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Abstract

We study the conditions for positive recurrence and transience of multi-dimensional
birth-and-death processes describing the evolution of a large class of stochastic systems,
a typical example being the randomly varying number of flow-level transfers in a
telecommunication wire-line or wireless network. First, using an associated deterministic
dynamical system, we provide a generic method to construct a Lyapunov function when
the drift is a smooth function on RV . This approach gives an elementary and direct proof
of ergodicity. We also provide instability conditions. Our main contribution consists
of showing how discontinuous drifts change the nature of the stability conditions and of
providing generic sufficient stability conditions having a simple geometric interpretation.
These conditions turn out to be necessary (outside a negligible set of the parameter space)
for piecewise constant drifts in dimension two.
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1. Introduction

We study the stochastic stability of multi-dimensional birth-and-death processes X =

(X1,...,Xyn) on Zﬁ (N being an integer greater than 1) with state-dependent birth (also
called arrival) and death (also called service) rates (respectively A(x) = (A;(x));=1,... ~ and
¢ (x) = (¢i(x))i=1,.. N, Withx = (x1, ..., xy)) being 0-homogeneous functions, i.e. A(xx) =

A(x) and ¢ (wx) = ¢ (x) for any @ > 0 and for any x € Rﬁ.

The main motivation for this research stems from the study of queueing networks. In the
last two decades an enormous amount of literature has emerged, aiming at the finest possible
description of the condition under which various queueing systems are stable, see e.g. [15],
[18], [20], and [22]. For a very large class of cases, the dynamics of these queueing (or more
generally bandwidth-sharing) networks can be described with state-dependent service rates
depending on the proportion of customers of each class present in the network; hence, satisfying
the 0-homogeneity assumption stated previously. For instance, data wire-line communication
networks can be represented (at a sufficiently large time scale) as processor-sharing networks,
with processing rates that depend on the proportion of users at each node of the network [1]. In
wireless networks the service rates depend only asymptotically on the proportion of customers,
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but this requires the same analysis, as far as only stability is concerned. The 0-homogeneity
assumption is also relevant for describing load-balancing schemes between a set of servers or
computer systems. In contrast to the previous examples, very few results have been discussed
in the literature concerning simple schemes such as joining the shortest queue when the death
rates are not constant. This is usually considered to be a very difficult issue. (For the constant
case, see [9].)

Good overviews of stochastic-stability methods and their applications may be found in, for
example, [3], [11], [17], and [20]. Let us discuss briefly some of the main ideas in this area.

A general framework for analyzing stochastic stability consists of applying the Foster—
Lyapunov criteria, which are based on finding a suitable test function, usually referred to
as a Lyapunov function, having a negative (when stability is concerned) or positive (in case
instability is proven) mean drift outside of a compact subset of the state space [8], [18], [25].
When further restrictive assumptions are made on death rates, an appropriate Lyapunov function
has been found in many cases. This is, for example, possible for rates being the solution of
specific optimization problems [1], or for small dimensions (two and three) when the rates of
the process are constant on sub-faces of the orthant [8]. For more complex systems, however,
finding a Lyapunov function can be a formidable task and there is no general method for
constructing such a function.

An alternative tool for deriving stability conditions is to establish that the system of interest
is stochastically comparable to another system that is easier to analyze. This approach was first
used in the multi-class queueing context by Rao and Ephremides [19] and Szpankowski [23],
and later refined by Szpankowski [24], to characterize the stability of buffered random access
systems. It was later generalized to birth-and-death processes with state-dependent transitions
with fixed birth rates and decreasing death rates with uniform limits in [2]. These specific
assumptions are, however, not satisfied for various cases of interest.

Finally, many stability results are obtained using the so-called ODE (ordinary differential
equation) methods. A powerful exposition of these ideas applied to controlled random walks
can be found in [17, Chapter 10] and in [10]. The use of ODE methods is often coupled with
the analysis of fluid limits or fluid models (fluid models being a set of deterministic trajectories
including possible limits): first the convergence of (sub-sequences of) a scaled version of the
process towards an element of the fluid model is proven; then (under restrictive conditions) the
stability of the fluid model is proven to imply the stability (positive recurrence in our case) of
the stochastic process. Stability conditions for a wide class of multi-class queueing networks
with work-conserving service disciplines (see [5] and [6]) have been derived using these steps.
Often, it is difficult to prove directly the convergence towards a fluid limit.

