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A Problem of Lewis Carroll's, and the rational solutions
of a Diophantine Cubic.

By C. Tweebpig, M.A., B.Sc.

§ 1. Inthe Life and Letters of Lewis Carroll occurs the following
extract from his Diary : —

“Dec. 19 (Sun).— Sat up last night till 4 a.m., over a tempting
problem, sent me from New York, ‘to find 3 equal rational-sided
rt.-angled A’s’ I found two, whose sides are 20, 21, 29 ; 12, 35, 37 ;
but could not find three.” (v. page 343.)

The first object of this paper is to show how, starting from any
given rational-sided right-angled triangle, we can certainly deduce
other two of like area. A simple geometrical construction for a
series (finite or infinite) of such triangles is also given.

§2. Diophantine problems of this kind have always had a great
fascination for mathematicians, and the most famous of them, known
as Fermat’s Last Theorem, (" + " =z" has no rational solutions for
n>2) still awaits a satisfactory solution.

When rational solutions of an equation with rational coefficients
are in question, geometrical methods of investigation may often be
successfully employed. Consider the equation f(x, y, 1)=0. Its
solutions may be represented graphically in a plane space by means
of a curve, and we have to determine *“rational points” on this
curve.

In the case of an equation of the first degree in x and y to every
rational value of one coordinate corresponds a rational value of the
other.

For a quadratic equation

(a'! b’ G,_f; s hv M1)2=
if one rational point (£, 1) exists, all the others may be found as
follows. Take any “rational” line y —n=m(x - £) through (¢, )
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where m has any rational value. Its second intersection with the
conic represented by the quadratic equation is a rational point, and
variation of m will give all such points. Thus (0, —1) is on the
curve z* +y%=1, and therefore all other rational points are given by
3m/(1 +m?), (1 —m?/(1+m®), where m has any rational value. It
follows that the sides of a rational-sided right-angled triangle are
given by 2pm; p(1-m?); p(1+m?. For the rational solutions of
the equation a®+ 3% =y correspond to the rational solutions of

(a/yy+(Blyy=1.

§3. In the problem before us we have to find all rational
solutions of the equation o’+ f3°=9°% subject to the condition
a3=2A where A is a constant area; .., to find the rational
solutions of i +yt=1 - - - (1)
subject to the condition yxy, =2A - - - (2)
where vy is a suitable rational quantity.

The rational solutions of (1) are given by

2m/(1 +m?), (1 -m?/(1+m?).

We have therefore to find all rational values of m and y for which

2m(l —m?) =2A(1 +m?°. - (2
Write « for m and ¥ for (1 +m%)/y, when we have to determine the
rational points on the curve

a(l-a)=Ag% - - (3)

The two sides of the corresponding triangle are 2z/y and (1 - %)y,
and the hypotenuse is (1 + 2%)/y.

§4. Description of the cubic curve.

Equation (3) represents a non-unicursal cubie, which, when A
is positive, consists of an elliptic oval for x between 0 and + 1, and
an infinite serpentine branch between = -1, and = ~«, both
symmetrical with respect to the x-axis.

Differentiation with respect to x gives the equations

2Ayy’ =1-32* . - 4
2Ay %+ 2Ayy"= -6z - - ()
There is therefore no feal inflexion when x is positive (A positive).
The inflexions have their abscisse given by
2?=(3+2,/3)/3
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and there are, as in other cubics, only three real inflexions given by

z= - J{(8+2J3)/3},

and by the point of inflexion at infinity. It is a harmonic cubic,
i.e., the four tangents from any point on it, touching the curve
elsewhere, form a pencil of lines whose cross ratio is constant
and equal to —1. This may be seen by taking in particular the
tangents from the ioflexion at infinity which cut the x-axis at
(-1,0); (0,0); (1,0); (=, 0). As in all other cubics consisting
of two branches, there is an “even” branch and an *“odd” branch.
Every line cuts the oval in two points real, coincident or imaginary,
or not at all. No real tangents can be drawn from the oval to
touch the cubic elsewhere. Also, it will appear presently that
the four tangents from any point on the “odd” branch are real.
Two of the tangents touch the oval, and two touch the serpentine
elsewhere. (v. Schriter, Theorie der ebenen Kurven dritter Ordnung.)
It follows naturally that all ¢ tangentials” are points on the odd
branch. It is besides clear that, since the oval is elliptic and does
not possess any real inflexion, two real tangents can be drawn to it
from any point “outside” it. Regarding cubics in general it will
only be necessary to assume that if A,B,C,; A,B,C, are two chords
of a cubic, and if A A,, B,B,, C,C, again cut the curve in A;, B;, C,,
then the latter three points are collinear. This theorem will be
denoted as I. and quoted under the form

A, B, G
A,BC - - - - @O
A, B, C,

§5. Rational solutions of a cubic.

