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Abstract. The purpose of this paper is a further investigation on the 2-nilpotent
multiplier, M(2)

(G), when G is a non-abelian p-group. Furthermore, taking G in the
class of extra-special p-groups, we will get the explicit structure of M(2)

(G) and will
classify 2-capable groups in that class.

2010 Mathematics Subject Classification. 20C25, 20D15.

1. Motivation. Let G be a finite group presented as the quotient of a free group F
by a normal subgroup R. Then the 2-nilpotent multiplier of G is defined as the abelian
group

M(2)
(G) = R ∩ γ3 (F)

[R, F, F ]
,

which is a lesser extent of the Baer invariant of group G with respect to the variety of
nilpotent groups of class at most c, M(c)

(G), and it has been introduced in [1] (see also
[8, 10, 18] for more details). In the case c = 1, the Baer invariant of G is denoted by
M(G) and it is called the Schur multiplier of G. There are wide stories involving this
concept and it can be found for instance in [2, 9, 10, 13, 14, 15, 22, 23, 24].

Information about the 2-nilpotent multiplier of G may be used as an instrument
in connection to isologism of groups (see [6]). Recall that the concept of isologism of
groups was introduced by P. Hall in [11, 12] and it is used for classifying finite p-groups
into isologism classes.

Thanks to [6, Theorem 3.1], we can easily obtain the order of M(2)
(G) when G is

a finite abelian group. Unfortunately, in the case of non-abelian groups, there is no
explicit instrument to compute the structure of M(2)

(G) for an arbitrary non-abelian
group G. In the way of computation in more classes of groups, here we obtain the
explicit structure of 2-nilpotent multipliers of all extra-special p-groups. In the other
direction, it seems finding a suitable upper bound may be useful to know more about
the 2-nilpotent multiplier and 2-capability of groups.
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It is shown in [19, 20] that for a p-group G of order pn,

|M(2)
(G)||γ3 (G)| ≤ |M(2)

(�
(n)

p
)|.

It jointly with Theorem 3.2 shows |M(2)
(G)| is bounded by p

1
3 n(n−1)(n+1)

. We will show that
the bound is attained exactly when G is elementary abelian similar to the result of [2,
Corollary 2] due to Berkovich. Although we will reduce the upper bound as much as
possible in the case of non-abelian p-groups, and as a result we will generalize the work
of Berkovich [2] to the 2-nilpotent multipliers of finite p groups.

In this paper, we characterize the explicit structure of the 2-nilpotent multiplier of
all extra-special p-groups as same as [15, Theorem 3.3.6] for the Schur multiplier by a
quite different technique, and then we will find a suitable upper bound for the order
of M(2)

(G). Moreover, we will state necessary and sufficient conditions for a group to
obtain the given upper bound. Finally, we extend the result of [3] about the capability
of extra-special p-groups to 2-capability.

2. Preliminaries. This section deals with prerequisite concepts and results, which
will be used in the next section.

We use techniques involving the concept of basic commutators. Here is the
definition.

Let X be an arbitrary subset of a free group, and select an arbitrary total order
for X . The basic commutators on X , their weight wt, and the ordering among them
are defined as follows:

(i) The elements of X are basic commutators of weight one, ordered according to
the total order previously chosen.

(ii) Having defined the basic commutators of weight less than n, a basic commutator
of weight n is c = [b, a], where:
(a) b and a are basic commutators and wt(b) + wt(a) = n, and
(b) b > a , and if b = [b1 , b2 ], then a ≥ b2 .

(iii) The basic commutators of weight n follow those of weight less than n. The basic
commutators of weight n are ordered among themselves in any total order, but
the most common used total order is lexicographic order, that is if [b1 , a1 ] and
[b2 , a2 ] are basic commutators of weight n, then [b1 , a1 ] < [b2 , a2 ] if and only if
b1 < b2 or b1 = b2 and a1 < a2 .

There are some classical results involving M(2)
(G) as follows.

THEOREM 2.1. Let G be a finite group and B � G. Set A = G/B.

(i) [7, Proposition 2] If B ⊆ Z2(G), then

(a) |M(2)
(G)||B ∩ γ3 (G)| divides |M(2)

(A)|
∣∣∣∣
(

B ⊗ G
γ3 (G)

)
⊗ G

γ3 (G)

∣∣∣∣,
(b) [16] The sequence
(B ∧ G) ∧ G → M(2)

(G) → M(2)
(G/B) → B ∩ γ3 (G) → 1 is exact.