When the drift § = A — ¢ of the system is Lipschitz-continuous, the state of the stochastic
network (under an appropriate space—time scaling) converges to a deterministic system whose
evolution is represented by the differential equation

%X(l) = 8(x(1)), (D

and we can prove that x (¢) is the state of the fluid limit at time 7.

It turns out that such a convergence does not hold in general when the drift cannot be extended
to a continuous function on R_ZX . When the drift vector field is discontinuous, the trajectories of
a fluid-equivalent system enter sliding modes and the differential equation (1) has to be replaced
by a new dynamical system defined piecewise by differential equations (d/df)x(¢) = S(x(1)),
where § is a convex combination of drifts of points in the neighborhood of the discontinuity.
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In terms of stability conditions, such a phenomenon was already emphasized in [8] where §
was called the ‘second vector-field’ (see also [10] and [17]). Unfortunately, § is difficult to
compute in many cases (it depends crucially on the statistical assumptions made) and has not
been characterized in general.

In this paper we restrict our attention to the study of birth-and-death processes representing
networks without internal routeing but having state-dependent arrival and service rates. Our
contribution is three-fold.

First, we aim at unifying various results appearing recurrently in the literature concerning
the case of processes with continuous drifts. To this end, we present a generic way to construct
a Lyapunov function using the deterministic differential equations driving the fluid limits
dynamics when the drift is continuous. The advantage of finding a Lyapunov function explicitly
is that it potentially gives much more precise information on the nature of the convergence of
the process towards its stationary regime [18]. It also provides a simple understanding of the
meaning of such fluid limits for obtaining the stochastic stability. We also show that in the
case of drifts that are conservative vector fields, the complexity of the problem is reduced
considerably. We complement these results with instability counterparts.

Second, we aim at deriving general sufficient conditions for stability in the case of
discontinuous drifts. To the best of the authors’ knowledge, these conditions have not been
obtained previously. The case of discontinuous drifts is shown to be (both in the existing
literature and by a few simple examples in our paper) a very challenging theoretical problem
and generally extremely demanding in terms of computation time. For this case we provide
sufficient conditions that have a natural geometric interpretation and are shown to be useful in
some important examples.

Third, we use these conditions to get a sharp geometric characterization of the stability set in
the case of piecewise constant drifts in dimension two. We provide, in particular, an algorithm
allowing us to determine whether the process is stable or not, for all fixed birth rates outside a
set of dimension one.

The paper is organized as follows. In Section 2 we describe the model in detail and discuss
the methodology used in the subsequent analysis. In Section 3 we examine the case when the
drift vector field can be extended to a continuous function. Section 4 is devoted to deriving
sufficient stability conditions in the case of discontinuous drifts. We start by showing that
stability conditions and the fluid limits are in this case very cumbersome and then proceed to
presenting our approach in a generic scenario. In Section 5 we show how this approach may
be applied to the processes in dimension two with piecewise constant drifts in order to obtain
a sharp geometric characterization of the stability region. Section 6 illustrates our various
results and shows that our sufficient conditions are not necessary in dimension three. Section 7
concludes the paper.

2. The model

Let N be an integer greater than 1. We denote by Aﬁ the positive orthant of AN (where A
in this paper will be Z or R) while Aﬁ,* stands for Aﬁ \ {0}. This means that, for example, the
set Rﬁ consists of real vectors (xq, ..., xy) suchthat x; > OQforalli =1,..., N.

Let ¢; be the vector in Zﬁ defined by (¢;); = 1 and (¢;); = 0, j # i. If not specified
otherwise, | - | denotes the usual Euclidean norm. The notation x < y is used for the coordinate-
wise ordering: foralli, x; < y;, and we denote by (x, y) the usual scalar product of two vectors
in RV, A process X or a trajectory u started in x at time O will be denoted by X* and u”,
respectively.
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Assume now that X is a continuous-time Markov process on Zﬁ with the following transition
rates:

q(x,x +e) = ri(x),
q(x,x —e) = ¢i(x), (2)

where A = (A;)i=1..n and ¢ = (¢;)i=1
functions from Rﬁ to R.

The drift function§ = (61, ..., §y) = A—¢ is bounded, which guarantees that the process X
is nonexplosive. Hence, we may assume that X and all other stochastic processes treated in
the sequel have paths in the space D = D(R4, Zﬁ ) of right-continuous functions from R
to Zﬁ with finite left limits. Recall that a stochastic process with paths in D can be viewed
as a random element on the measurable space (D, D), where D denotes the Borel o-algebra
generated by the standard Skorokhod topology [13]. We also define #; as the induced filtration
o{X;, s <t} and all the martingales constructed are adapted to that filtration.

