CANONICAL FORMS FOR CERTAIN MATRICES
UNDER UNITARY CONGRUENCE

J W. STANDER axp N. A. WIEGMANN

1. Introduction. If 4 is a matrix with complex elements and if .1 = .17
(where AT denotes the transpose of ), there exists a non-singular matrix
P such that PAPT = D is a diagonal matrix (see (3), for example). It is
also true (see the principal result of (5)) that for such an .1 there exists a
unitary matrix U such that UA U™ = D is a real diagonal matrix with non-
negative elements which is a canonical form for .l relative to the given U',U"
transformation. If 4 = —AT, it is known (see (3) or (4)) that there exists
a non-singular matrix P such that PAP" is a direct sum of a zero matrix (if
present) and of 2X2 blocks of the form:

[ )

The present work is concerned with the following. First, a canonical form
is obtained for a complex skew-symmetric matrix under a U, U™ transformation
where U is a unitary complex matrix; this form is analogous to that of the
symmetric matrix mentioned above. Thereafter, matrices with real quaternion
elements are considered. For such an A the *-transpose (denoted by .1%) is
defined and is seen to be a generalization of the transpose (of a complex
matrix) for the non-commutative case which at the same time retains the
properties of the ordinary transpose in the commutative case. Quaternion
matrices of the form 4 = 4* and 4 = —.1* are considered, in turn, and
results analogous to those mentioned above for complex matrices are ob-
tained which justify this generalization.

2. A normal form for a complex symmetric matrix under unitary
congruence. To obtain this form the following is employed:

LemMA 1. If A is a complex, unitary, skew-symmetric matrix there exists a
complex unitary matrix U such that UA U™ = E is a direct sum of 2 X 2 matrices

of the form
2
—1 0l

It is evident that 4 must be of even order since it is skew-symmetric and
non-singular. Let 4 = A;41¢ 4., where 4; and A, are real matrices, so that
Ay = —A4," and A, = —4,T. Since AA°T = (A,+14:) (AT —14,") =T,
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it follows that 4,4,T+.4,4,T = I and 4,4, = 4:4,T. The latter becomes
A24:1 = 414, By a known theorem (see (2), for example), there exists a real
orthogonal matrix T such that 74,7" = E, and T4,TT = E, are direct sums
of zeros and 2X2 matrices of the form

@ [0 ]

where @ > 0 is real. Furthermore, it can be shown that, as in the present
case, when 4; and 4, are both skew-symmetric, E; and E, can be regarded
as conformable direct sums of 2X2 matrices of the above form, of 2 X2 zero
matrices, and of 1X1 zero matrices in such a way that whenever a single
zero element appears in the direct sum of one, it appears in the same diagonal
position in the other. (A 2X2 matrix of form (i) in one can correspond to a
2% 2 zero matrix in the other, of course.) This may be seen as follows:

The statement is true or there is a first block (in E; or E,) in the direct sum
where it is not true; this would mean that there would be corresponding 3 X3
diagonal blocks in E; and E,, respectively, of the form

0 0 0 0 a 0
0 0 b —a 0 0
0 -b 0 0 0 0

where a # 0 and b # 0. But since 4.4, = 4.4, the above matrices must
commute and they do not. Hence E; and E, can be considered to be direct
sums which are conformable as described above.

Therefore T(41+142)TT = E; + 1 Es which is unitary (and non-singular);
consequently, no 1X1 zero element can appear alone along the diagonal of
E; and E; in the form described for each in the preceding paragraph. There-
fore, £, and E, are each direct sums of 2 X2 matrices of form (i) where ¢ = 0,
so that E,+17 Es is a direct sum of 2 X2 blocks of the form

.. 0 o
(i) Ey = [—a O]

where « is non-zero complex. Since E;+¢ E, is unitary, aa = 1. Let a =
and form the 2X2 unitary matrix

0 e—w/z}
V= l:—e_im 0 )
Then VE,VT is a matrix of the form
[
-1 od-

If S is an appropriate direct sum of such V (determined from each 2X2
matrix in the direct sum E;+17 E,), then ST (4,47 4,)TTST = E, the direct

eiﬁ
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sum as described in the statement of the lemma, where U/ = ST is a complex
unitary matrix.

THEOREM 1. If A is a complex skew-symmetric matrix, there exists a complex
unitary matrix 'V such that VAVT = E+0 where E is a direct sum of 2X2

ma»t? ’iCeS Of the f07 m
0 ’

where ¢ > 0 is real; and conversely.