(ii) [19] |M(2)
(A)| divides |M(2)

(G)||B ∩ γ3 (G)|/|[[B, G], G]|.

The following theorem plays an essential role in the rest.
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THEOREM 2.2 [21]. Let G and H be finite groups. Then there is a natural
isomorphism

M(2)
(G × H) ∼= M(2)

(G) × M(2)
(H) × (G

ab ⊗ G
ab

) ⊗ H
ab × (H

ab ⊗ H
ab

) ⊗ G
ab
.

In which X
ab = X/X

′
for a group X.

We use the following theorem several times in the paper and it can be found in
[17, Theorem 2.4] for c-nilpotent multiplier, but in abelian p-groups there is a simpler
proof, which is also in [6, Theorem 3.1].

THEOREM 2.3. Let G = �
pm1

⊕ �
pm2

⊕ · · · ⊕ �
p

mk
, where m1 ≥ m2 ≥ · · · ≥ mk . Then

M(2)
(G) ∼=

k⊕
i=2

�
(i2−i)

pmi
.

Proof. We proceed by induction on k. For k = 2, Theorem 2.2 implies that

M(2)
(�

pm1
⊕ �

pm2
) ∼= M(2)

(�
pm1

) ⊕ M(2)
(�

pm2
) ⊕ (

(�
pm1

⊗ �
pm1

) ⊗ �
pm2

)
⊕ (

(�
pm2

⊗ �
pm2

) ⊗ �
pm1

) ∼= �
(2)

pm2
.

Assume that G = �
pm1

⊕ �
pm2

⊕ · · · ⊕ �
p

mk
⊕ �

p
mk+1

and put G1 = �
pm1

⊕ �
pm2

⊕
· · · ⊕ �

p
mk

. Since G = G1 ⊕ �
p

mk+1
, Theorem 2.2 deduces that

M(2)
(G) ∼= M(2)

(G1 ) ⊕ (
(G1 ⊗ G1 ) ⊗ �

p
mk+1

) ⊕ (
(�

p
mk+1

⊗ �
p

mk+1
) ⊗ G1

)
,

which is isomorphic to

k⊕
i=2

�
(i2−i)

pmi
⊕ �

(k2)

p
mk+1

⊕ �
(k)

p
mk+1

=
k+1⊕
i=2

�
(i2−i)

pmi
.

The result holds. �
Throughout this paper, G

(k)
is using to denote the direct product of k-copies of the

group G.

3. 2-Nilpotent multipliers of finite p-groups. This section is devoted to M(2)
(G),

when G is a finite p-group. It was proved in [19, 20] that the order of the 2-nilpotent
multiplier of a p-group G of order pn, is at most |M(2)

(�
(n)

p
)|/|γ3 (G)|, now Theorem 3

implies |M(2)
(G)| to be bounded by p

1
3 n(n−1)(n+1)

. Looking the upper bound and the result,
which will be given in the next (see Theorem 3.7), we can see that the elementary
abelian groups attain the upper bound as same as the result of Berkovich in [2] for the
Schur multiplier of p-groups. Roughly speaking, we are interested to reduce this bound
as much as possible when G is a non-abelian p-group. Our content extends the result
of [22] for the Schur multiplier of finite p-groups.

Let D8 and Q8, E1 and E2 denote the dihedral and quaternion groups of order 8
and the extra-specials of order p3 and exponent p and p2, respectively.
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We need the concept of the exterior square of a group. Here a brief description
is presented. The exterior square G ∧ G is a factor group of the tensor square of a
group G. The tensor square is a special case of non-abelian tensor product of two
groups when the two groups coincide and the action is conjugation. More precisely, it
is generated by the symbols g ⊗ h subject to the relations

gg
′ ⊗ h = (gg

′ ⊗g h)(g ⊗ h) and g ⊗ hh
′ = (g ⊗ h) (hg ⊗h h

′
)

for all g, g′, h, h′ ∈ G, where gg′ = gg′g−1. The exterior square G ∧ G is obtained by
imposing the additional relation g ⊗ g = 1⊗ on G ⊗ G. The image of g ⊗ h in G ∧ G
is denoted by g ∧ h for all g, h ∈ G (see [4] Section 2 and [5] p. 181 for more details).
Recall that the exterior centre Z

∧
(G) of G is equal to the set of all elements g ∈ G such

that g ∧ h = 1G∧G for all h ∈ G. Already [8, Proposition 16 (i)] shows that Z
∧
(G) is a

central subgroup of G, which allows us to decide whether G is a capable group, that is
whether G is isomorphic to E/Z(E) for some group E. In fact G is capable if and only
if Z

∧
(G) = 1 (see [8] ). It is known by [3] that the only capable extra-special p-groups

are E1 and D8.
The following Theorem determines the explicit structure of the Schur multipliers

of all extra-special p-groups. We will state and prove a similar one for the 2-nilpotent
multipliers of all extra-special p-groups in the rest of the paper.

