0

pq is contained in the disk
|ζ |< η(< 1). Since all �pq , �0

pq are similar, C is independent of p, q . Since S is
conformally invariant, in view of Lemma 2.1, we obtain

(2ν − 1)S(1− aT, w)

≤ (2ν − 1)
T−1∑

p=P+1

m−1∑
q=0

S(�0
pq , w)+ (2ν − 1)S(1− a p+2, w)

≤

T−1∑
p=P+1

m−1∑
q=0

[2ν+1∑
j=1

n(�pq , w = α j )+ n(�pq , R̃z)+
251π40ν

δ38(1− η)

]
+ (2ν − 1)S(1− a p+2, w)

≤ 3νT ma−T (ρ−ε)
+

(
1+

1
M
+

1
N

)
n(1− aT, R̃z)

+
3mν2251π40

1− η
T (a−Tρ/40)38

+ (2ν − 1)S(1− a p+2, w).

https://doi.org/10.1017/S0004972709001233 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709001233


460 Z.-X. Xuan [6]

For a sufficiently large integer

T

(
=

⌊
log(1− r)

log a

⌋)
, r ∈ [1− aT , 1− aT+1).

Thus we get

(2ν − 1)S
(

1−
1− r

a
, w

)
≤ (2ν − 1)S(1− aT , w)

≤

(
1

1− r

)ρ−ε/2
+

(
1+

1
M
+

1
N

)
n(r, R̃z)

+ C

(
1

1− r

)39ρ/40

+ C,

(2.1)

where C is a constant.

Claim. For sufficiently fixed large integer T (= blog(1− r)/log ac),

(i) k = (1− 1/(1+ a + a2
+ · · · + aT−1))−1 < (2ν + 1)/(2ν − 2),

(ii) 1− t ≤ t , where t ∈ [1− aT , 1− aT+1).

To prove this claim, it suffices to prove our result for (i). Let a > 1− 3/(2ν + 1).
Then 2ν + 1< 3/(1− a). We have

∑
∞

i=0 ai
= 1/(1− a) <+∞, so we can choose a

certain sufficiently fixed large integer T such that

2ν + 1< 3(1+ a + a2
+ · · · + aT−1).

Thus (i) follows.
This yields

1− 1−t
a

t
=

1
a
−

(
1
a
− 1

)
1
t

≥
1
a
−

(
1
a
− 1

)
1

1− aT

=
1
a

(
1−

1

1+ a + · · · + aT−1

)
=

1
ak
,

where t ∈ [1− aT , 1− aT+1). Hence∫ r

1−aT

S(1− 1−t
a , w)

t
dt =

∫ r

1−aT

S(1− 1−t
a , w)

1− 1−t
a

1− 1−t
a

t
dt

≥
1

ak

∫ r

1−aT

S(1− 1−t
a , w)

1− 1−t
a

dt

=
1

ak

∫ 1−(1−r)/a

1−aT−1

S(x, w)

x
d(1− a(1− x))

=
1
k

∫ 1−(1−r)/a

1−aT−1

S(x, w)

x
dx .
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Next, we deduce that∫ r

1−aT

1

(1− t)ρ−ε/2t
dt ≤

∫ r

1−aT

1

(1− t)ρ+1−ε/2 dt

= −

∫ r

1−aT

1

(1− t)ρ+1−ε/2 d(1− t)

= −
1

−ρ + ε
2
(1− t)−ρ+ε/2|r1−aT

=
1

ρ − ε
2

[
1

(1− r)ρ−ε/2
−

1

[1− (1− aT )]ρ−ε/2

]
≤

1
ρ − ε

2

1

(1− r)ρ−ε/2
,

when r ≥ t ≥ 1− aT.
Similarly, ∫ r

1−aT

1

(1− t)39ρ/40t
dt ≤

1
39ρ
40

1

(1− r)39ρ/40 .

Dividing both sides of (2.2) by νt and integrating from 1− aT to r ,

(2ν − 1)
1
ν

∫ r

1−aT

S(1− 1−t
a , w)

t
dt

≤
1
ν

∫ r

1−aT

1

(1− t)ρ−ε/2t
dt +

(
1+

1
M
+

1
N

)
×

[
1
ν

∫ r

1−aT

n(t, R̃z)− n(0, R̃z)

t
dt +

n(0, R̃z)

ν
log r

−
n(0, R̃z)

ν
log(1− aT )

]
+

C

ν

∫ r

1−aT

1

(1− t)39ρ/40t
dt

≤
1
ν

1
ρ − ε

2

1

(1− r)ρ−ε/2

+

(
1+

1
M
+

1
N

)[
1
ν

∫ r

0

n(t, R̃z)− n(0, R̃z)

t
dt +

n(0, R̃z)

ν
log r

]
−

(
1+

1
M
+

1
N

)
n(0, R̃z)

ν
log(1− aT )+

C

ν

1
39ρ
40

1

(1− r)39ρ/40

=
1
ν

1
ρ − ε

2

1

(1− r)ρ−ε/2
+

(
1+

1
M
+

1
N

)
N (r, R̃z)

−

(
1+

1
M
+

1
N

)
n(0, R̃z)

ν
log(1− aT )+

C

ν

1
39ρ
40

1

(1− r)39ρ/40 .