Let 4 = HU = UK # 0 be a polar representation of 4 where H and K
are hermitian and U is unitary. (It may be noted that each a > 0 described
in the statement of the theorem is actually a characteristic root of H or K).
Since 4 = HU = UK = —AT = —UTHT = —KTU", and since the hermi-
tian polar matrix H is unique, it follows from 4 = HU = —KTU" that IT =
K™ or H =—K" (since —KTU?" is also a polar form of 4). But since K is
positive definite, KT is also, and H = —K7" cannot hold (since H would
not be positive definite). Therefore H = KT.

If 4, skew-symmetric, is non-singular, it must be of even order; in any
event, the rank of 4 iseven. If 4 = HU, the rank of 4 = the rank of II = r,
an even number.

For H = KT let V; be a complex unitary matrix such that V,HV,°T = D =
Do+0 (where 0 is absent if B is non-singular) where Dy = D+ Dot ... —i—Dk,
where D; = d.I; is a real diagonal scalar matrix, d; # d; for 7 # j, and
dy > ds > ...>dy > 0. If 4 is non-singular, it is known (see (9)) that the
polar representation is unique, so that 4 = HU = K*™(—U") implies that
U = —U?T. If 4 is singular, this need not be true (8); as a matter of fact, it
cannot be true if 4 1s of odd order since U is non-singular.

Consider the case where 4 = HU is singular. Let V,UV,°T = W and
Vi(=UN VT = Wy; also let Vi KV,°T = ViH*V,°T = M. Then f{rom
VAVt = Vi HUV,®T = VUKV,°T = V,(— UTH")V,°*

= Vi(—KTUT)V,°T

it follows that V1A V,*T = DW = WM = W, M = DW,. From WM = WM
it follows, in turn, that
W(VH*V°T)

W (V.HTV,°T),
or

WV1 VlTD VIC VICT = W1 V1 VlTD VIC 'VICT,

so that WV, V™D = W,V V,TD. Since DW = DW; (and since D has rank
r), W and W, have like first  rows, and so WV, V,* and W,V,V,T also have
like first 7 rows; and from the last result in the preceding, WV, VT and
W,V VT also have like first 7 columns. Let WV, VT be of the form

[Au Am]
A21 X
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where A41; is an 7 X 7 matrix. Since DW = W, M = W,V,V,"DV,°V,°7,
therefore DWWV, V)™ = W,V,V,"D. From this relation it follows, after equating
corresponding elements and noting that W;V;V,T is of the same form as
WV1V,T except for X, that 42 and 4,; are zero matrices. Then:

WViV,S =A4u4+X, WVVT =4+ 7,

W= (Au+X) V.oV = ViUV, Wy = Au+ ) VvV, = Vi(—=U") 7,7,
U=T1""Udn+X)V:° -U" = \"" Uy + V) V,°.

Therefore, UT = V,°T(4," + XT)V,€ = V,CT(—Ay + [— Y]) Vi€ and so

A= —A41"T and A3 must also be unitary (since UT is). and ¥ = — X7T where
Xis uni?ary but otherwise arbitrary. So V,UV,T = 44; + Xand V(= UT) V,T
=AdAu+ V.

Then V14 V,™ = ViHV, "V, UV, = V(= U V,"V,°HTV,T = (Do +0)-
A+ X) = (41 + V)(Do + 0). This means that ViAV,T = Dedy; + 0
where Dy41; = A11Dy is of (even) order r, and 4;; is unitary and skew-sym-
metric. It follows that Ay = 4; + 4, + ... + A, where 4 ; is of the order
of D,in Dy = D1 + Dy 4+ ... + D, and that each 4, is unitary and skew-
symmetric and hence of even order. From the lemma for each 4 ; there exists
a complex unitary U; such that U;4;U," is a direct sum of the 2 X 2 matrices
described in the lemma. If U = U, 4 ... 4+ Uy, then UV, A V,TUT = DoE,
4+ 0 where E, is a direct sum of 2 X 2 matrices of the form described in the
lemma. Then DyE, is the matrix E described in the theorem, and since UV} is
unitary, the theorem has been obtained. If 4 is non-singular, the same proof
holds and D = Dy, U = V,°T4,,V,°, etc., and 0 does not appear in the final
form E + 0.

The converse is immediate.

3. A normal form for a *-symmetric quaternion matrix under
unitary congruence. If two matrices 4 and B have elements which lie
in a non-commutative domain, among the properties of the transpose which
do not hold (as they do in the commutative case) is that (4AB)T = BTAT.
If a matrix 4 with real quaternion elements is written in the form 4 = A4,4+j 4,
(where 4; and A4, are complex matrices), then AT = 4,7 + j 4,". Also, by
the conjugate transpose of A4 is meant the matrix 4T = 4,°T 4+ (j 4,)°T =
AT — 7 A, (where 4,°T denotes the complex conjugate transpose of 4).