We are interested in conditions on the drift vector field § ensuring that the process is either
stable (positive recurrent) or unstable (transient or null-recurrent). In subsequent sections we
shall find such conditions with the use of the so-called Foster—Lyapunov criterion, that we recall
here. Proofs under different conditions may be found in, for example, [8], [18], [20], and [25].
The following version of the criterion is proved in [20].

N are vectors consisting of positive 0-homogeneous

.....

Theorem 1. Assume that {X;} is a Markov process on X. If there exist a (so-called Lyapunov)
function L: X5 — R, a constant K > 0, and an integrable stopping time t such that

(1) E*[L(X7)] — L(x) < —yE*[z], for L(x) > K,
(2) the set F = {x: L(x) < K} is finite,
3) EX[L(X(1))] < o0, forall x € X,

then the Markov process X is stable, i.e. positive recurrent.

3. Smooth drift

In this section we consider the case when the drift of the system may be extended to a smooth
function. Our goal is to unify the existing results by using an ODE method without proving
that (1) or a similar equation represents the behavior of a scaled version of the process under
consideration. We also provide a way to construct an explicit Lyapunov function.

3.1. Stability conditions
Let (ODE), be the following deterministic differential equation:

d
au(r) =6(u(t)), u(0) = x.

We denote its solution by u*. Define 8§ = {x: |x| = 1}.

Theorem 2. Assume that § is a Lipschitz-continuous vector field from Rﬁ to Rﬁ . Let

T, = inf{t: u*(t) = 0}.
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Assume that for all x € & there exists a continuous solution of (ODE), such that T, < oo.
Assume in addition that
sup Ty < o0. (3)

xed

Then X is positive recurrent and x +— Ty is a Lyapunov function.

Proof. Note first that the homogeneity of the drift implies that, if u*(¢) is a solution of
(ODE),, then we can define uX*(t) = Ku*(¢/K) as a solution of (ODE) . Indeed,

uk¥0) = Ku*(0) = Kx,

Cokry =k L (L) =s(w (L)) =s( k(L)) = 5057
0 =K (&) =2l () =200 (7)) o

As § is Lipschitz-continuous, the flow (z, x) — u*(t) is ClonR x Riv, i.e. continuously
differentiable in 7 and x (see, for instance, [12, Theorem 1]).

We are going to show that F': x — Ty is a suitable Lyapunov function for proving the positive
recurrence of X. Owing to the assumptions of the theorem, F is a positive finite function. Since
uk*(t) = Ku*(t/K), it follows that F(Kx) = K F(x), i.e. F is a 1-homogeneous function.
This, in particular, implies that F(x) — oo, when |x| — oo.

We then observe that

F*(t +h) - Fu* @) _
- -

iF(u"(t)) = lim —1 forallt < Tx. 4
dr h—0t+
Indeed, the difference between F (u* (¢t + h)) and F (u*(¢)) (where & is positive) is negative and
is equal in absolute value to the time needed to reach u* (t + h) from u* (z), which is exactly 4.
Hence, the latter equality follows.

The drift of F is given by

AF(x) =) q(x, )(F() — F(x)),
y

where ¢ (x, y) is defined in (2).
It will be convenient to approximate the variations of F using its gradient (when it is
differentiable). For that purpose, define for each x > 0 the functions

Ty = inf{r: |u*(1)] < «}.

It is clear that Ty , — T for each fixed x as k — 0. It is also clear that, for each fixed x,
functions Ty . increase when « decreases. Note that, due to the continuity of u* (¢) in ¢,

|Mx(Tx,K)| =K.

We can now prove that T, , is differentiable. Examine the above equality: u*(¢) is a
differentiable function, while the norm of a differentiable function is also differentiable. Hence,
we conclude that 7y , is differentiable for all values of « > 0. In order to prove the
differentiability of 7, (and F(x)), it remains to show that the convergence Ty, — T, is
uniform in x. It follows from the following sequence of equalities that

sup [Ty v — Tx| = sup |Ty| =k sup|Ty| — O,
X

X |x|=k xesd

as k — 0, due to (3). The last equality in the sequence follows from 1-homogeneity of 7.
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Recall now that, due to (2),

N
AF(x) = Z)»i(X)(F(x +ei) — F(x)) + ¢i () (F(x — &) — F(x)).

i=1

As F is 1-homogeneous and C 1 we have

Fx +e)— F(x) = |x|(F(i + ﬁ) - F(i)) < a—F(i> te
Xl x| x| ox; \ ||

for a positive ¢ and for all large enough x, where we used the uniform continuity of a continuous
function 0 F/dx; on a compact set 4.
We can now conclude that

AF(x) < (VF(x),6(x)) + ¢,

for |x| large enough, where &€ > 0 may be chosen to be sufficiently small.
Note also that, with the use of (4), we can obtain

d
-1I= EF(MX(O)) = (VFu*(0)), 8(u"(0))) = (VF(x), §(x)).

