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NOTE ON THE CLASS-NUMBER OF THE MAXIMAL REAL

SUBFIELD OF A CYCLOTOMIC FIELD, II

HIROYUKΪ OSADA

For an integer m > 2, we denote by C(m) and H(m) the ideal class
group and the class-number of the field

K = Q(ζm + Z~m

λ)

respectively, where ζm is a primitive m-th root of unity. Let q be a
prime and k/Q be a real cyclic extension of degree g. Let C(k) and h{k)
be the ideal class group and the class-number of k. In this paper, we
give a relation between C(k) (resp. h(k)) and C(m) (resp. H(m)) in the
case that m is the conductor of k (Main Theorem). As applications of
this main theorem, we give the following three propositions. In the
previous paper [4], we showed that there exist infinitely many square-free
integers m satisfying n\H{m) for any given natural number n. Using
the result of Nakahara [2], we give first an effective sufficient condition
for an integer m to satisfy n\H(m) for any given natural number n
(Proposition 1). Using the result of Nakano [3], we show next that there
exist infinitely many positive square-free integers m such that the ideal
class group C(m) has a subgroup which is isomorphic to (ZjnZ)2 for any
given natural number n (Proposition 2). In paper [4], we gave some
sufficient conditions for an integer m to satisfy 31 H(m) and m=l (mod 4).
In this paper, using the result of Uchida [5], we give moreover a suffi-
cient condition for an integer m to satisfy 41 H(m) and m = 3 (mod 4)
(Proposition 3). Finally, we give numerical examples of some square-free
integers m satisfying 41 H(m) and m = 3 (mod 4).

The author would like to thank the referee for his valuable advices.

MAIN THEOREM. Let q be a prime and k/Q be a real cyclic extension

of degree q. If m is the conductor of k, then the ideal class group C(m)

has a subgroup which is isomorphic to C(k)q.
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Proof. First, we prove this Theorem in the case of q = 2. Let k =

Q(\/~πO ^ e a r e a ^ quadratic field, where n is a square-free integer. Let

m be the discriminant of k. Hence m is the conductor of k. Now as-

sume that p1?p2> >Pt are all the prime divisors of m. Let k* be the

genus field of k, that is, k* = Q ( V P * ^ VP 2* > *' > V P* )> where if p is an

odd prime, then p* = ( - l)( ί)-1)/2p, if p = 2, then p* = - 4, 8 or - 8

according W Ξ 3 (mod4), 2 (mod8) or — 2 (mod8) (see Ishida [1, Chapter

1]). Let k be the Hubert class-field of k and M = £* Π £. Further let

if be a subgroup of the ideal class group C(k) of £ a n d if be isomorphic

to the Galois group of k/M. From [1, Chapter 1], the Galois group of

h%\k is isomorphic to (Zfezy-1. Hence C(kf is a subgroup of H. On

the other hand, since M — k* Π k, we can see that M is contained in

the real cyclotomic field K = Q(ζm + Cm1)- Since k* is the genus field of

k, we have K (Ί k = M Hence we have that Z^/iί is an abelian unrami-

fied extension and the Galois group of Kk/K is isomorphic to the Galois

group of k/M. Since the Galois group of k/M is isomorphic to H and H

has a subgroup C(k)2, the Galois group of Kk/K has a subgroup which

is isomorphic to C(kf. Hence the ideal class group C(m) has a subgroup

which is isomorphic to C(k)2.

Next, we prove this Theorem in the case of an odd prime q. Let

k[Q be a cyclic extension of degree q. Let k be the Hubert class field of

k and k* be the genus field of k. Further let H be a subgroup of the

ideal class group C(k) of k and H be isomorphic to the Galois group of

k\k*. From [1, Theorem 5], we have that the Galois group of k*jk is

isomorphic to (Z/qZY'1, where t is the number of distinct prime factors

of the conductor m of k. It is now easy to see that C(k)q is a subgruop

of H. On the other hand, k* is contained in the real cyclotomic field

K = Q(ζm + ζm1) ( s e e Ishida [1, Theorem 5]). Since k* is contained in k

and k* is the genus field of k, we have K Π k = A*. In the same way

as in the proof of this Theorem for the case q = 2, we can show that

the ideal class group C(m) has a subgroup which is isomorphic to C(k)Q.

Remark. Let n be a natural number. Let ft(&) be the class-number

of k. If n I Λ(£) and g | τι, then we have n \ H(m).

LEMMA 1. // an integer m = A2n + 4B2n > 5 is square-free for natural

numbers n > 1, A, B, the ideal class group of a real quadratic field

Q(<\/m) has a cyclic subgroup with order n (see Nakahara [2, Theorem 1]).
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PROPOSITION 1. If an integer m == A2n + AB2n > 5 is square-free for

natural numbers n > 1, A, B, then we have

(1) n\H(m), if n odd,

(2) (nβ) I H(m), if n is even.

