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In recent years, the generalised quasilinear (GQL) approximation has been developed and
its efficacy tested against purely quasilinear (QL) approximations. GQL systematically
interpolates between QL and fully nonlinear dynamics by employing a generalised
Reynolds decomposition. Here, we examine an exact statistical closure for the GQL
equations on the doubly periodic β-plane. Closure is achieved at second order using a
generalised cumulant approach which we term GCE2. GCE2 is shown to yield improved
performance over statistical representations of purely QL dynamics (CE2) and thus enables
direct statistical simulation of complex mean flows that do not entirely fall within the remit
of pure QL theory. Despite the existence of an exact closure, GCE2 like CE2 admits the
possibility of a rank instability that leads to differences with statistics obtained from GQL.
Recognition of this instability is a necessary step before further progress can be made with
the GCE2 statistical closure.
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1. Introduction

Fluid turbulence, where nonlinear interactions occur over a wide range of spatial and
temporal scales, plays an important role in engineering, geophysical, astrophysical and
even biological fluid mechanics. Much turbulence research focuses on the idealised case of
homogeneous and isotropic turbulence, despite the canonical situation involving important
inhomogeneities and anisotropies. For example, in geophysical and astrophysical
situations, rotation and stratification may play important roles in selecting preferred
directions, whereas in other cases mean flows and boundaries often lead to both
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inhomogeneities and anisotropies. For these cases, it is important to develop a framework
that builds in inhomogeneity and anisotropy from the outset and turns this ‘bug’ into
a ‘feature’. Such a framework involves constructing equations for the evolution of the
statistics of the turbulence; it is important to bear in mind that the presence of anisotropy
and inhomogeneity often leads to non-trivial low-order statistics; for example, sustained
mean flows that interact strongly with fluctuations. Methods designed for describing the
evolution of such flows will perform badly for the homogeneous isotropic case, where
mean flows are absent. For a description of the many methods that have been developed
and the underlying philosophy of this approach, see the review by Marston & Tobias
(2023).

In general these methods rely on developing equations governing the evolution of the
low-order statistics for the flow (often termed the cumulants). Such an approach often
requires a closure approximation, where the higher-order statistics are either neglected
completely or written as functions of the low-order cumulants. However, if the system
exhibits quasilinear dynamics, then the system of low-order statistical equations closes
exactly (Herring 1963) and no further approximations are needed; such a system of
statistical equations is known as CE2 (representing a cumulant expansion at second order).
Recent years has seen many systematic investigations of the validity of the quasilinear
approximation (QL) in representing the full nonlinear dynamics (see e.g. Tobias &
Marston 2013; Child et al. 2016; Marston, Qi & Tobias 2019); it has been determined
that there are certain circumstances where the QL approximation breaks down and better
approximations are needed.

Recent research has focused on a generalisation of the quasilinear approximation
(termed GQL) that generalises the definition of the mean flow to include long-wavelength
modes in the zonal direction in addition to the spatial mean (Marston, Chini & Tobias
2016). A scale separation into long-wavelength modes that interact fully nonlinearly
with themselves, and short-wavelength modes with wavenumbers greater than a cutoff
Λ that interact only quasilinearly with the long wavelength modes, has certain
advantages in that it allows energy to be scattered among the turbulent eddies through
interaction with the generalised mean flow. This eddy scattering often leads to a more
faithful representation of the nonlinear dynamics than QL, where these interactions are
forbidden.

GQL, like QL, is a conservative approximation but one that systematically interpolates
between QL (when Λ = 0) and fully nonlinear (NL). As Λ → ∞ the GQL system
consists solely of fully interacting low modes and reverts to NL, albeit not necessarily
monotonically. In particular, if the cutoff Λ is large (but not infinite) it is possible that
high modes will be stable and (incorrectly) not have any energy (Hernández, Yang &
Hwang 2022).

In this paper we derive the statistical representation of the GQL approximation (which
we term GCE2) and describe the utility of this approach by comparing it with CE2 for
two model fluid dynamics problems (one deterministic and one stochastic) describing the
interaction of mean flows with turbulence in two dimensions.

Recently it has been shown that a rank instability can occur in CE2 leading to a
divergence in statistics from QL (Nivarti et al. 2022; see also Oishi et al. 2022). The
existence of this instability has apparently been missed in all prior work going back to
Herring (1963), and the resolution presented here now allows us to properly compare
GCE2 to statistics obtained from GQL and compare both to the statistics found in QL
and NL simulations.
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2. The GQL approximation and its closure

The GQL approximation has been studied in a variety of fluid contexts by a number of
different groups. We refer the reader to our review article (Marston & Tobias 2023) for an
introduction to the approximation and its physical interpretation.