To summarize, the function F is such that F(x) — o0 as |x| — oo and that AF(x) <
—1 4+ & < 0, for |x| large enough. After an examination of the Foster—Lyapunov criterion, it
can be concluded that X is positive recurrent.

Remark 1. Note that our approach is very similar to that of the fluid-limits approximation as
developed, for instance, in [10]. However, we do not need to prove that the differential equation
we look at is indeed the one that represents the behavior of our birth-and-death process on the
fluid scale.

Remark 2. It is worth mentioning that our analysis is valid due to the O-homogeneity
assumption. Without this assumption, the stability of the birth-and-death processes cannot
be described using (ODE),.. A counter-example (with continuous drifts) can be found in [2].

3.2. Instability conditions

In this section, we consider a reverse statement establishing instability relying on the
previously considered dynamical system. It is much more challenging to state generic instability
conditions based on (ODE),, without a direct use of fluid limits, i.e. without needing to prove
the convergence of a scaled version of the process towards the trajectories of (ODE), (see [16]
for the construction of a Lyapunov function proving the transience of multi-class queueing
networks with routeing).

We use hereafter explicitly the convergence to the fluid limits (see also [10] for a proof
of convergence towards the fluid limit in the discrete-time setting). The next theorem is
hence essentially a combination of proving the convergence of the scaled process and the
extended version of the (instability part of the) Foster—Lyapunov criterion (see, for instance,
[8, Theorem 2.2.7]).

Theorem 3. Assume that § is a Lipschitz function. Assume further that there exists a strictly
positive time T and a number a > 1 such that, for all x with |x| = 1, a solution u* of (ODE)
is defined on an interval [0, t,] with t©, > T and satisfies |u*(T)| > a. Then X is transient.
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Proof. Note first that the Lipschitz condition ensures that (ODE), has a unique solution u*
for each x € Rﬁ,* on an interval [0, t,]. Furthermore, since 0 is necessarily a stable point if it
is an equilibrium point, the conditions of the theorem imply that the trajectories u* (¢) did not
hit O before time 7. Using standard arguments, we first prove the convergence of the process
towards its fluid limit uniformly in its initial point.

Fix n > 0. Using the martingale decomposition, XX* can be decomposed as

XKx(Kt) Kx

1 Kt X
— + = S(X*F d
% % + K/() ( (s))ds +

Mk,

Mg,
K

t o XKx¥(Ks) Mg,
= § —— ) d ,
X +/0 ( X > s + K

1 Kt
=x+_/ S(XX¥(s))ds +
K Jo

where M is a martingale that satisfies

M t\'/?
E< Sup Kt) E A(_> S ’77
O<s<t K K

for all K large enough and with A being a positive constant. Now define

XKx(Ks)
K — u*(s) :|

fx (@) = E|: sup

0<s<t

and recall that, due to (ODE),,

u (s) =x + /s S (v))dv.
0

With the use of the Lipschitz condition and the homogeneity of the drift we now obtain

/s (XKX(KU)) /s R :|
sl —2 )dv— | s (v)dv
0 K 0

t
< 77+L/ fx (s)ds,
0

where L is the Lipschitz constant. Gronwall’s lemma allows us to conclude that

XKx(Ks)

fk@) = 77+E[ sup

0<s<t

—u*(s)

sup [E sup

X s<t

< nexp(Lt),

for each interval [0, #] included in the interval [0, 7, ] where the ODE has a solution.
Take € such that a — 1 — ¢ > 0. This further implies that there exists K¢ such that, for all x
and K > Ko,
E|X*(KT)| = K|x| = (ju*(T)| = [xDK = —¢K.
Hence, since |x| = 1, E|XX*(KT)|— K|x| > (a — 1 —&)K > 0. This bound being uniform in
x with [x| = 1, we can make use of the extended Foster—Lyapunov criterion (see, for instance,
[8, Theorem 2.2.7]) to conclude the proof.