The solution of the general cubic equation was first given in its
general form by Cauchy, Exercices de Math. cahier 4. (v. also
Desboves Nouv. Annales, 1886.) Two methods are given. In
geometrical language they are as follows :—(i) If a rational point on
the cubic is known, its tangential-—the remaining point of inter-
section of the tangent at the point with the cubic-—furnishes a
second rational point; and (ii) If two rational points on a cubic are
known, the line joining them cuts tbe cubic again in a rational
point. Neither method is perfect, and either is liable to exception.
Thus (i) breaks down for the point (0, 1) on 2*+4°=1, for this
point is a point of inflexion. Similarly (ii) breaks down when the
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line joining a point and its tangential is taken. The method of (i)
was virtually known long before for equations of the form y*=/y(z).
In Euler’s Algebra (1784) will be found in addition another method
of solving y*=/y(x), which may be expressed geometrically as follows.
If Pis a rational point on the cubic, the parabola having 3-pointic
contact at P of the form y=a+ bx +ca? cuts the cubic agsin in a
rational point.

The geometrical method can be extended to other cases which
were most probably familiar to Lucas, but the extension is more
apparent than real, and many receive their explanation from the
residual theory of Sylvester for cubics.

These usually depend upon the fairly obvious theorem that if
two curves of degrees m and = with rational coefficients cut in
mn — 1 rational points, the remaining point of intersection is also &
rational point. Particular cases arise for contacts of different
orders.

Thus if a conic has 5-pointic contact with a cubic at a rational
point P, the remaining point of intersection is a rational point;
similarly for a rational conic with 3-pointic contact at P and
2-pointic contact at P, say, where P and P’ are rational points.

§6. We proceed to apply these methods to the cubic (3), viz.,
Ayt=a(1 - 2?).

There are three obvious rational points :—(0, 0); (1, 0); (-1, 0);
but neither method of Cauchy’s when applied to these gives any
fresh solution. What is more, there can be no further rational
points on the cubic if A is a square number, for it is a theorem as
old as Fermat that the area A of a rationalsided right-angled
triangle can not be a square (Legendre, Théorie des Nombres,
Vol. IIL.).

Let us, however, take any particular triangle and obtain a
suitable value for A. To this triangle will correspond a perfectly
definite rational solution (¢, 7) on the cubic Ay*=ux(l -2*); for if
a, B, y are the sides and hypotenuse, then

2/n=a; (1-n=8; (1+&) =7

Hence (1 - £%)/(1 + £?) is rational ; and £/(1 ~ £?) is rational. Hence
£ £, 1 are rational.

We may therefore start with this rational point as basis,
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§7. Tangential Method. The tangent at (£, ) tc
Ay¥r=2(1 -2
s y-n=mx-9) -- ()
where m = (1 — 3£%)/2An. The z-eliminant is 2* + Am®z® +...=0.
Hence if (£,, 5,) be the tangential of (£, ) we obtain
26 +4=-Am’
b= - Amt- 2= — (&4 17481 - £).
Or, if a, B3, y are the sides and hypotenuse of the first triangle
b= ~ 7238 = - (4 B)2aB = - (*+ F)4A. - (D)
It is unnecessary to calculate »,, nor need any attention be paid
to the sign of §,. The sides of the new triangle are proportional to
26, 1 - &7 and are given by
A(274/208), M~ 1+74/40B?).
Their product is ¢, hence
Np(y - 4038/ 4a"B =B,
so that A=2aB%/(a® - B%y, if a>p0.
The new triangle therefore has for sides
2aBy/(a? - BY); (o~ BY/2y,
and the hypotenuse is (a*+ 6a28% + 84)/2y(a® - B°). - - - (6)

§8. To this analytical result corresponds a simple geometrical
construction for the new triangle.