2.1. The GQL approximation
We consider a system of nonlinear dynamical equations for a state vector q(x, t) written as

∂tq = L[q] + N [q, q], (2.1)

with L[·] a linear and N [·, ·] the nonlinear (in this case, quadratic) operator. In order to
apply the GQL approximation, the state vector q is expanded using a spectral basis along
the zonal direction (more generally, the direction exhibiting statistical homogeneity). GQL
then proceeds (Marston et al. 2016) by applying a low-pass filter (projection operator) with
cutoff Λ in the zonal direction, leading to a generalised Reynolds decomposition of the
state vector

q = q� + qh, (2.2)

where the subscripts (�) and (h) denote low and high zonal wavenumber modes,
respectively. For the two-dimensional Cartesian models considered here,

q� =
Λ∑

k=−Λ
qk( y) eikx, qh = q − q�. (2.3a,b)

This decomposition obeys the usual rules of orthogonality and idempotence, and can be
simplified to the conventional Reynolds decomposition (into mean and fluctuation) simply
by setting Λ = 0. Note, however, that the conventional Reynolds decomposition obeys
the equality q̄q = q̄q̄. Note also that we use the overline to indicate a mean computed
as a spatial (zonal) average, but other averages are also possible including ensemble and
time averages.. In comparison, (q�q)� /=(q�q�)� forΛ > 0 under the generalised Reynolds
decomposition into low and high modes; this inequality is remedied after applying certain
interaction rules as follows.

Applying the decomposition (2.2) to the q in (2.1), gives rise to various classes of
nonlinear terms that correspond to different triadic interactions involving low and high
modes. The possible triad interactions can be represented using triadic diagrams in which
low modes (zonal wavenumber |m| ≤ Λ) and high modes |m| > Λ are denoted using
low-frequency and high-frequency wave edges (Marston et al. 2016; Marston & Tobias
2023). GQL equations retain nonlinear self-interactions giving rise to low modes, as
well as quasilinear interactions between low and high modes. Nonlinear self-interactions
giving rise to high modes and interactions between low and high modes giving rise to low
modes are both dropped (see the diagrams in § 2 of Tobias, Oishi & Marston 2018). This
elimination of triad interactions, as in the case of triad decimation by pairs (Kraichnan
1985), conserves quadratic invariants such as energy and enstrophy. The following GQL
equations are obtained by applying these interaction rules:

∂tq� = L[q�] + N�[q�, q�] + N�[qh, qh], (2.4)

∂tqh = L[qh] + Nh[qh, q�] + Nh[q�, qh], (2.5)

for the low and high modes. Here, N�[·, ·] is the projection of the nonlinearity onto the
low modes and Nh = N [·, ·] − N�[·, ·], which denotes the high-mode spectral projection
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of the nonlinear operator N [·, ·]. Furthermore, when Λ = 0, we have q� = q̄ and qh = q′,
and the GQL equations reduce to the well-known system of QL equations (Marston
et al. 2019). Similarly, setting Λ as the full spectral resolution in the zonal direction,
we obtain q� = q and qh = 0; the GQL equations are identical to the NL equations
(2.1) in this limit. Hence, the GQL equations interpolate systematically (though not
monotonically) between QL and NL dynamics by varying the zonal spectral cutoff Λ.
Crucially, the GQL equations lack high-mode nonlinearities which makes GQL amenable
to statistical closure as (2.5) is formally linear in qh. We shall make use of this property
now.

2.2. Deriving the generalised cumulant expansion at second order (GCE2)
Statistically closed equations termed CE2 have been derived for QL equations using
cumulant expansions and other methods (see e.g. Farrell & Ioannou 2007; Marston,
Conover & Schneider 2008; Farrell & Ioannou 2013; Constantinou 2015). A closure for
QL equations is achieved at second order: the equations for the mean and fluctuation
terms are used as a starting point for deriving the corresponding equations for the first two
cumulants, q̄ and q′q′, respectively. This strategy allows for direct statistical simulation
(DSS) of low-order statistical quantities that correspond to QL dynamics. In a similar
manner, statistical closure for GQL dynamics is also achievable at second order using
generalised cumulant expansions which employ the notion of the mean implicit within
the generalised Reynolds decomposition of (2.2). We thus define the first two generalised
cumulants as

c1 ≡ q�,

c2 ≡ qhqh,

}
(2.6)

following the spectral filter (projection operator) notation used earlier. Closed-form
equations for these generalised cumulants, termed GCE2, are obtained by following a
similar approach to that adopted for deriving CE2 equations from QL equations (Marston
et al. 2019). The generalised first cumulant is identical to low modes (analogous to q̄ in
CE2). As a result, the equation governing the evolution of the generalised first cumulant
c1 is the same as that for the low modes q� as given by (2.4):

∂tc1 = L[c1] + N�[c1, c1] + N�[c2]. (2.7)

The generalised second cumulant is a field bilinear in high modes (akin to the Reynolds
stress C = q′q′ in CE2). The equation for c2 = qhqh is thus obtained by multiplying the
high-mode equations (2.5) with high modes and subsequently projecting down to the low
modes as follows:

∂t(qhqh) = {qh∂tqh} = {qhL[qh]} + {qhNh[qh, q�]},
=⇒ ∂tc2 = L[c2] + {Nh[c2, c1]},

}
(2.8)

where the curly braces {··} denote symmetrisation, i.e. {ab} = ab + ba. Taken together,
(2.8) and (2.4) form a closed set of equations in terms of generalised cumulants. This
allows the implementation of DSS of GQL dynamics, i.e. solve directly for statistics that
interpolate between QL and NL dynamics. We note here that similar equation sets have
been derived in other contexts (see e.g. Bakas & Ioannou 2013a,b; Constantinou 2015;
Constantinou, Farrell & Ioannou 2016), though the relationship with GQL models and
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the possibility of the statistical models diverging from the QL-type models have not been
investigated previously.