Proof It is clear that m ~ 1 (mod 4). Hence m is the conductor of

a real quadratic field k = Q(^m). By Lemma 1, the ideal class group

C(k) of A has a subgroup which is isomorphic to Z/nZ. Hence by Main

Theorem, we have this Theorem.

LEMMA 2. For any given natural number n, there exist infinitely many

cubic cyclic fields k whose ideal class groups contain a subgroup isomor-

phic to (ZlnZ)2 (see Nakano [3, Theorem]).

Remark. Let m be the conductors of k. From the proof of [3,

Theorem], we have 3 J( m, Hence m are square-free integers.

By Lemma 2, we have

COROLLARY. For any given natural number n, there exist infinitely

many cubic cyclic fields k whose ideal class groups C(k) contain a sub-

group isomorphic to (Z/SnZ)2. Further the conductors m of k are square-

free integers.

PROPOSITION 2. For any given natural number n, there exist infinitely

many positive square-free integers m such that the ideal class group C(m)

has a subgroup which is isomorphic to (ZlnZ)2.

Proof. By Corollary of Lemma 2, there exist infinitely many cubic

cyclic fields k such that C(Kf has a subgroup which is isomorphic to

(ZlnZ)2 for any given natural number n. Let m be the conductors of the

cubic cyclic fields k. Hence m are square-free integers. Then by Main

Theorem, there exist infinitely many positive square-free integers m such

that the ideal class group C(m) has a subgroup which is isomorphic to

(ZlnZ)2 for any given natural number n. This completes the proof.

LEMMA 3. Let q be a prime and L/K be a cyclic extension of degree

q. Let C(L) and C(K) be the ideal class groups of L and K, respectively.

Let h(K) be the order of C(K) and p be a prime such that p \ qh(K).

Further let f be the order of p mod q.

If C(L) has a subgroup which is isomorphic to Z/prZ, then C(L) has

a subgroup which is isomorphic to (Z/prZ)f for some integer r >̂ 1 (see
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Washington [6, Theorem 10.8]).

Let £ be a prime. Let q, qx and q2 be primes which satisfy the fol-

lowing conditions

(1) 2 or 3 is not an .0-th power residue mod q for £ = 2,

(2) 2 is not an ^-th power residue mod qt (i = 1, 2) and 3 is an ̂ -th

power residue mod qx but is not an ^-th power residue mod q2 for an odd

prime £.

LEMMA 4. Let n be a natural number. Let m — (a2n + 27)/4 for some

integer a prime to 6. If a has prime factors q, qx and q2 which satisfy

the above conditions (1) and (2) for the prime factors £ of n, the ideal

class group of the cubic cyclic field defined by

f(x) = x8 + mx2 + 2mx + m = 0

has a subgroup which is isomorphic to Z\nZ (see Uchida [5, Theorem 1]).

By Lemma 3 and Lemma 4, we have

COROLLARY. Under the same assumptions as in Lemma 4, the ideal

class group of the cubic cyclic field defined by

f(x) = x3 + mx2 + 2mx + m = 0

/ms α subgroup which is isomorphic to ZjnZ ® Zjn^Z, where n0 \ n and any

prime factor of n0 is congruent to 2 (mod 3).

PROPOSITION 3. Let a be an integer prime to 6, and assume that a

has a prime factor q such that q = ± 5 (mod 12) or q = ± 11 (mod 24).

If m = (α4 + 27)/4 is a sequare-free integer, then we see that 41 H(m)

and m = 3 (mod 4).

Proof. It is easy to see that m = 3 (mod 4). If q ~ ± 11 (mod 24),

then we have (—j = — 1. If q = 5 (mod 12), then we have ί—j = — 1.

Hence by Corollary, the ideal class group of the cubic cyclic field k

defined by

f(x) = xz + mx2 + 2/nx + m = 0

has a subgroup which is isomorphic to (Z/2Z)2. Since m i s a square-free

integer, the discriminant of k is equal to m2 (see Uchida [5, Lemma 2]).

Hence m is the conductor of k. Therefore by Main Theorem, we have

A\H(m). This completes the proof.
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Now we give some examples of square-free integers m satisfying the

conditions in Proposition 3, that is, 41 H(m) and m = 3 (mod 4).

163, 607, 19-193, 7-1021, 20887, 32587, 127-769, 7-25261, 373-619, 375163,

103-4549, 7-43-2347, 19-75853, 1972627, 379-7993, 313-11059, 19-349-673,

577-8731, 8788267, 1789-5443, 7-1694941, 7-31-60139, 3259-4813, 17143747,

20362663, 19-1480933, 32769907, 35289547.
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