Remark 3. We believe that Theorem 3 can be extended to the case where the drift is locally
Lipschitz outside a neighborhood of 0 but the proof details become more involved as we need
to introduce stopping times to control that the scaled process is not entering this neighborhood.
This falls outside the scope of this paper.
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3.3. Conservative drifts

Finding an explicit form for the function F' might be difficult in general. However, under
slightly stronger assumptions on the drift function §, we can construct an explicit Lyapunov
function directly from the vector field §. This is a well-known fact in the theory of deterministic
dynamical systems.

Proposition 1. Assume that § is a conservative vector field, i.e. 5 = —V'V, and assume that
Vix)>a>0.
Assume further that there exists € > 0 such that
|6(x)| > ¢ forall x.

Then V (x) is a Lyapunov function and X is positive recurrent.

Proof. Note first that since § is 0-homogeneous, V is l-homogeneous. Using the
1-homogeneity, there exists k¥ < 2 such that, for |x| large enough, we can estimate the drift of
V (as in the proof of Theorem 2) by

AV(x) < (VV(x),8(0) +k = (V V(x), =VV(X) +x ==V V(®)]* + &k < —¢,

for a constant ¢’ > 0. Furthermore, |V (x)| — oo for |x| — oo since it is a 1-homogeneous
and strictly positive function. We can therefore apply the Foster—Lyapunov criterion.

Remark 4. A vector field 6(x1, x2) = (81(x1, x2), 62(x1, x2)) (on a completely connected set)
is conservative if and only if (d/dx1)d2(x) = (d/dx2)d1 (x).

4. Discontinuous drifts

4.1. Complexity of the fluid limits

So far we restricted ourselves to the case when the drift vector field is continuous. The
situation changes dramatically when this condition is dropped. When the drift vector field is
discontinuous, the trajectories of a fluid-equivalent system near a point of discontinuity may
enter ‘sliding modes’ and the differential equation (1) has to be replaced by a new dynamical
system defined piecewise by differential equations (d/dt)x(t) = 8(x (1)), where § is a convex
combination of drifts around neighborhoods of the discontinuities.

Let us give a simple example of this phenomenon. Consider the following transitions with
fixed birth rates A1, 1> and death rates given by the following bandwidth allocation:

¢d1(x) = 1,0 +aj 1y,>0,
$2(x) = 1y, =0 +az 15,0,

where 1. denotes the indicator function.

Suppose that A < aj and Ay < (1 — p1) + a2p1, where p; = A;/a;. This condition is
known to be sufficient for stability of such a model in dimension two, and it has been obtained
through different methods (see, for instance, [2], [4], and [8]).
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We could further prove that the process XX (K't)/K converges in distribution when K — 00
towards a process x () satisfying the differential equations

%X(t) =8(x(M))= A —)(x(1)), forx(r) >0,

d
PR (t) =0, forxy(t) =0,

%m(t) =iy — (1= p1) —azp1, forx;(r) =0.

The stability condition is then easily interpreted when considering the convergence to 0 of
the obtained fluid limit. This example shows, however, that even in a very simple case the fluid
limit satisfies an equation different from (1).

In the next subsection we develop an approach that allows us to find stability conditions in
the case of discontinuous drift vector fields without the use of fluid approximation.

4.2. Sufficient stability conditions

This section is devoted to identifying rather general conditions on the drift vector field
ensuring stability even in the presence of discontinuities for §. These conditions lead to useful
geometric stability conditions in dimension two, which are discussed in Section 5.

We start by considering a general vector field of 0-homogeneous drifts such that the number of
discontinuities is finite. We construct a Lyapunov function by pasting together local Lyapunov
functions and using a smoothing technique. This method was first used in [7].

Define a closed sphere with radius ¢ and center x by 8B (x). For a point x, denote the set of
drifts in a neighborhood of x by D, (x), i.e.

De(x) ={3(y): y € Bs(x)}.
Also define the following set of vectors:
:D:)s(x) ={neR": (n,v) < —a, forallv e De(x)U{—x}}.

We now state an assumption on the vector field §(x) that we shall prove to be sufficient to
characterize the stability region of the process.

Assumption (Aq). For all x # 0, there exist ¢ > 0 and a > 0 such that

ﬂ):,s(x) # 2.

We now state the main result of this section.
Theorem 4. Assumption (A1) implies that X is positive recurrent.

Before presenting a rigorous proof, we would like to explain the result intuitively. If the
sets D, (x) are finite for all x, Assumption (A1) may be better understood using a simple
geometric interpretation. Using Farkas’ lemma (see e.g. [21, p. 200]), we can state that either
Assumption (A1) is true or x is in the cone induced by the vectors of D, (x), i.e. there exist
nonnegative weights «; such that

Z aib‘i =x,

iel
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with a nonempty index set I and vectors §; € D (x). It is hence natural to expect that if x is
never contained in the cone induced by the drifts §(y) at points y close to x (which is exactly
Assumption (A1)), then the process is stable.