A recent study has demonstrated that although one can mathematically arrive at the
CE2 system starting from the QL equations, the two frameworks are not statistically
equivalent (Nivarti et al. 2022). This is because, as opposed to QL equations, the CE2
system can sustain solutions wherein the second cumulant has rank>1 whereas the second
cumulant obtained by zonally averaging QL dynamics is always of unit rank. We anticipate
therefore that the GCE2 and GQL systems may not be fully equivalent either. However,
we emphasise that the ability of GCE2 to predict a generalised second cumulant with rank
greater than unity ought to be considered as a feature not a bug, one that motivates further
study.

This paper has two aims: (1) to test the predictions of GCE2 against those of GQL,
thereby demonstrating that, even for a cutoff Λ = 1, GCE2 is a significant improvement
over CE2; and (2) to probe observed divergences between GCE2 and GQL, relating them
to the presence of rank instabilities as in the case of CE2 and QL (Nivarti et al. 2022).
We employ only low-resolution models here with a small number of modes to highlight
clearly any differences between GQL and GCE2. We have verified that the qualitative
results continue to hold at higher resolutions as well.

3. Numerical implementation

We conduct simulations of a rotating, incompressible fluid on a doubly periodic β-plane.
The time evolution of the relative vorticity ζ ≡ ẑ · (∇ × u) is given by

∂tζ = β∂xψ − κζ + ν∇2ζ + J[ψ, ζ ] + F, (3.1)

where u is the velocity, J[ψ, ζ ] = ∂xψ∂yζ − ∂xζ∂yψ and the streamfunction ψ ≡ ∇−2ζ .
Gradients of rotation are included via the β term, ‘bottom friction’ via the κ term and
viscosity via the ν term. The forcing term F models energy injection into the system. We
adopt two different models of forcing (or driving) in this study: (1) a deterministic steady
two-scale Kolmogorov-type forcing as used by Tobias & Marston (2017), see (4.1); and
(2) a white-in-time stochastic model of forcing adapted from Constantinou et al. (2016),
see (4.2). The latter is a commonly used model that mimics thermal driving.

The spectral solver ZonalFlow.jl (written in Julia (Bezanson et al. 2017) and made
available online Nivarti, Marston & Tobias 2021) is used to obtain direct numerical
solutions of (3.1). Timestepping algorithms are imported from the well-tested ecosystem
of the DifferentialEquations.jl (Rackauckas & Nie 2017) package. We use
different timestepping methods to simulate flows with different types of driving models.
For the deterministically driven Kolmogorov flow, we use the explicit 5/4 Runge–Kutta
method of Dormand-Prince with a fixed timestep of 
t = 0.001. For the stochastically
driven flow, we use the SRIW1 method of order 1.5. To be consistent, we use the
same timestepping algorithm to solve the dynamical equations (QL/GQL/NL) and the
statistical equations (CE2/GCE2) for a given flow. Unless specified otherwise, the initial
condition consists of random noise of mean power 10−4. We employ a [0, 2π]2 grid with
resolution M × N = 10 × 10 for the Kolmogorov flow system, and a [0, 2π] × [0,π] grid
with a resolution of 12 × 20 for the stochastically driven system, where |m| < M is the
wavenumber in the zonal (x) direction and |n| < N is the wavenumber in the non-zonal (y)
direction.

We have conducted a number of validation tests to ensure that the equations are
implemented accurately in our code. Solutions for equations neglecting the dissipative
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terms have been tested to confirm conservation of energy and enstrophy is satisfied in
such regimes. In addition, the agreement of mean equilibrium solutions for a given energy
input with dissipation has also been confirmed across the various equation systems. In
the presence of nonlinear terms, our tests confirm that setting the spectral cutoff Λ = 0
in GCE2 reproduces CE2 results and setting Λ = M − 1 reproduces the NL results. In
addition to the forcing models outlined above, the aforementioned tests are also conducted
for a deterministic driving model with relaxation to a point jet (Marston et al. 2008); here,
an additional validation test is available as the GCE2/CE2 as well as GQL/QL results
converge to NL for small relaxation times. All these tests have been automated, such that
the Github workflows server conducts them each time a code change is pushed to the
online repository (Nivarti et al. 2021).