If the *-transpose of the matrix 4 is defined to be the matrix 4A* = 4,7 4+
A2%j, it is seen that this includes the ordinary transpose of a complex matrix
as a special case. Among the properties of the *-transpose which can easily
be verified are the following: (A*)* = 4; 4* = 4j A°Tji; (4 + B)* = A*
+ B*; (AB)* = B*4*; if 4 is non-singular, (4*)~! = (4A-1)*; (4*)°T =
(4°TY*, Define 4 to be *-symmetric if 4 = A*, and to be *-skew-symmetric if
A = —A*. In the following, canonical forms are found for such matrices
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under unitary congruence which are clearly generalizations of the theorems
for the complex case stated in the two preceding sections.
The following lemma is first obtained:

LemMA 2. If U is a unitary quaternion matrix (that is, UUCT = I = UCTU)
which is also *-symmetric (U = U*), there exists a complex unitary matrix Z
such that ZUZ™ = Dy + jD where Dy and D are real diagonal matrices for
which Dy> + D* = 1.

Let U = Uy 4+ j Us, where U; and U, are complex matrices. Since U = U,
+ U= U*= U," + U." j, it follows that U; = U,T and U, = U,°".
Since, also, UU®T = (U, + j Us)(U,°T — j U,") = I, U, U, +U° U™ =1
and U,U,°T = U,°U," or, taking conjugates, U.°U," = U,U,°T or U,°U,
= U;U,. Let V be a complex unitary matrix such that VU.V°T = D = D,
+ Dy + ...+ D, where D; =d,,; for d, real, d;# d; for i % j, and
where dy > ds > ... > d;; also let VCU,VCT = N. Since U,°U, = U,U,,
VeCULCVEVCOUL,VET = VOCULVETVULVET or DN = ND. Therefore N = .\,
4+ No+ ... 4 Ny is a direct sum conformable to D. Since N = NT, N, = N,T
for all 7; consequently, there is a complex unitary W, for each N, such that
W N W™ = Dy, is a real diagonal matrix. If W = W, + W, + ... + W,
then WNW?™ = Dy, + Dys + ... + Dy, = Dy is a direct sum of real diagonal
matrices. Then WVC(U, 4+ j U)VO™W* = W(N +jD)W* = Do+ 3D
where Dy and D are real diagonal matrices and W1V° is a complex unitary
matrix. Furthermore, since U, V, and W are each unitary, Dy + j D is also
and (Dy 4+ jD)(Dy — jD) = D> + D* = I; the lemma is then true (and
the converse is also, incidentally).

THEOREM 2. If A is a *-symmetric quaternion matrix, there exists a quaternion
unitary matrix U such that UAU* = D 1s a real diagonal matrix with non-
negative diagonal elements; and conversely.

This is clearly an analogue of the theorem for the complex case mentioned
in §1, above; and its proof proceeds as does the proof for the complex case
given in (7, p. 36). If 4 = HV = VK is the polar form of the quaternion
matrix .4 (see (6)), the proof follows the same pattern except that *-transpose
replaces 7-transpose and the elements involved are quaternion (though the
matrix D is still a real diagonal matrix). It is then found that for 4 = HV =
VH?*, there exists (7, p. 37) a quaternion unitary matrix U such that U4 U* =
UHUCTUVU* = UVU*(U*°TH*U* = DW = WD where D is a real diagonal
matrix as there described and W = UVU* = W* is now a quaternion unitary
matrix. Since D is real diagonal with like roots arranged together along the
diagonal, W = W, 4+ Wy 4 ...+ W, is a direct sum conformable to that
of D (as a direct sum of scalar matrices) and each W; = W;* is unitary; it
may be noted that if D = D; 4+ 0 (as in (7)) and if 0 is present, W, will be
chosen to have these properties also. By the preceding lemma, a complex
unitary Z; can be chosen so that Z,W,Z* = Z,W.Z* = Dy; + j Dy; where
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Do, and Dy, are real diagonal with the properties given. If Z = Z, 4+ Z,
+...+2Z, then ZUAU*Z* = ZDWZ* = DZWZ* = D(D, + j D,) = D,
+ j D, where D, and D, are real diagonal and ZU is a quaternion unitary
matrix.

To obtain the form given in the theorem, an additional step is required.
I[fa = a + 75, aand b real, is any complex number, since it isa 1 X 1 matrix
and is equal to its transpose, there exists a complex unitary (number) u = u;
+ 7 us so that uou™ = uau = r, a real number. If jreplaces 7 in this relation,
the result still holds (since only j and real numbers are involved); therefore,
if @ = a + j b is any diagonal element of D, 4+ j D,, there exists a quaternion
unitary # = u; + jus so that wau* = r is real. If this is applied to each
diagonal element, the form described in the theorem can be obtained under
the transformation required.