Let ABC be the original triangle. Let M be the middle point
of the hypotenuse AB, and draw CD perpendicular to AB. Then
2y.MD=a?- 3. Hence one side of the new triangle is the
segment MD. This is easily verified directly.

§9. But is a new triangle found? For in an ordinary right-
angled triangle it is possible for MD to be equal to a side. Can
a or 3 equal (a® - 8°)/2y when y*=q®+ 3* and all the quantities are
rational Let £=a/y, n=f/y. Can a/y or Bly=(a®- B2y}

Can 2=8-7; S4+r'=1; - - . ()
or M=8-n*; S¥+9*=11 - - - (8)
The solutions are irrational, hence the new triangle obtained is
always distinct from the first.

It naturally follows that the points of inflexion on the curve (3)
can not be rational points,
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If we denote the three rational quantities thus found as «’, 8, ¥/,
the next triangle would have one side equal to

+24B7/(a - B7),
or % dafy(at - B)(at+ 6aB + B/ {16a3%* - (a* - F)} = £ D, say.
This can not equal ¢’ or 8. Can it be equal to « or 8¢

The relation a= + D leads to the equations
16£%° - (£2 - 7°)' = £ 4n(E* — ") + 687 +9) 5 2 +7°=1. (9)
Eliminate £, and 7 is a root of the equation
169°—32¢°+40n' - 24n° + 1 £ 49(1 + 29° - 129* + 89%)  =0.
Write y/2 for 7 when we deduce an equation in y,
y+..+16=0, - - - - (109)

where the coefficients are integers. Any rational solution of
this equation must be an integer, and can therefore only
be £1; +2; +4; +8; £16; so that any rational root in 7 must
be +1/2; £1; etec. But £=+ o/I—7 and can be rational for
only one of these values, viz., when = +1. But £ would then be
zero, which is impossible from the nature of the problem. On
writing 8= + D, the same equation is obtained in ¢ and similar
conclusions are deduced. The final conclusion therefore is that the
three triangles thus found are distinct equivalent and rational-sided
right-angled triangles, and Carroll’s problem is therefore solved. If
the sides are to be integers, a suitable numerical factor can always
be introduced. Owing to the restriction that the solutions must
always be rational, it is very probable that the series could be
indefinitely increased, but it is quite easy to construct a cubic such
that even the third tangential of a point on it coincides with the
point itself for certain positions on the cubic.

§10. The application of the chord residue method (ii) of Cauchy
leads to some interesting conclusions.

It is also noteworthy that in this case the solutions obtained by
the tangential method may be found by the second method.

More generally, if three points A, B, C on a cubic are known
no one of which is a tangential of another, the tangential of A, say,
may be found as follows :
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Lot AB and AC cut the curve again in B’ and C. Then by
Theorem I. we have the collinear points given by
ABBFB
ACC
TDD
where D and D’ are the points in which BC and B’C’ again cut the
cubic, and T is the tangential of A.
Now the cubic
Ay*=2(1 - 2%)
possesses three rational points (0, 0); (-1, 0); (1, 0) which may
be denoted by O, O,, O,. If therefore a rational point P, distinct
from these is known, the tangential Q, of P, can be found by the
residual method. It is remarkable, however, that although new
rational points on the curve are found by joining P, to the points
“0,” no new solution of the problem is thereby directly obtained.
Let (¢, ) be the coordinates of P, and let P,O, P,0,, P,O, cut
the curve again in P,, P;, P,. It is easily shown that these points
are

(=1/& -/€%);5 (G+rDIE-1), 20/(E-1)) 5 ((1-E)/(1+E)s 2n/(€+1))-

Consider the ratio of the sides of the triangle corresponding to P;.
It is given by 3¢&/(1 - £%).

Now the solutions in x of the equation

/(1 -a)= £2¢/(1 -£°) are +§, +1/¢
and those of
2z/(1 - a%) = 2 (1 - £7)/2§ are £(1+£)/[(1 - §) and £(1-§)/(1+§).

The ratio of the sides is therefore unaltered by selecting P,, P, or P,,
and as the area is unaltered no new triangles are formed.