In the following, we present results comparing GCE2 against GQL for a spectral cutoff
Λ = 1. For each forcing model and specified set of parameters, we compare these results
against predictions of the NL system as well as of the CE2 and QL equations. Note that,
we use overlines to indicate spatial (zonal) averages (not ensemble or time averages) on
QL solutions as in the comparisons against CE2. When time averages are used (such as
to facilitate comparison of Hövmöller plots), we explicitly state this along with specifying
the averaging window in the accompanying text.

4. Results

4.1. Two-scale Kolmogorov forcing
Figure 1 shows the final time (t = 1000 days) resolved vorticity solution for a flow driven
by a deterministic two-scale Kolmogorov forcing. We set F in (4.1) to be

F( y) = − cos( y)− 8 cos(4y) (4.1)

and the parameters ν = 0.02 and β = κ = 0 as in (3.1). This system is known to lead to
non-trivial dynamics (Tobias & Marston 2017). The forcing term is added to the tendency
equation for the first cumulant (2.7).

The NL solution (figure 1a) consists of a strong band of positive vorticity centred at
y = π surrounded by negative vortical regions, as was observed by Tobias & Marston
(2017). The band of positive vorticity appears to be composed of a strong zonal mean and a
sinusoidal zonal wave with wavenumber m = 1, the latter contributing to the varying width
of the band as a function of x. As noted in Tobias & Marston (2017), this vorticity solution
corresponds to a rightward flow on the upper half y > π of the domain and leftward flow
in the lower half.

The QL solution (figure 1b) captures the central positive vorticity band, albeit with
an apparently weaker m = 1 harmonic resulting in a band of more uniform height and
thickness. For presentation of results, we adopt zonal (spatial in x direction) averaging so
that q̄ denotes the zonal mean of quantity q. The zonal mean vorticity ζ̄ predicted by CE2
(figure 1c) agrees reasonably well with QL dynamics both in magnitude and distribution.
The localised negative vorticity regions predicted by QL (figure 1b) in the upper and lower
half of the domain are averaged out in the CE2 prediction (figure 1c). Figure 1(d,e) shows
the GQL (figure 1d) and the resolved GCE2 (figure 1e) solutions for a cutoffΛ = 1. These
are in very close agreement with the NL solution, improving significantly over the QL/CE2
solutions. Figure 2 contains Hövmöller plots of ζ( y, t) showing the evolution of the central
band of vorticity with time for the five different equation systems. All solutions evolve
from the same initially random noise field of power 10−4. Time-averaging is conducted
in the window 500 < t < 1000 days. Up until time-averaging begins, the QL, GQL, and
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Figure 1. Snapshot of the vorticity field ζ(x, y) for NL (a), QL vs CE2 (b,c) and GQL vs GCE2 (d,e) for
two-scale Kolmogorov flow with resolution M = N = 10 at t = 1000 days. All colour ranges are identical.

GCE2 systems exhibit noticeable fluctuations in jet location over a relatively small time
scale of t ∼ 10 days. Such fluctuations appear to be much less pronounced in the NL and
CE2 systems, wherein the vorticity jet appears to stabilise at its location at around t = 250
days. The time-averaged solution of all five systems are in excellent qualitative agreement,
with the possible exception of QL which appears to predict a slightly weaker jet (lighter
red colour in figure 2b).

Focusing on subtle quantitative differences, we show time-averaged energy spectra for
the various solutions in figure 3. Each panel plots E(m, n) = ζ̂ ∗

m,nζ̂m,n/(m2 + n2) with
zonal wavenumbers m running along the x-axis and non-zonal wavenumbers n along the
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Figure 2. Hövmöller plots showing ζ( y, t) for NL (a), QL vs CE2 (b,c) and GQL vs GCE2 (d,e) for the
Kolmogorov flow case. All colour ranges are identical. Time averaging commences at t = 500 days.

y-axis. Evidently, all equation systems predict energy to be primarily concentrated in two
pairs of conjugate modes, namely (m = 0, n = ±1) and (m = ±1, n = 0) (note that the
mode (m = 0, n = 0) denotes the mean across the entire domain and has been set to
contain no energy in our solutions). In the NL case (figure 3a), the remaining energy is
spread over spectrally-local modes within a relatively narrow band of zonal wavenumbers,
with remaining zonal wavenumbers containing small but non-zero energy. In QL and CE2
(figure 3b,c), this zonal spreading of energy is limited to |m| ≤ 2, with no energy in modes
with larger zonal wavenumbers. On close inspection, minute differences between QL and
CE2 can be observed. For instance, QL (figure 3b) contains slightly higher energy in
the (m = ±1, n = 0) harmonic pair (dark orange squares) and a slightly different energy
distribution across the zonal mean modes (m = 0, n) as compared with CE2 (figure 3c).