Since T is fixed, we see that T (1− aT−1, w) is a finite constant.
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Hence,

1
k

1
ν

∫ 1−(1−r)/a

1−aT−1

S(t, w)

t
dt ≤ (2ν − 1)

1
ν

∫ r

1−aT

S(1− 1−t
a )

t
dt

≤
1
ν

1
ρ − ε

2

1

(1− r)ρ−ε/2
+

(
1+

1
M
+

1
N

)
N (r, R̃z)

−

(
1+

1
M
+

1
N

)
n(0, R̃z)

ν
log(1− aT )

+
C

ν

1
39ρ
40

1

(1− r)39ρ/40 .

Then

1
kν

∫ 1−(1−r)/a

0

S(t, w)

t
dt ≤

1
ν

1
ρ − ε

2

1

(1− r)ρ−ε/2
+

(
1+

1
M
+

1
N

)
N (r, R̃z)

−

(
1+

1
M
+

1
N

)
n(0, R̃z)

ν
log(1− aT )

+
C

ν

1
39ρ
40

1

(1− r)39ρ/40 +
1
k

T (1− aT−1, w).

Under the condition

N (r, R̃z)≤ (2ν − 1)T (r, w)+ O(1),

we obtain

1
k

T

(
1−

1− r

a
, w

)
≤

1
ν(ρ − ε

2 )

1

(1− r)ρ−ε/2
+

(
1+

1
M
+

1
N

)
2(ν − 1)T (r, w)

+ C log(1− aT )+
C

ν

1
39ρ
40

1

(1− r)39ρ/40 + C,

where C is a constant.
Dividing both sides of the above inequality by U (1/(1− r))= 1/(1− r)ρ(1/(1−r)),

we have

1
k

T (1− 1−r
a , w)

U ( 1
1−r )

≤
1

ν(ρ − ε
2 )

(1− r)ρ(1/(1−r))

(1− r)ρ−ε/2

+

(
1+

1
M
+

1
N

)
2(ν − 1)

T (r, w)

U ( 1
1−r )

+ C
log(1− aT )

( 1
1−r )

ρ(1/(1−r))
+

C

ν

1
39ρ
40

(1− r)ρ(1/(1−r))

(1− r)39ρ/40

+
C

( 1
1−r )

ρ(1/(1−r))
.

(2.2)
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We note that
T (1− 1−r

a , w)

U ( 1
1−r )

=
T (1− 1−r

a , w)

U ( a
1−r )

U ( a
1−r )

U ( 1
1−r )

.

In view of the properties of the U (1/(1− r)), we obtain

lim sup
r→1−

T (1− 1−r
a , w)

U ( 1
1−r )

≥ lim sup
r→1−

T (1− 1−r
a , w)

U ( a
1−r )

lim inf
r→1−

U ( a
1−r )

U ( 1
1−r )

= lim sup
r→1−

T (1− 1−r
a , w)

U ( a
1−r )

lim
r→1−

U ( a
1−r )

U ( 1
1−r )

= aρ .

Letting r→ 1− in (2.2),

(2ν + 1)
1
k

aρ ≤

(
1+

1
M
+

1
N

)
2(ν − 1).

That is,

2ν + 1≤
(

1+
1
M
+

1
N

)
2(ν − 1)ka−ρ .

Letting a→ 1−, M→+∞, and N →+∞, we obtain

k ≥
2ν + 1
2ν − 2

.

This contradicts part (i) of the claim, and the lemma is proved. 2

3. Proof of the theorem

PROOF. Choose εn = ρ/2n and Rn = 1− 1/2n .
In view of Lemma 2.2, there exist

an ∈

(
1−

1
n
, 1
)
, mn =

⌊
2π

1− an

⌋
, pn, qn, θqn =

2π(qn)+ 1
mn

,

and

�pnqn = {1− a pn
n ≤ |z| ≤ 1− a pn+2

n } ∩

{
|arg z − θqn | ≤

2π
mn

}
, n = 1, 2, . . . .

Let
θn = θqn , zn = (1− a pn

n )eiθn .

Then

1> rn = |zn| = 1− a pn
n > Rn = 1−

1
2n → 1− as n→+∞ and lim

n→+∞
a pn

n = 0.
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Set

Bn = [(1− a pn+2
n )− (1− a pn

n )] + (1− a pn+2
n )

2π
mn

≤ [(1− a2pn
n )− (1− a pn

n )] + (1− a2pn
n )

2π
mn

= (1− a pn
n )a pn

n + (1− a pn
n )(1+ a pn

n )
2π
mn

≤ (1− a pn
n )

[
a pn

n + (1+ a pn
n )

2π
mn

]
.

Take

σn = a pn
n + (1+ a pn

n )
2π
mn
;

then
σn→ 0, n→+∞.

Put
0n = {|z − zn|< rnσn}.

Then
�pnqn ⊂ 0n.

In view of Lemma 2.2, for each n, the function w(z) takes every complex number at
least a−pn(ρ−εn)

n = (1− rn)
−ρ+εn times in 0n ∩ 4, except for those complex numbers

contained in the union of 2ν spherical disks each with radius a pnρ/40
n = (1− rn)

ρ/40.
Theorem 1.2 is proved. 2
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