The converse follows immediately and the form is a canonical form, the
diagonal elements being the characteristic roots of the hermitian polar matrix
of 4.

4. A normal form for a *-skew-symmetric matrix under unitary
congruence. For this case there is the following lemma:

LeEmMA 3. If 4 is a *-skew-symmetric, unitary quaternion matrix, there exists
a unitary complex matrix V such that VAV?T is a direct sum of 1 X 1 matrices
of the form + ji and —j 1, and of 2 X 2 matrices of the form

[jri a :'
—a —jri

where a®> + > = 1 and a > 0 and r are real numbers.

Since 4 =4, +j4d,= —A* = —(4," + 4.7 ), it follows that 4, =
—4," and 4y = —A4,.°T. Since 44T = [ = 4°T4, it follows, among other
relations, that A4.4:°T = 4,°4,T and 4, 4, = 4,54,. Since 4, is skew-
hermitian, let U be a complex unitary matrix such that U4,U°T = D = D; +
D>+ Dy + ...+ D, is a direct sum of D, = ir,I, (where 7, is real), that is,
of pure imaginary scalar matrices, arranged as follows: 7y & r, if s & ¢; if
iry and —ir, are roots of A4,, their corresponding blocks appear successively
on the diagonal; all such successive pairs of blocks, if present, appear first
in D;and D, = 0if 0 is a root of 4. Let U4,U°T = M.

From A4,4,°T = 4,°4,7 it follows that

UAzUCTUA]CTUT — UAch]TUC/IzTUT,
or DMCT = MCDT; taking conjugates, D°M™* = MD®T or —D(—M) =
M(—D) or DM = —MD (since MT = —M). .Thereforg, D*M = DDM =
'—D(MD) = MD?2 Let D = (D1 + Dz) + . . + (Dt—l + Dt)+ Dt+1+ e

+ D, where the parentheses contain the successive pairs described earlier.
Then M = My e+ ...+ M, 4, + M1+ ...+ M, where M, is of the
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dimension of D, + D,, M, is of the dimension of D;, and all M,, and M, are
complex skew-symmetric (since M is). Furthermore, since —DM = MD, it
follows that —(D,+ DM, = M,,(D, + D,) and —D,M, = M,D; for
all M., and M, involved. Finally, it may be noted that U4 U®T = UC(d, +
FA)UCT = UCA,UCT + j UA,U®T = M + j D must be *-skew symmetric
and unitary. (Note that U is complex and UCA4 (U®)* = UCAUCT is *-skew
symmetric since 4 is also.)

(a) Consider, first, any relation — (D, + DM, = M,,(D, + D,) and,
for convenience, the case where » =1 and s = 2. Let Dy + D, = ril, +
(—ri)Is where I, and I, are, respectively, p X p and ¢ X ¢ identity matrices,
r % 0, and assume, for specificity, that p = ¢. Let M2 be of the form

[ M, Mg]

—M;* M,

where M; and M, are, respectively, p X p and g X ¢ matrices. From the
relation — (D, + Do) My = Mys(D, + D)), it follows that M, and 1, are
zero matrices (since 7 % 0). Now M3 may be a zero matrix or it may not; before
proceeding further, consider the latter case.

If M3, a p X g matrix, is not zero, by a theorem of Eckert and Young (1)
it follows that there exist complex unitary matrices V and W, of orders
p X p and g X g, respectively, such that VM;W = D is a p X ¢ diagonal
matrix with non-negative real elements (at least one of which is not 0 here)
along the diagonal. (A p X ¢ matrix is diagonal if the only non-zero elements
are of the form a;;.) Form the matrix

T
ey
Vv 0
which is complex unitary. Then X (M2 + 7 D12) XT = X M2 X" + j XD, XT
is a matrix of the form
[o —DT] .[Dg 0 ]
p o JTo D

where D is the above-mentioned p X ¢ diagonal matrix. Let Ny = X1/ .X7
and Ny = X°D;»X", and note that the dimension of D; = ¢ = p = dimension
of Dy, that D; and D; have non-0 diagonal elements, and D has at least one
non-zero diagonal element; also, let the non-0 diagonal elements of D appear
first along the diagonal. Consider N; and N, and perform the following opera-
tions on them: interchange the ¢ 4 1st column of N successively with the
gth, ¢ — 1st, ¢ — 2nd, ..., 2nd so that the ¢ + Ist column becomes the
second column and all succeeding columns are in the same order as before;
and also perform the same row operations. This can be accomplished by a

real orthogonal simularity transformation and there result from N; and V.,
respectively, the matrices
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0 a1 O 0 —ri 0 0 0
—a 0 0 0 0 i 0 0