The GQL and GCE2 solutions (figure 3d,e), however, are in excellent agreement with
each other. Moreover, they both clearly improve upon the QL/CE2 solution (figure 3b,c)
when compared with the NL solution (figure 3a). Both GQL and GCE2 exhibit similar
spreading of energy around the four most energetic modes as seen in NL, albeit with
slightly less energy in the outer bands of modes with |m| = 4, 5. Crucially, the modes
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Figure 3. Time-averaged energy spectra E(m, n) at t = 1000 days for NL (a), QL vs CE2 (b,c) and GQL vs
GCE2 (d,e) for the Kolmogorov flow case.

|m| > 5 contain a small amount of energy in a similar manner to NL, and as opposed to
QL/CE2 where energy is completely absent in these modes. These results validate GCE2
as a statistical theory for GQL dynamics, with the ability to improve upon predictions of
CE2.

We now proceed to make quantitative comparisons between the various solutions to
elucidate on the qualitative differences observed above. We show the energy distribution
over zonal wavenumbers m in the n = 0 slice of the time-averaged energy spectra
in figure 4(a). NL (black line) contains energy in all non-trivial zonal wavenumbers
m ∈ [1, 9]. Moving away from the strongest wavenumber m = 1, energy tapers-off rapidly
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Figure 4. (a) One-dimensional slice of the time-averaged energy spectrum E(m, 0) predicted by the different
equation systems for the Kolmogorov flow case. (b) Zonal mean vorticity profile ζ( y; t = t∞).

across the wavenumbers m ≤ 4 and more gently along the wavenumbers m ≥ 5. GQL
(orange line) and GCE2 (orange dots) mimic this distribution of energy reasonably well;
however, the m = 1 mode is slightly stronger and the wavenumbers m ≤ 4 have slightly
lower energy in GQL/GCE2 than NL. Interestingly, minor departures of energy between
GCE2 and GQL are apparent, particularly for m = 5, 7. In comparison, QL (blue line)
and CE2 (blue dots) contain most energy in two wavenumbers. Comparing these modes
carefully, we note that QL contains significantly more energy in the m = 1 mode than does
CE2, showing that QL and CE2 solutions also have disagreements.

In figure 4(b), we plot the zonal mean vorticity as a function of the y-coordinate. The
centreline vorticity (y = π) of the NL solution is quite well predicted by CE2, followed
closely by GQL and GCE2. However, the QL solution departs conspicuously from the
remaining predictions at the centreline. Differences between the solutions away from the
centreline are relatively small, although, at y ∼ 3π/2, the NL solution is over-predicted
by both solution pairs GQL/GCE2 and QL/CE2. Again, the QL and CE2 solutions exhibit
significant departures from each other. Though we have noted here a difference between
QL and CE2 solutions, no major departures are immediately evident between the GQL
and GCE2 solutions.

The results above demonstrate that GQL/GCE2 improve upon the predictions of
QL/CE2 when compared with the NL solution. Barring the minor differences, these results
also validate the predictions of DSS (CE2 or GCE2) against the corresponding dynamical
systems (QL or GQL, respectively). Now we focus our attention on investigating
the origin of divergences between each solution pair QL/CE2 and GQL/GCE2. As
mentioned earlier, Nivarti et al. (2022) pointed out recently that divergences can and
do arise between the QL and CE2 solutions despite the mathematical correspondence
between them. Importantly, they linked such divergences to a rank instability available
to the dynamics of the CE2 system and prohibited within the QL system. Divergences
occur when the rank of a zonal submatrix C(m) in the CE2 second cumulant departs
from its initial unity value: the corresponding rank in QL must always remain unity,
thus constituting an important source of differences. We define the matrix C(m)
to be the zonal decomposition of the second cumulant: C(m) = ĉζ ζ (m, n1; m, n2) =
(1/(2π)3)

∫ 2π

0

∫ 2π

0

∫ 2π

0 cζ ζ (x1, y1; x2, y2) exp(im(x2 − x1)− in1y1 − in2y2) dx1 dx2 dy1 dy2
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Figure 5. Difference in energy E(m) of zonal mode m for (a) the QL and CE2 solutions (m = 1) and (b) the
GQL and GCE2 solutions (m = 2), with the corresponding rank C(m) shown on the right. The first 20 days of
the Kolmogorov flow case are shown with half the timestep size as before. In each comparison, the divergence
of zonal energies in the dynamical (QL, GQL) and statistical (CE2, GCE2) solutions appears to be strongly
associated with the onset of rank instability in the latter.

for m ∈ [1,M)where M is the spectral cutoff in the zonal wavenumber. In order to compare
GQL against GCE2, the zonal projection of the GCE2 field can be employed.