THEOREM 3.1 Beyl and Tappe 1982 [15, Theorem 3.3.6]. Let G be an extra-special
p-group of order p2n+1.

(i) If n > 1, then G is unicentral and M(G) is an elementary abelian p-group of order
p

2n2−n−1
.

(ii) Suppose that |G| = p3 and p is odd. Then M(G) = �p × �p if G is of exponent p
and M(G) = 0 if G is of exponent p2.

(iii) The quaternion group of order 8 has trivial multiplier, whereas the multiplier of
the dihedral group of order 8 is of order 2.

First of all the 2-nilpotent multipliers of all non-capable extra-special p-groups
can be computed thanks to Theorem 2.1 (b).

THEOREM 3.2. Let G be a non-capable extra-special p-group of order pn. Then

M(2)
(G) ∼= M(2)

(G/G′)

and is isomorphic to �
( 1

3 (8n3−2n))
p

.

Proof. Since G is a non-capable extra-special p-group, Z
∧
(G) = G

′
. Now by virtue

of Theorem 2.1(b), the sequence

(G
′ ∧ G) ∧ G

ι→ M(2)
(G) → M(2)

(G/G
′
) → G

′ ∩ γ3 (G) → 1

is exact. Since G is nilpotent of class 2 and Im ι = 0, we have M(2)
(G) ∼= M(2)

(G/G′).
But G/G′ is elementary abelian of rank 2n, so Theorem completes the proof. �

The only extra-special p-groups, which the 2-nilpotent multipliers needs to be
computed are E1 and D8. In the following we intend to compute M(2)

(E1), where E1 is
the extra-special p-group of order p3 and exponent p with the presentation

E1 = 〈x, y | x
p = y

p = [y, x]
p = [y, x, y] = [y, x, x] = 1〉.
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We have M(2)
(G) = R∩γ3 (F)

[R,F,F ] in which F is the free group on the set {x, y} and R =
〈xp

, y
p
, [y, x]

p
, [y, x, y], [y, x, x]〉F

. Since E1 is nilpotent of class 2, we have γ3 (F) ⊆ R
and hence

M(2)
(G) = R ∩ γ3 (F)

[R, F, F ]
∼= γ3 (F)/γ5 (F)

[R, F, F ]/γ5 (F)
.

We know that γ3 (F)/γ5 (F) is the free abelian group with the basis of all basic
commutators of weights 3 and 4 on {x, y}, that is the set

{[y, x, x], [y, x, y], [y, x, x, x], [y, x, x, y], [y, x, y, y]} in which y > x.

We will find a suitable generating set for [R, F, F ]/γ5 (F) to show that

M(2)
(E1) ∼= �

(5)

p
.

LEMMA 3.3. With the above notations and assumptions the following congruences
hold modulo γ5 (F) (a, b, c, d ∈ F, n ∈ �).

(i) [an, b, c, d] ≡ [a, b, c, d]
n
,

(ii) [an, b, c] ≡ [a, b, c]
n
[a, b, a, c]

(n
2)
,

(iii) [[a, b]
n
, c, d] ≡ [a, b, c, d]

n
.

Proof.
(i) we have [an+1, b] = [an, b][an, b, a][a, b] therefore

[an+1, b, c] = [an, b, c]
[an ,b,a][a,b]

[an, b, a, c]
[a,b]

[a, b, c], which is congruent to
[an, b, c][an, b, a, c][a, b, c] working modulo γ5 (F). Commuting the last one
with d gives [an+1, b, c, d] ≡ [an, b, c, d]

[an ,b,a,c][a,b,c]
[an, b, a, c, d]

[a,b,c]
[a, b, c, d] again

is congruent to [an, b, c, d][a, b, c, d] modulo γ5 (F). Induction completes the
proof.