§11. There can likewise be no new solutions found by joining
P,, P;, P, to the neutral points O, etc., but the number of points
found in this way is limited. If P/, P,, etc., are the images of
P, P,, etc, in the z-axis, the following table contains only eight
distinct points P.

(1) POP,; PO/P,; PO,
(2 POP,; P,OP’; P,O,P/
(3) POP/; P,OP; P,O,P
(4) POPR,/; POP ; POP,
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with four similar rows formed by interchanging dashed and undashed
letters P,—a transformation following from the symmetry of the
cubic.

Theorem I. readily establishes these, or they may be verified
analytically. Thus, to establish P,0,Py, we have the system

P, O P
0, 0 O,
w P,

where « denotes the point at infinity on the y-axis where the tangent
at O again cuts the curve. But the line joining P; to this point is
perpendicular to the z-axis, and therefore passes through P;. In
this way groups of eight points are obtained. We proceed to
examine a group of these in detail, and to apply method (ii) to them.

§12. If Q, is the tangential of P, it is also the tangential of
P,, P/, P,/; and Q, is the tangential of P/, P,, P,, P,.
For by I. we have the array

P, O P,
P, P, O
Ql P" P"

which proves that P,’ has Q, for tangential.

Cor. If Q is the tangential of a rational point, the four tangents
that can be drawn from it to touch the curve elsewhere are rational.
Or, if one of the tangents from a point on the curve is rational, so
are the other three, and each meets the curve in rational points.

§13. The chord residue method will, in fact, be found less fruitful
in new results than might have been expected.

Consider the chords

PP/; PP; PP/.

Let Q, when joined to the neutral points O, O,, O, give rise to
the group (Q...... Q).

We then find the following triads

PP/'Q, PP'Q), PP/Q,.

To establish the first of these we have

Pl Pﬂ’
P, P O
QQ O, Q - PP Q.
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Similarly from P, we obtain
P,PQ:; PPQ;; P.P/Q;

and from P, P,PQ, and P,P/Q,.
The possible new triads for P, etc., may be obtained by symmetry.

There resuits no new triangle distinct from that for Q, by joining
points P.

§ 14. Let R, be the second tangential of P, and the first tangential
of Q,. The preceding will now apply to the group of points Q.
Consider the new points to be found by joining a P and a Q.

Let Q,P, cut the cubic again in X,, and let X,0 cut again in X,.
Form the octad of points corresponding to X,.

The lines joining Q, to P, P,’, P, P,’ lead to no new point, and
we therefore should discuss Q,P,, Q,P;, Q,P,, Q,P/.

It will be shown presently that these lead to X, X, X, X/, t.e., to
a system of points possessing a common tangential.

§15. Use Theorem L. for the array in which the first row corre-
sponds to a tangent from Q,, the second row to the line P,P,'Q,,
and there results

QEX,); QP'X:; QP/'X/; QP/X.
Replace the second row by P,PQ,, and we find
QPX,; QP/X,); QF'X,; QP/X,.
Take P.P,Q, for the second row of I., and we find
QPX/; QF'Xy; QP/X;); QP/X,.
In these we may interchange dashed and undashed letters.

Hence Q P’ P
P, O P
X, P, Q.

t.e, QP.X,.
We also obtain the arrays

Q B P 0O 0, O,
P, 0, P and Q P' X/
X, P Q Q P Xy,

hence Q,P.X,; Q,P/X,.
The other joins of P’s and Q’s are already accounted for.
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§16. The tedious process of the preceding paragraph may be
somewhat curtailed by the following considerations along with a
proper arrangement of the points.

The rational points so far obtained are
(00,0, »); (PP, P/P)); (P/P,P,P); (QQ'Q/Q)); ('QQ:Q));5

(XXX X)) (XX XpX)) 5
in which members possessing a common tangential are grouped. It
will be seen that if any member of one group of four points is joined
to another group of four points, the same group of four points has
been obtained. This follows from the following more general
theorem :—

If any member of a group of four points possessing & common
tangential i3 joined to a similar group of four points, the same four
points of intersection of joins with cubic are obtained and the latter
possess a common tangential.

Let A, B, C, D be four points on a cubic having the common
tangential T. Let P be any other point, and let PA cut again in A,.
Let the tangential of P be Q and of A be T. Then by Theorem I.