Proof of Theorem 4. Consider first the function H and the vector-field v, constructed by

v,(x) =arg max (x,n), H(x,u) = max (x,n).
u(x) gnei);u(x)( n) (x, u) ne@;um( n)

The function H is a natural candidate for a Lyapunov function but it is discontinuous which
complicates drastically the drift calculations and precludes having a negative drift in all points.
We overcome this difficulty by considering a smoothed version of H. Let k. be a C°°-probability
density supported on the sphere B, (0) and introduce

F(x) = / H(x, u)xe(u)du.
ueB:(0)

Then F is clearly a C°°-function. We shall now prove that F is a suitable Lyapunov function.
First, note that by Assumption (A1), H (x, u) > a;hence, F(x) > aforall x. This, together with
the observation that the function F is 1-homogeneous, implies that F(x) — oo as |x| — oo.
Note further that the compactness of the sphere guarantees the existence of u < ¢ (arbitrarily
small) such that, for all x,
IVF(x) —v,(x)| = —e. &)

Using Assumption (A1) again, we obtain
(8(x), vu(x)) < —a. (6)

Hence, using (5),
(6(x), VF(x)) < (8(x), vu(x)) + Ce. (7

Again using the fact that F is 1-homogeneous and combining (6) and (7), we obtain

AF(x) = q(x, )(F(y) — F(x)) < (8(x), VF(x)) + ¢,
5

for large |x|. Hence, F is a Lyapunov function.

5. Piecewise constant drift in dimension two

In this section we apply the general result of Theorem 4 to a particular case of a discontinuous
drift function. We assume that the state space of the underlying process is N> and that the
rate functions are piecewise constant. Together with the assumption that the rate functions are
0-homogeneous, this means that there is a finite number of cones inside which the rate functions
are constant.

We start by introducing some notation that will be used throughout this section. Assume
that there are N vectors vy, ..., vy such that vi = ey, vy = e (where e; and e are vectors
co-directed with one of the axes), and such that §(x) = 8 for any x = Avy + Bugy; with
positive A and B. This means that the drift at any point of the cone defined by v and vg4 is
equal to 8%,

Note that we do not require the vectors v to be different. (This means that a cone reduces
to a line when two consecutive vectors v and vi are equal.)
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We also introduce certain sets that will be crucial for the definition of the stability region.
Foreachk=1,...,N — 1, let

Ul = {8: 8" = Ay + Bugy 1, forsome A >0, B> 0,4+ B > 0},
and foreachk =2,..., N, let
U2 = {8: a8 + (1 — )8! = Auy, forsome A > 0, « € [0, 1]}.
We are ready to state the main result of this section.
Theorem S. Assume that Nt
ses= (U nUY.
k=1

Then the Markov process X is positive recurrent. Conversely, if 5 belongs to the interior of the
complement of 8, then X is transient or null-recurrent.

Proof. We start by proving the first part of the theorem. In order to do this, let us verify the
conditions of Theorem 4. It is clear that only two situations are possible:

(i) the vector x belongs to the interior of a cone defined by vectors v; and vi1; in this case
x = Avg + Bugy for some A > 0, B > 0,

(ii) the vector x is collinear to a vector vg; in this case x = Avy for some A > 0.

We consider these two situations separately. In case (i), thanks to Theorem 4, we need to
show the existence of a vector 5 such that

(n, Avg 4+ Bugy1) >0, (1,85 <o.

In geometric terms this means that there exists a vector n such that vectors Avy + Bvi1 and
¥ belong to different half-planes separated by the line normal to vector 7. It is easy to see that
the existence of such a vector is guaranteed by the fact that § ¢ U kl

Consider now situation (ii). Again applying Theorem 4, we see that we need to show the
existence of a vector 1 such that

(n, Avg) > 0, (n, 85 <o, (m, 8N <o.

If we interpret this again in geometric terms, it is equivalent to the existence of a vector 1 such
that vectors —Auvg, 8%, and 8~! belong to the same half-plane defined by the line normal to 7.
Direct computations show that it follows from the fact that § ¢ U, ,(2 The proof of the positive
recurrence under the assumption that § € 4 is now complete.