(ii) Using the above we have [an+1, b, c] ≡ [an, b, c][an, b, a, c][a, b, c] (mod γ5 (F)),
but [an, b, a, c] ≡ [a, b, a, c]

n
(mod γ5 (F)), and so

[an+1, b, c] ≡ [an, b, c][a, b, a, c]
n
[a, b, c]

≡ [an, b, c][a, b, c][a, b, a, c]
n

(mod γ5 (F)).

Now induction shows the result.
(iii) It is a consequence of part (ii).

�
We are in a position to prove the next theorem, which is a key to compute the

2-nilpotent multiplier of E1.

THEOREM 3.4. With the above notations and assumptions we have

[R, F, F ] ≡ 〈[y, x, x]
p
, [y, x, y]

p
, [y, x, x, x]

p
, [y, x, x, y]

p
, [y, x, y, y]

p〉 (mod γ5 (F)).

Proof. Since R = 〈xp
, y

p
, [y, x]

p
, [y, x, y], [y, x, x]〉F , we have

[R, F, F ] = 〈[xp
, a, b], [y

p
, c, d], [[y, x]

p
, e, f ] | a, b, c, d, e, f ∈ F〉F

(mod γ5 (F)),
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which is equal to

〈[xp
, a, b][x

p
, a, b, c], [y

p
, d, e][y

p
, d, e, f ], [[y, x]

p
, g, h] |

a, b, c, d, e, f, g, h ∈ F〉 (mod γ5 (F)).

But Lemma 3.3 implies that

[R, F, F ] = 〈[xp
, a, b], [y

p
, c, d], [[y, x]

p
, e, f ] | a, b, c, d, e, f ∈ F〉 (mod γ5 (F)).

Using the fact that each element of F can be written as the form y
α

x
β

[y, x]
γ

modulo
γ3 (F), Lemma 3.3 and some commutator computations show that

[R, F, F ] = 〈[x, a, b]
p
[x, a, x, b]

(p
2)
, [y, c, d]

p
[y, c, y, d]

(p
2)
,

[y, x, x, x]
p
, [y, x, x, y]

p
, [y, x, y, y]

p | a, b, c, d ∈ F〉 (mod γ5 (F)).

Therefore [y, x, y]
p
[y, x, y, y]

(p
2) ∈ [R, F, F ] (mod γ5 (F)) and because p is an odd prime

[y, x, y]
p ∈ [R, F, F ] (mod γ5 (F)). A simple use of Hall-Witt identity shows [y, x, x]

p ∈
[R, F, F ] (mod γ5 (F)), as required. �

All necessary information is gathered and we are ready to state and prove the
following theorem.

THEOREM 3.5. With the above notations and assumptions, we have

M(2)
(E1) ∼= �

(5)

p
.

Proof. The set {[y, x, x], [y, x, y], [y, x, x, x], [y, x, x, y], [y, x, y, y]} is a basis for the
free abelian group γ3 (F)/γ5 (F) and [R, F, F ]/γ5 (F) is generated by

{[y, x, x]
p
, [y, x, y]

p
, [y, x, x, x]

p
, [y, x, x, y]

p
, [y, x, y, y]

p},
so the result holds. �

Since M(2)
(D8) ∼= �2 ⊕ �4 by [6] and the fact that E2 and Q8 are not capable group,

we summarize explicit structure of the 2-nilpotent multipliers of all extra-special p-
groups as follows. The following theorem is a version of Theorem 3.1 for the variety
of nilpotent groups of class at most 2, note that as in Theorem 3.1 the case |G| = p

3

differs from other cases in results even in case of odd p.

THEOREM 3.6. Let G be an extra-special p-group of order p
2n+1

.

(i) If n > 1, then M(2)
(G) is an elementary abelian p-group of order p

1
3 (8n3−2n)

.
(ii) Suppose that |G| = p3 and p is odd. Then M(2)

(G) = �
(5)

p
if G is of exponent p and

M(2)
(G) = �p × �p if G is of exponent p2.

(iii) The quaternion group of order 8 has Klein four-group as 2-nilpotent multiplier,
whereas the 2-nilpotent multiplier of the dihedral group of order 8 is �2 ⊕ �4 .

In order to consider non-abelian p-groups, we need to know the behaviour of the
order of M(2)

(G) for abelian G.

THEOREM 3.7. Let G = �
pm1

⊕ �
pm2

⊕ · · · ⊕ �
p

mk
, where m1 ≥ m2 ≥ · · · ≥ mk . Then
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(i) |M(2)
(G)| = p

1
3 n(n−1)(n+1)

if and only if mi = 1 for all i.