Figure 5 simultaneously plots the time evolution of two different quantities for
0 ≤ t ≤ 20 days. The left vertical axis quantifies the absolute difference in zonal energy
|E(m)CE2 − E(m)QL| between CE2 and QL for a given zonal mode m plotted using blue
lines. The right vertical axis quantifies the rank rank(C(m)) of the cumulant submatrix
C(m). E(m) = ∑

n ζ̂
∗
m,nζ̂m,n/(m2 + n2) where ζ̂m,n is the relevant Fourier coefficient of

vorticity ζ(x, y), which is calculated in QL and GQL as ζ = ζ� + ζh. In CE2 and
GCE2, E(m) can be calculated as E(m) = ∑

n |ĉζ (n)|2/n2 for m = 0 and E(m) =∑
n C(m)(n, n)/(m2 + n2) for m ≥ 1. Figure 5(a) compares the QL and CE2 solutions

considering the zonal mode m = 1. As both systems evolve from an identical random
noise initialisation, the difference |E(1)CE2 − E(1)QL| (blue line) is zero initially. The
zonal energies begin to differ around t = 5 days showing an increasing magnitude of
differences with time. Simultaneously with the emergence of differences, the rank of
second cumulant submatrix C(1) in CE2 (orange line) departs from unity, increasing nearly
monotonically until t = 20 days. This is a clear indication of the strong link between
the onset of rank instability in CE2 and CE2’s divergence from QL as also found by
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Nivarti et al. (2022). In a similar manner, figure 5(b) compares the same quantities for
GQL and GCE2 with spectral cutoff Λ = 1 for the high mode m = 2. The zonal energy
difference |E(2)GCE2 − E(2)GQL| (blue line) shows that the respective solutions begin to
diverge even before t = 5 days. Again, this happens simultaneously with the departure of
the corresponding submatrix C(2) (orange line) rank from unity. In fact, in this case, we
also observe that at times when the solutions have very similar energy (say at t ∼ 8 days),
the rank also returns to unity. These results confirm that, akin to divergences observed
previously for QL and CE2 (Nivarti et al. 2022), predictions of GQL and GCE2 may also
diverge from one another as a result of the onset of rank instabilities. We have reproduced
the GCE2 rank instability using independently written code (see Marston & Tobias 2023)
for the case of Kolmogorov forcing on the sphere.

4.2. Narrow-band stochastic forcing
We now consider a stochastically-driven system on the rotating β-plane. We adopt the
formalism detailed in Constantinou et al. (2016) which was used for the validation of
the statistical state dynamics (SSD) model. The forcing term F in the vorticity equation
becomes

F(x, t) = √
εξ, (4.2)

where ε is the energy injection rate and ξ is the white-in-time stochastic noise with zero
mean and covariance Q(x). Following Constantinou (2015, H.4), the covariance Q(x) is
specified on the Fourier domain by the forcing spectrum Q̂(k) = c(m)2d2 exp(−n2d2)
which is non-zero for zonal wavenumbers m ∈ [mf ,mf + δm) where d = 0.1 and c(m)
is such that the total contribution of Q̂(k) is unity for each zonal wavenumber (see
Constantinou 2015, H.5), and as a result the total energy injection rate of F(x, t) in (4.2)
is ε. Here, we have set mf = 8 and δm = 2 (two zonal wavenumbers 8, 9 are forced) on a
12 × 20 grid. Because stochastically driven modes have zonal wavenumbers that exceed
the cutoff Λ the covariance of the stochastic forcing is added to the tendency equation for
the second cumulant (2.8).

Figure 6 shows Hövmöller plots ζ( y, t) for a case corresponding to the equatorial
β-plane (θ = 0◦) with β = 10.0 and μ = 0.01. As is customary (Tobias & Marston 2013),
a hyperviscosity coefficient ν4 is applied such that the largest wavenumber dissipates
energy at unit rate. The energy injection rate (described above) via the forced zonal
wavenumbers is ε = 0.02. The dynamical equations (NL, QL and GQL) are solved for
10 000 days, whereas the statistical equations (CE2 and GCE2) need only be solved for a
tenth of that time.

The NL solution (figure 6a) consists of two opposed jets of vorticity that migrate gently
downwards beginning at t = 5000 days. The migration appears to occur at constant speed
(fixed slope in t–y coordinates) as has been identified previously by Cope (2020). The
QL solution (figure 6b) predicts instead a relocation of the positive vorticity jet from the
lower half of the domain to its centreline during the period 2500 < t < 7500 days. After
this period, the jet stabilises to a steady position. No vertical movement is recorded in
the CE2 solution (figure 6c), which merely captures the dual-jet solution with the sharp
inter-jet boundary lying along y = 0∀t ∈ [0, 1000] so the migration is not captured by a
QL theory, as also determined by Cope (2020). The GQL and GCE2 solutions are shown in
(figure 6d,e). Whereas GQL (figure 6d) appears to predict a mild degree of jet migration,
GCE2 (figure 6e) records the downward jet migration as observed in NL (figure 6a). Note
that the slope in GCE2 must be magnified 10 times for an apples-to-apples comparison
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Figure 6. Hövmöller plots showing ζ( y, t) for NL (a), QL vs CE2 (b,c) and GQL vs GCE2 (d,e) for a the
stochastically forced case with resolution M = 12, N = 20. All colour ranges are identical. Jet migration is
captured by GCE2 whereas CE2 fails to capture it.

with that in NL due to the former’s much shorter run. Here too then, GCE2 improves
significantly over CE2 by capturing jet migration that CE2 cannot.