Let us now show thatif § € int(U,ivzjl Uk1 uuU kz), then the Markov process X is not positive
recurrent. We are going to prove that, under the given conditions, the process is actually not
rate stable which prevents stability. Assume that the process is started in a cone k and that
seU kl The strong law of large numbers (SLLN) then implies that, with a positive probability,
the process stays in the cone {Avy + Bvkt1, A >0, B > 0}.

Assume that X is positive recurrent. This implies that X/t — 0 almost surely. Using the
martingale decomposition of the process, write

Ty +/t8(Xx)d
—— =—4 — s.
t t t 0 §
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Owing to the boundedness of the transitions, the martingale M, is such that E[Mtz] < Ct, which
implies the convergence in L? and in probability of M, /¢ to 0, which in turn implies the almost
sure convergence along a subsequence. Conditioning on the fact that the process stays in the
cone, we obtain

tn
(l/t,,)/ 3(X*(s))ds — 0, ty — 00,
0

which combined with the ergodic theorem for the positive recurrent Markov process X implies
that there exists o > 0 such that

0=ad '+ 1 —a)s,

which contradicts § € U kl

Suppose now that § € Ukz. In this case the SLLN implies that, with a strictly positive
probability, the process stays in the set

{Avi—1 + By, A >0, B >0} U{Av + Bugyr, A >0, B > 0}.
Proceeding in a similar way as in the previous case, there exists & such that
0=ask+ 1 —ast!,

which contradicts § € U k2

5.1. Fluid limits

An interesting situation occurs within the framework of this section when there exist k and
o € (0, 1) such that a8¥ + (1 — )81 = Ay for some A # 0. In this case we know that the
fluid limits with an initial state in the cone defined by vx_1 and v or in the cone defined by v
and v enter a so-called ‘sliding mode’ with their trajectory reaching the ray defined by vy
after a finite time and not leaving it after this time. The new drift § obtained during the sliding
mode on v; must be a convex combination of 8% and 8**1 and must also be collinear with vy.
Hence, we can explicitly calculate § by solving the following system in « and A:

ad® + (1 — )8! = Ay (8)

The existence of a solution with a strictly negative A is necessary to get a stable system while
the existence of a solution with strictly positive A is sufficient to get instability of the process,
which corresponds respectively to the case where the fluid limits converge to zero or infinity.

This is a very particular scenario, as in the case of a dimension higher than two, (8) is
generally undetermined and stability conditions cannot be characterized directly.

5.2. Algorithm

Recall that we defined the drift vector §(-) to be equal to A(-) — ¢ (-). It is often the case in
queueing and telecommunications applications that the vector field A (representing the arrival
rate) is assumed to be constant and the question is for which values of A the system under
consideration is going to be stable. We present here an algorithm to construct the stability set
when A is fixed. Define (within the description of the algorithm and the examples later on) the
different drift values as 8* = A — Y. The algorithm is given below.

Step 1. Draw the points representing various values of 1.
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FIGURE 1: Generic construction of the stability set for piecewise constant drifts in dimension two.

Step 2. Connect | to 12, ¥ to 3, and so on.

Step 3. For each k, draw the cone defined by vectors vy and vx4; based on point ;. The
compact set obtained is the stability region.

A generic illustration of this algorithm is given in Figure 1.

6. Examples

6.1. Continuous drifts

The results obtained in Section 3 allow us to study numerically the positive recurrence of
processes even when the drifts are too complicated to get an explicit solution for the associated
ODE. We now give an example of such a situation.

Example 1. An example of a wireless network with two types of users competing for the
same bandwidth could lead to the following death rates (using Shannon’s formula and a state-
dependent allocation policy):

_ x1/|x| _ x2/|x|
¢1(x) = log(l + I +x2/|x|), $r(x) = 10g<1 + T +x1/|x|)’

where N is the thermal noise.

Let us consider two possible vectors of arrival (birth) rates: (0.4, 0.8) and (0.5, 0.8). The
associated ODE can be solved numerically for any value A1, > allowing us to conclude for
the positive recurrence of the process in the first case and the transience in the second case, as
shown in Figure 2 using the following properties of the trajectories of the ODE.

o In the first case, all trajectories started from any state on the sphere hit 0 in a bounded
time.

o In the second case, all trajectories started from the sphere do not reach a sufficiently small
neighborhood of 0, from which we can conclude that all fluid-limit solutions stay outside
of a ball of radius ¢ and center 0. Moreover, all trajectories do reach a state with a norm
larger than 1 before a finite time 7.
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FIGURE 2: Example 1: drift vector fields for birth rates (0.4, 0.8) and (0.5, 0.8).

6.2. Discontinuous drifts

We will give here a few examples where Theorem 5 provides interesting results.