0 0 0 —D;" 0 0 —rl; 0

0 o0 D; 0 0 0 0 rils

where [; and I, are, respectively, identity matrices of order ¢ — 1 and p — 1,
respectively. If the same procedure is applied to the lower right blocks (ignor-
ing the first two rows and columns of each), it can be seen that a series of such
steps provides a real orthogonal matrix ¥ such that the matrix YX (M, +
7 D12)XTYT is a direct sum of 2 X 2 blocks of the form

[— i at:l

—a, Jri

(where a, and r are non-zero and real), and of single elements —jri and +jri.
But since YX is complex unitary, so is this direct sum, and so each 2 X 2
block and jri must be unitary. This means that »» +¢,> =1 and 72 = 1;
but since a, # 0, this can only mean that jr¢ and —jri cannot appear singly
in the direct sum. Therefore YX (M2 + j D12)XTYT is a direct sum of 2 X 2
blocks of the above form where 72 +a,2 =1, r # 0 and a, # 0. (If in the
above p = g, the roles of +jri and —jri are interchanged, but a simple (and
allowable) operation at the close can still place the element —jrz in the 1 — 1
position.)

All of the above in (a) occurs if M3 is not a zero matrix. If M3 = 0, then
M2+ jDi2 = j D1 =7 (D + D,) which is a direct sum with diagonal
elements + j 7 ¢, 7> = 1; in this case no X and Y are required.

Therefore in UCAUCT = M + j D, each M,, + j (D, + D,) can be treated
as above depending on whether or not M, is a zero matrix.

(b) Consider any relation —D;M; = M;D; where D; is a non-0 pure
imaginary scalar matrix. Then M; = —M;so M, is a zero matrix and M; +
j D; = j D, which has diagonal elements jri, 7 = 1.

(c) If Dy = 01is present in U4A,U°T = D, then M, + j D, = M, = — M,,"
a complex unitary matrix. By Lemma 1 there exists a complex unitary matrix
U such that UAUT = E is a direct sum as described in the lemma.

If the results of (a), (b), and (c) are combined, it is evident that a complex
unitary matrix W can be constructed so that WUCA4 USTWT = W(M + jD)WT
is a direct sum of 2 X 2 matrices of the form

[ jri a :l
—a —jri
(where a®> + 72 = 1, @ > 0 and r are real) and of 1 X 1 matrices of the form
ji and —ji.

THEOREM 3. If A is a *-skew-symmelric quaternion matrix, there exists a
quaternion unitary matrix V such that VAV* = E 4+ 0 where E is a direct
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sum of 1 X 1 matrices of the form kji and —kji, k > 0 real, and of 2 X 2 matrices

of the form
[ sji t ]
—1 —sjt

The proof follows the pattern of that of Theorem 1. If 4 = 0, the result is
trivial. If 4 # 0, let 4 = HU = UK be a polar representation of .l. If
*.transpose replaces T-transpose in the earlier proof, it is evident that = K*.
Here, however, the rank of a *-skew-symmetric matrix is not necessarily even
(as the preceding lemma shows). If the earlier proof is followed, it is seen
eventually that, using the same letters, U = V,°" (4 + X) V*°T and U* =
— V(A + V)V*OT so that U* = VT (Ady* + X*)V,°T = —1,°T (A,
+ V)V*CT and, since V,9T* = V*CT 4, * = —A4,; is quaternion uni-
tary. Then ViAV* = ViHV, STV UV = (D 4 0)(Ayy + X) = (Dyoly +
0) = Vi(=U*VFVH*TI*V* = (An + V) (D1 —f- 0) = (41D + 0). Since
DAy = AuDy, Anis a direct sum, A, + Ao + ...+ A4y, (of *-skew-svm-
metric, unitary quaternion matrices) conformable to the direct sum of D;.
For each A, there exists, by the preceding lemma, a complex unitary matrix
W, so that WA, W,T has the form described in the lemma. If W = W, + W,
4 ... 4 W, 4 I (where I is of the order of 0 in Dy 40), WVLIT*IVT is
then a direct sum of 1 X 1 matrices of the form kji and —kjz (k > 0 is real),
of 2 X 2 matrices of the form

[ jret ac :l
—ac —jret

where ac > 0 is real, and of a zero matrix. (WV; is a unitary quaternion
matrix.)

where t > 0 and s are real.
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