(ii) |M(2)
(G)| ≤ p

1
3 n(n−1)(n−2)

if and only if m1 ≥ 2.

Proof. Using Theorem 3.2, we have |M(2)
(G)| = p

∑k
i=2(i2−i)mi

. Define

S(k; m1, . . . , mk) =
k∑

i=2

(i2 − i)mi.

It is easy to see that

1
3

n(n − 1)(n + 1) = S(n; 1, . . . , 1) and
1
3

n(n − 1)(n − 2) = S(n − 1; 2, 1, . . . , 1).

Assume that for some j, we have mj > 1 a straightforward computation shows that

S(k; m1, . . . , mk) − S(k + 1; m1, . . . , mj − 1, . . . , mk, 1) = (k + j)(j − k − 1),

which is negative. Hence the maximum value of S(k; m1, . . . , mk) is S(n; 1, . . . , 1), and
the next largest value of S(k; m1, . . . , mk) is S(n − 1; 2, 1, . . . , 1), which proves the
theorem. �

In the following we want to consider the influence of the derived subgroup on
the second nilpotent multiplier, then we give an upper bound for the order of the
2-nilpotent multiplier of a finite p-group in terms of the order of its derived subgroup.

LEMMA 3.8. Let G be a non-abelian finite p-group of order p
n

whose derived subgroup

is of order p. Then |M(2)
(G)| ≤ p

1
3 n(n−1)(n−2)+3

, and the equality holds if and only if G ∼=
E1 × �

(n−3)

p
.

Proof. If G/G
′
is not elementary abelian, then Theorem 2.1(a) implies that

|M(2)
(G)| ≤ |M(2)

(G
ab

)||(G′ ⊗ G
ab

) ⊗ G
ab |.

On the other hand, thanks to Theorem 3.7(b),

|M(2)
(G

ab
)| ≤ p

1
3 (n−1)(n−2)(n−3)

.

Therefore |M(2)
(G)| ≤ p

1
3 n(n−1)(n−2)+2

.
Now assume that G/G

′
is elementary abelian. It is shown that [22, Lemma 2.2],

G is a central product of an extra-special p-group H of order p
2k+1

and Z(G) of order
p

n−2k
. We may assume that |Z(G)| ≥ p

2
due to Theorem 3.6. If Z(G) is not elementary

abelian, then by Theorem 2.1(ii) we have

|M(2)
(G)| ≤ p |M(2)

(H × Z(G))| = p |M(2)
(H)| × |M(2)

(Z(G))|

× |(Hab ⊗ H
ab

) ⊗ Z(G)| × |(Z(G) ⊗ Z(G)) ⊗ H
ab |.

On the other hand, Theorems 3.2, 3.6 and 3.7 show that

|M(2)
(H)| = |M(2)

(H/H
′
)| =

{
p

2
3 k(2k+1)(2k−1)

if k > 1,

p
5

if k = 1.
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Since Z(G) is not elementary abelian, we have

|M(2)
(Z(G))| ≤ p

1
3 (n−2k)(n−2k−1)(n−2k−2)

,

|(Hab ⊗ H
ab

) ⊗ Z(G)| ≤ p
4k2(n−2k−1)

and |Hab ⊗ (Z(G) ⊗ Z(G))| ≤ p
2k(n−2k−1)2

.

Therefore |M(2)
(G)| ≤ p

1
3 2k(2k+1)(2k−1)+ 1

3 (n−2k)(n−2k−1)(n−2k−2)+4k2(n−2k−1)+1
. Now a straightfor-

ward computation shows |M(2)
(G)| < p

1
3 n(n−1)(n−2)+3

.
Still in this case when Z(G) is elementary abelian, suppose that K be a complement

of G
′
in Z(G), so Z(G) = G

′ × K , and hence G = H × K . Theorem 3.7 implies that

M(2)
(G) = M(2)

(H × K) = M(2)
(H) × M(2)

(K) × (K ⊗ K) ⊗ H
ab × (H

ab ⊗ H
ab

) ⊗ K.

Similar to the previous case we have

|M(2)
(K)| = p

1
3 (n−2k−1)(n−2k−2)(n−2k)

, |(K ⊗ K) ⊗ H
ab | = p

2k(n−2k−1)2

and

|(Hab ⊗ H
ab

) ⊗ K| = p
4k2(n−2k−1)

.

Some computations imply that

|M(2)
(G)| =

{
p

1
3 n(n−1)(n−2)

if k > 1,

p
1
3 n(n−1)(n−2)+3

if k = 1.