Example 2. We describe here how Theorem 5 can be used to obtain the well-known stability
results for the so-called coupled-processors problem. Consider the allocation described as the
most basic example with discontinuous drifts in Section 4:

h1(x) = 1,—0 +aq 15,50, @2(x) = 1y, =0 +az 1,50

It is clear that in this case the algorithm of Section 5.2 allows us to recover the well-known
stability region for this problem [4], [8] (see Figure 3): we should have that for all « > 0
a(A — D)+ (I —a)(X1 —a1) < 0 and symmetrically in the other coordinate. Solving in «,
we obtain A1 < aj and Ap < (1 — p1) +azpi1 or by < ax and Ay < (1 — p) + aypz, with

pi = Ai/a;.

Remark 5. Note that, as illustrated in Figure 1, the stability set may not be convex.

a=(ay,a)

FIGURE 3: Stability region (set of birth rates 1) for the two coupled processors of Example 2.
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Example 3. We now look at the same type of death rates as in Example 2 but with different
birth rates. Consider for instance a queueing or manufacturing system with two processors and
two types of traffic:

e some dedicated traffic arriving with intensity A; to processor i,

o some flexible traffic with intensity v that can be routed to either processor 1 or 2 depending
on the congestion level of both processors.

Assume that the flexible traffic is actually routed to the processor with the smallest number of
jobs in process (and to processor 1, say, if the processors are equally loaded, this last assumption
having no impact on the stability conditions). Assume further that the arrivals of jobs of each
type of traffic are following a Poisson process (independent of each other and of everything
else) and that the processing times are exponentially distributed. The presence of interference
or switching costs between different type of tasks raise the allocation of service (or death rates)
described in Example 2 with @¢; < 1.
Using the notation of Section 5, the vectors vy are

vy = (1,0), v2 = (1,0), vz = (1, 1), vy = (0, 1), vs = (0, 1),

and the drifts are
'=0u—1La+v), =0 —a,lat+v—a),

8 =G +v—ap,r—a), 8= (4 v, a—1).

Using the results of Section 5, the interior of the stability region can be described as
follows:

e if Ay +v>arthenA| —a; <v+Xiy—az,and A + A2 +v < a; +ap,
e if o +v <ag, theni; <14 ((a; — 1)/a2)(X2 4+ v).
Symmetric conditions with the indices 1 and 2 reversed should also hold.

6.3. Bounds on the stability region of three coupled processors
Consider a process of dimension three where the death rates of each dimension depend on
whether the other coordinates are strictly positive or zero, so that for alli # j # k and x; > 0,
ai, x;=0,x,=0,
¢i(x) = a;j, x;>0, x=0,
1, x;j >0, x, >0,
which leads to the following drifts:
818 =i —aj, 8 =hj, 8 = forx; =0, x =0,
§(x) = 8. 5;] = Ai — ajj, 5;-1 =Aj —aji, 5;{] = AL, fOI’Xj >0, xy =0,
§= (i —1j=1,..,3 forx; >0, x, >0.
Let us assume that a; > a;; > 1, so that ¢ = (¢1, ¢2, ¢3) is partially decreasing.
It was shown in [8, Theorem 4.4.4] and [2, Theorem 3] that the stability region is a union

of six regions corresponding to the six possible permutations of the coordinates. The first of
these regions corresponding to the identity permutation is the set of (A1, A2, A3) such that

81 <0, 5%3 < A1 —ap), 3;7100 + 5;37'[10 + 8%371'01 + 8311 < O,
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where
oo = P(Y; =0, Y, =0), mor = P(Y; =0, Y, > 0),
w9 =P(Y; >0, Y, =0), w1 =P >0,Y, > 0),

and Y = (Y1, Y») is a random vector distributed according to the stationary distribution of a
process in which coordinate three would be always strictly positive. Quite heavy simulations
are needed in order to compute the stability region. On the other hand, the sufficient conditions
obtained in Section 4 do not need any computation and can be written as the complement of
the following set:

s >0,

or there exist i, j, and a1, &y > 0 such that
(a18ij + a8, e +ej) >0,
or there exist i and (o;);=1,....4 > 0 such that
85041 + 8?0{2 + 81’:"053 + 8;a4 > 0.

7. Conclusions

We derived various computable criteria of stability and instability for continuous drifts in any
dimension and for piecewise constant drifts in dimension two, together with generic sufficient
conditions for discontinuous drifts in any dimension. An important direction of future research
is to systematically characterize the second vector field and the stability conditions in dimension
three and more.
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