In order to elucidate on the differences in jet behaviour recorded by GQL and GCE2,
we conducted a series of GQL simulations with different random seed values used to
generate the initial conditions. This resulted in an ensemble containing a wide range of
jet behaviour, including jet migration and steady jet propagation. In the interest of brevity,
we show in figure 7 the results of a single GQL run (left) chosen from the ensemble that
predicts upwards jet movement with a speed of roughly 0.41m◦ per day. We compared this
with a GCE2 simulation (left) initialised with maximum ignorance, i.e. with a full-rank
second cumulant initialised with power 10−6. GCE2 records the identical upwards jet
migration with a speed of roughly 0.44m◦ per day. Note that the x-axis ranges in both
figures are significantly different, so the slopes do not appear identical visually. It is
interesting that GCE2 with a maximum ignorance initial condition predicts upwards jet
migration rather than in the opposite direction as observed in GCE2 with a unity rank IC
(see figure 6).
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Figure 7. (a) GQL instance from of an ensemble of differently seeded random noise initial conditions.
(b) GCE2 initialised with a maximum ignorance initial condition run for a shorter period (colour range is
identical to left figure). GCE2 with maximum ignorance captures jet migration with a similar speed (indicated
in m◦ = 10−3 degrees per day) as seen within a large ensemble of GQL runs.

In figure 8, we show time-averaged energy spectra for the different solution methods for
the stochastically forced case shown in figure 6. The NL system (a) contains energy in the
m = 1 zonal mode, primarily via the n = ±1 non-zonal wavenumber (which corresponds
to the opposed jet configuration). A significant portion of the energy is also present in
the m = 1 and m = 2 zonal modes, the remaining being scattered through the entire range
of zonal modes but a relatively narrow band of non-zonal modes. In comparison with
NL, the QL and CE2 solutions (figure 8b,c) consist of localised bands of excited zonal
modes. For instance, the m = 1 and m = 2 modes are relatively very weak in the QL and
CE2 solutions; thus, also, the modes m = 6 or m ≥ 9 appear to be absent in comparison
with NL. This localisation of energy arises because scattering is unavailable in QL (and,
therefore, CE2) owing to the absence of the required nonlinearities; a given zonal mode
m becomes energetic in QL only via a corresponding instability of the mean flow. Once
energetic, the zonal mode m can transfer its energy back to the mean via self-interactions,
but may not transfer energy to another non-mean mode |m| /= 0. On closer examination,
it is revealed that QL and CE2 exhibit differences. The differences between energy
distribution over non-zonal wavenumbers in the m = 2 mode are immediately evident
between QL (figure 8b) and CE2 (figure 8c). In other words, the CE2 solution obtained
is not identical to that of a single realisation of QL. As in the Kolmogorov flow case, we
hold that these divergences are linked to the rank instability in CE2.

The GQL and GCE2 solutions in figure 8(d,e) improve considerably over the QL/CE2
solutions. The missing zonal modes m = 1, 2, 6, etc. are found to be energetic in
GQL/GCE2. This is because nonlinear interactions involving the m = 1 mode that are
available within GQL (and thereby GCE2) allow for scattering of energy leading to a
broader spread of energy over the range of zonal wavenumbers. It is remarkable though
that GQL with a cutoff Λ = 1 appears to be in excellent agreement with NL (figure 8a).
We note that GCE2 diverges from GQL to some extent in the same way CE2 was seen to
diverge from the QL solution. Broadly speaking, energy appears to be less spread out in
GCE2 as compared with GQL, being more concentrated to small non-zonal wavenumbers.
For instance, energy in the m = 1 mode in GCE2 (figure 8e) is limited to a significantly
narrower range of non-zonal wavenumbers |n| � 3. In addition, the (±1, 0) modes are
weaker in GCE2 by an order of magnitude.

We show the energy distribution over zonal wavenumbers m in the n = 0 slice of the
time-averaged energy spectra for the stochastically forced case in figure 9. NL (black line)
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Figure 8. Time-averaged energy spectra E(m, n) for NL (a), QL vs CE2 (b,c) and GQL vs GCE2 (d,e) for the
stochastically forced case. GCE2 improves considerably over CE2, but also diverges from GQL.

is shown to contain energy in all non-trivial zonal wavenumbers m ∈ [1, 11] supporting
the findings of figure 8. However, figure 9 clarifies that the m = 1 and m = 2 zonal
wavenumbers are associated with the lowest and highest energies, respectively. Moving
away from the wavenumber m = 2, energy tapers off steadily across the remaining
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Figure 9. One-dimensional slice of the time-averaged energy spectrum E(m, 0) predicted by the different
equation systems for the stochastically forced case.