Now it is easy to see that |M(2)
(G)| = p

1
3 n(n−1)(n−2)+3

if and only if k = 1 and G ∼=
E1 × �

(n−3)

p
. �

Using Lemma 3.8 and induction we can prove the following Theorem.

THEOREM 3.9. Let G be a p-group of order p
n

with |G′ | = p
m
(m ≥ 1). Then

|M(2)
(G)| ≤ p

1
3 (n−m)((n+2m−2)(n−m−1)+3(m−1))+3

.

In particular, we have |M(2)
(G)| ≤ p

1
3 n(n−1)(n−2)+3

and the equality holds in last one if
and only if G ∼= E1 × �

(n−3)

p
.

Proof. Let G ba an arbitrary non-abelian p-group of order p
n
, we proceed by

induction on m. The case m = 1 follows from Lemma 3.8.
Therefore, we may assume that m ≥ 2. Let B be a central subgroup of order p in

G, we have

|M(2)
(G)||B ∩ γ3 (G)| ≤ |M(2)

(G/B)||(B ⊗ G
ab

) ⊗ G
ab |,

by invoking Theorem 2.1(a). Using induction hypothesis

|M(2)
(G/B)| ≤ p

1
3 (n−m)((n+2m−5)(n−m−1)+3(m−2))

,
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and so

|M(2)
(G)| ≤ p

1
3 (n−m)((n+2m−5)(n−m−1)+3(m−2))+3

p
(n−m)2

= p
1
3 (n−m)((n+2m−2)(n−m−1)+3(m−1))+3

,

which completes the proof. �
The following corollary is similar to that of [2, 22] for the order of the Schur

multiplier.

COROLLARY 3.10. Let G be a p-group of order p
n
. Then

(i) |M(2)
(G)| = p

1
3 n(n−1)(n+1)

if and only if G is an elementary abelian p-group.

(ii) |M(2)
(G)| = p

1
3 n(n−1)(n−2)+3

if and only if G ∼= E1 × �
(n−3)

p
.

(iii) |M(2)
(G)| ≤ p

1
3 n(n−1)(n−2)+2

provided that G is neither elementary abelian nor
isomorphic to E1 × �

(n−3)

p
.

4. 2-Capability of extra-special p-groups. Capability of extra-special p-groups
was first studied by Beyl et al. in [6], who determined all extra-special 1-capable
groups. As mentioned the only capable groups in extra-special p-groups are D8 and
E1. Here we will prove that the only 2-capable groups in extra-special p-groups are
these two ones too. That is, in extra special p-groups the notions “capable” and “2-
capable” are equivalent. Let G be any 2-capable group, that is there exists a group E
with G ∼= E/Z2 (E) so we have G ∼= E/Z(E)

Z(E/Z(E)) , which shows G is capable. Therefore all
non-capable extra-special p-groups are not 2-capable as well. To prove the 2-capability
of D8 and E1 we need the following proposition, which can be found in [6, Lemma
2.1(iv) and Proposition 1.2 ]. For the statement of this fact, we need some terminology
from [6] as below.

Let F/R be a free presentation for G and π : F/[R, F, F ] → G be the canonical
surjection. The 2-central subgroup Z

∗
2
(G) of G is the image in G of the second term of

the upper central series of F/[R, F, F ]. More precisely it is equal to π (Z2 (F/[R, F, F ])).

PROPOSITION 4.1.
(i) A group G is 2-capable if and only if Z

∗
2
(G) is trivial,

(ii) If N is a normal subgroup of G contained in Z
∗
2
(G), then the canonical

M(2)
(G) ↪→ M(2)

(G/N)

homomorphisms is injection.

Beyls results can be extended to 2-capability as follows.

THEOREM 4.2. An extra-special p-group is 2-capable if and only if G is isomorphic
to either D8 or E1.

Proof. Let G be the extra-special p-group of order p
3

and exponent p. We will show
there is no nontrivial normal subgroup of G for which the natural homomorphism
M(2)

(G) −→ M(2)
(G/N) is injective. Let N be a nontrivial normal subgroup of G,

so G/N is an abelian p-group of order at most p
2

and hence, Theorem 3.7 shows
|M(2)

(G/N)| ≤ p
2
. Since |M(2)

(G)| = p
5

by Theorem 3.6, M(2)
(G) −→ M(2)

(G/N) fails
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to be injective and the result holds. The proof for the case G = D8 is completely similar
except that |M(2)

(D8)| = 2
3
. �
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