P P Q
A AT
A, ATy

. QTT, are in a line.

But Q is fixed and T is fixed ; therefore T, is a fixed point, and
the same point T, is the tangential of B,, C;, D;. Also the point Q
is the same for the four points P possessing Q as a common tangential.
Hence the theorem follows,

§17. It will be observed that the points 00,0, form such a
system of four points, their tangential being the inflexional point at
infinity. It may also be noted that the methods of proof hitherto
employed would apply to any non-singular cubic, only for images of
points the corresponding harmonic conjugates with respect to a
point of inflexion require to be taken. So far as our problem is
concerned no distinction is made among points possessing a common
tangential.

The following notation may therefore be used with the object of
finding fresh solutions.

Let P denote indifferently any one of the four points
P, P, P/, P/; and P its image (or harmonic conjugate).
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_ _]}et_ the successive tangentials of P be Q, R, 8; and .- of P be
QRS LetPQcutin X,QRin Y, PR inZ PYin T, RSin ¢

§18. The following table of collinear points may then be easily
constructed.
(i) PPO; PQP; PQX; PRZ; PRX; PYU; PYZ; PsU.
(ii) PPO; PQP; etc.
(iii) QQO; QRQ; QRY; QXZ; QXP; Q¥S; QzU.
(iv) QQO; QRQ; ete.
(v) RRS; RRO; RXP; RXU; RYQ; RZP; RS{.
(vi) RRS; ete.
(vil) XXY ; XXO0; XZ8; XZQ.
(viii) XXY ; ete.
(ix) YY¢; ZU(; ete

All the possible solutions thus obtained for Carroll's problem
would not be greater than nine in number, as corresponding to

PLQRS X Y %0
§19. It will be observed that Y and { are successive tangentials

of X.
For

eceding table (§18) the following

=
T Mol
-/ )

In the construction of the
theorems are also useful.

Let P and A be any two points on the cubic, and let PAB, PAC
be collinear points on the cubic. Then BC passes through a point Q.

For P P Q
A AO
B CQ
Also the residual points corresponding to AC and AB are in a line
with Q.
For P A B
PC A
oo Q
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§20. It might readily be imagined that a convenient algorithm
for finding new solutions would be found as follows.

Let P,AB be three rational points on the cubic and use the
residual method to determine the points P,, P;... from the table

P, A P,
P, B P
P, A P,
P, A P ete

Unfortunately the very first case one takes breaks down rapidly.
Take the points P;, O,, O.

We find P, O, P,
P, O P/
P’ O, P,
P, O P

and we only obtain the four points P,P.P/P,.

§21. This is a particular case of the following theorem.
If A and B have a common tangential and we start with P, any
point on the cubic, we obtain

P, A P,
P, B P,
P, A P,
P, B P,

For let the common tangential of A and B be T, and assume the
first three rows furnishing P,P,P, to prove P,BP,.
We find P, A P
P, A P,
R T 8, say, where R and S are the
residuals of P,P; and P,P, respectively.

Also P, B P,
P, B !
S T R.

.. P;R and P,B cut in the same point P,.

This theorem is Prop. XVI. of Maclaurin’s Treatise on the
General Properties of Geometrical Lines, and contains the germ of
what are generally termed Steiner’s Polygons, viz. :—
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“Let A and B be two points on a cubic, P, any point such that

the system
P, A P,

P, B P, etc,
begins to repeat after P,,, then this will happen for any other
point P on the cubic.” (wide Schréter . c.)
The conditions under which this bappens are furnished by the
same authority.

§22. It might be expected that if we had three points A, B, C
and a point P, then by forming the system
P, A P
P, B P, etc,
we should obtain better results.

But if ABC are to be repeated cyclically, only five new points
are obtained, and the points repeat after P;. In this case A, B, C
may be any three points whatsoever on the curve.

Form the table

A P P,
B P, P,
C P, P
A P, P
B P, P
C P, 1.
From these we deduce the array

P, A P,

P, P, B

C P, P, s C P, P

i.e., we come back to the point P, from which we started.

This again is the first of a series of theorems.

“If n is an odd number, A, A,, ... A,, » points on a cubic,
P any other point on the cubic, the polygon formed as in the
preceding closes up at P,, after cyclical use of the points A twice.”
(Schroter L. c.)
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