wavenumbers m ≤ 11. The energy distributions predicted by GQL (orange line) and GCE2
(orange dots) are in good agreement with the NL energy distribution, save for the m = 1
mode estimated to be slightly weaker by GCE2. At this wavenumber and at m = 3, GQL
exhibits a slight departure from GCE2, aligning more favourably with NL than GCE2.
Contrasting with the GQL and GCE2 solutions, QL (blue line) and CE2 (blue dots) do
not contain energy in at least 5 of the 11 wavenumbers m ∈ [1, 11]. CE2 does not contain
energy in the zonal wavenumbers m = 1, 2, 7, 10, 11. In comparison, QL is additionally
deprived of energy in the m = 6 zonal wavenumber also, for which CE2 predicts an energy
level comparable to NL/GQL/GCE2. Thus, the wavenumber m = 6 is a point of significant
departure between the QL and CE2 solutions. The QL and CE2 energy distributions also
exhibit a conspicuous departure in the m = 5 wavenumber and a relatively minor departure
in the m = 9 wavenumber. These quantitative comparisons provide affirmation to the
following: (1) GQL and GCE2 solutions better estimate the NL energy distribution; and
(2) neither pair of dynamical and statistical solutions, GQL/GCE2 or QL/CE2, is devoid
of divergence.

In light of the divergences shown previously for Kolmogorov forcing, it would suffice
here to show a departure in the rank of a second cumulant submatrix to explain the
divergences seen above for the stochastically driven case. In figure 10, we show the
final-time ranks of second cumulant submatrices. For CE2 (orange bars in figure 10a),
the zonal modes m = 8, 9 are full rank by virtue of the stochastic driving; however, we
note that a number of additional zonal mode submatrices also depart in rank from unity
as is held by the corresponding QL solution (blue bars in figure 10a). Since there is no
pathway of interactions that can transfer energy between the various non-mean zonal
modes in QL (and CE2 by extension), each of the zonal modes with non-unity rank
must have acquired its own rank instability. This contrasts with GCE2 (orange bars in
figure 10b) where all high zonal modes |m| > 1 for the spectral cutoffΛ = 1 are full rank.
In essence, scattering of energy allowed within the GQL/GCE2 formalism causes full rank
of stochastically driven modes to be transferred to all remaining zonal modes. We term
this rank scattering. Thus, we observe that communication matters: moving from CE2 to
GCE2 changes significantly the channels of communication so that energy scattering and
rank scattering can occur.
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Figure 10. Comparisons of ranks C(m) in the end point solution for QL and CE2 (a) and for GQL and GCE2
with Λ = 1 (b). In CE2, each zonal mode undergoes its own rank instability, whereas in GCE2, the allowed
HL → H interactions cause ‘rank scattering’, and the (full) rank of forced zonal modes (m = 8, 9) is adopted
by all other high modes.

5. Conclusions

In this paper we have tested a method of DSS that is obtained as a mathematically exact
closure for the GQL equations. This method of DSS, which we term GCE2, adopts
generalised cumulant expansions and is capable of systematically interpolating between
statistics corresponding to QL and NL equations. We have implemented GCE2 in a
numerical code for simulations on the β-plane with two driving models, deterministic and
stochastic. Our simulations, which employ a minimal spectral cutoff Λ = 1, confirm that
GCE2 improves considerably over CE2, the DSS method corresponding to QL dynamics.

We comment here that GQL (and hence its statistical manifestation GCE2) can be
derived using the method of multiple scales in space and time (see e.g. Marston et al.
2016). The approximation is made formally rigorous by separating variables into those
that undergo rapid dynamics on small scales and more slow dynamics of the large-scale
variables. Intriguingly, similar methods have been used for homogeneous isotropic
turbulence (see e.g. Laval, Dubrulle & Nazarenko 2001). That paper showed that the
degree of intermittency was crucially determined by the form of the interactions that were
included in the model and a new model of turbulence was suggested where non-local
interactions coupled large and small scales nonlinearly (with the addition of noise) and the
local interactions could be modelled by a turbulent viscosity; it would be interesting to test
the applicability of generalisations of such a model to anisotropic flows.

We have also shown that statistics of GCE2 may depart from those of GQL due
to the rank instability as found recently for QL and CE2 (Nivarti et al. 2022). CE2
and QL solutions may diverge at identical parameters despite the fact that CE2 is an
exact mathematical closure for QL. Such divergences (also observed by Oishi et al.
2022) are linked to the emergence of an instability, the rank instability, that is available
within the CE2 system but unavailable in QL. The origin of the rank instability can be
understood analytically with a simple linear model (Nivarti et al. 2022). We have found
that the GCE2 system admits such instabilities too, and therefore its solutions can and do
divergence from solutions of the GQL system. This is a feature rather than a bug. CE2 is a
statistical description, whereas any single realisation of QL dynamics is a dynamical one.
Likewise GCE2 is a powerful method for self-consistently modelling the full dynamics of
a range of spectral scales, coupled with the statistics of the QL dynamics of the smaller
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spectral scales. An investigation of the GCE2 approximation at high resolution should be
illuminating.
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