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1. I n t r o d u c t i o n . If A is a matr ix with complex elements and if A = AT 

(where AT denotes the transpose of .4), there exists a non-singular matr ix 
P such t h a t PAPT = D is a diagonal matr ix (see (3), for example) . It is 
also t rue (see the principal result of (5)) t h a t for such an A there exists a 
uni ta ry matr ix U such t h a t UA UT = D is a real diagonal matr ix with non-
negative elements which is a canonical form for A relative to the given U, UT 

t ransformation. If A = — AT, it is known (see (3) or (4)) t h a t there exists 
a non-singular matr ix P such t h a t PAPT is a direct sum of a zero matrix (if 
present) and of 2 X 2 blocks of the form: 

[" 0 l"| 
L - l 0_T 

The present work is concerned with the following. First , a canonical form 
is obtained for a complex skew-symmetric matr ix under a U, UT t ransformation 
where U is a uni ta ry complex matr ix ; this form is analogous to t ha t of the 
symmetr ic matr ix mentioned above. Thereafter , matrices with real quaternion 
elements are considered. For such an A the ^-transpose (denoted by A*) is 
defined and is seen to be a generalization of the t ranspose (of a complex 
matrix) for the non-commutat ive case which a t the same t ime retains the 
properties of the ordinary t ranspose in the commuta t ive case. Quaternion 
matrices of the form A = A* and A = —A* are considered, in turn , and 
results analogous to those mentioned above for complex matr ices are ob
ta ined which justify this generalization. 

2. A normal form for a complex symmetric matrix under unitary 
c o n g r u e n c e . T o obtain this form the following is employed: 

L E M M A 1. If A is a complex, unitary, skew-symmetric matrix there exists a 
complex unitary matrix U such that UA UT = E is a direct sum of 2 X 2 matrices 
of the form 

[-? i]-
I t is evident t h a t A mus t be of even order since it is skew-symmetric and 

non-singular. Let A = Ai+i A2, where Ai and A2 are real matrices, so t h a t 
A, = -AX

T and A2 = -A2
T. Since AACT = (A1+iA2)(A1

T-iA2
T) = L 
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it follows that AlA1
T+A2A2

T = I and A2AX
T = AXA2

T. The latter becomes 
4̂2-41 = AXA2. By a known theorem (see (2), for example), there exists a real 

orthogonal matrix T such that TAiTT = Ex and TA^T* = E2 are direct sums 
of zeros and 2X2 matrices of the form 

0) [ 0 a] 

where a > 0 is real. Furthermore, it can be shown that, as in the present 
case, when Ai and A2 are both skew-symmetric, Ex and E2 can be regarded 
as conformable direct sums of 2X2 matrices of the above form, of 2X2 zero 
matrices, and of 1X1 zero matrices in such a way that whenever a single 
zero element appears in the direct sum of one, it appears in the same diagonal 
position in the other. (A 2X2 matrix of form (i) in one can correspond to a 
2X2 zero matrix in the other, of course.) This may be seen as follows: 

The statement is true or there is a first block (in Ex or E2) in the direct sum 
where it is not true; this would mean that there would be corresponding 3X3 
diagonal blocks in Ex and E2, respectively, of the form 

0 0 0 
0 0 b 
0 -b 0 

0 a 0 
— a 0 0 

0 0 0 

where a ^ 0 and b 9e 0. But since A2AX = AXA2, the above matrices must 
commute and they do not. Hence Ei and E2 can be considered to be direct 
sums which are conformable as described above. 

Therefore T(Ax-\-i A2)T
T = Ex + iE2 which is unitary (and non-singular); 

consequently, no 1X1 zero element can appear alone along the diagonal of 
Ei and E2 in the form described for each in the preceding paragraph. There
fore, Ei and E2 are each direct sums of 2X2 matrices of form (i) where a ^ 0, 
so that Ex-\-i E2 is a direct sum of 2X2 blocks of the form 

(ii) [_— a 
a 

OJ 

where a is non-zero complex. Since Ei~\-i E2 is unitary, aa = 1. Let a = e16 

and form the 2X2 unitary matrix 

r o e- ie/2i 
= L-c-'"* 0 J 

Then VE0V
T is a matrix of the form 

[-? i\ 
If 5 is an appropriate direct sum of such V (determined from each 2X2 
matrix in the direct sum Ei+i E2), then ST(Ai + i A2)T

TST = E, the direct 

https://doi.org/10.4153/CJM-1960-038-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-038-2


440 J. W. STANDER AND N. A. WIEGMANN 

sum as described in the statement of the lemma, where U = ST is a complex 
unitary matrix. 

THEOREM 1. If A is a complex skew-symmetric matrix, there exists a complex 
unitary matrix V such that VAVT = E-\-0 where E is a direct sum of 2X2 
matrices of the form 

[ 0 a~] 
l-a 0_T 

where a > 0 is real; and conversely. 
Let A = HU = UK ^ 0 be a polar representation of A where H and K 

are hermitian and U is unitary. (It may be noted that each a > 0 described 
in the statement of the theorem is actually a characteristic root of H or K). 
Since A = HU = UK = -AT = - UTIP = -KTUT, and since the hermi
tian polar matrix H is unique, it follows from A = i/£7 = —KTUT that i1/ = 
ifT or H = — ifT (since —KTUT is also a polar form of ^4). But since if is 
positive definite, ifT is also, and H = — ifT cannot hold (since ii" would 
not be positive definite). Therefore H = KT. 

If A, skew-symmetric, is non-singular, it must be of even order; in any 
event, the rank of A is even. If A — HU, the rank of A = the rank of H = r, 
an even number. 

For H = KT let Vi be a complex unitary matrix such that ViHViCT = D = 
Do+0 (where 0 is absent if B is non-singular) where D0 = Di-\-D2+ . . • -\-Dk, 
where Dt = dJi is a real diagonal scalar matrix, dt F^ 6̂ - for i j* j , and 
di > d2 > . . . > dk > 0. If A is non-singular, it is known (see (9)) that the 
polar representation is unique, so that A = HU = KT(—UT) implies that 
U — — UT. If A is singular, this need not be true (8); as a matter of fact, it 
cannot be true if A is of odd order since U is non-singular. 

Consider the case where A = HU is singular. Let ViUV^ = W and 
F i ( - ^ T ) F ! C T = Wi; also let VXK 7iO T = VJPV^ = M. Then from 

F i 4 F i O T = V!HUViCT = F i O T f F ^ = ^ ( - ^ i i ^ F ^ 
= F i ( - i f T t / T ) F 1

C T 

it follows that ViA VX
CT = £>IF = IFM" = WXM = ZWi. From JFM = fl^M 

it follows, in turn, that 

W(V1IPV1
CT) = IF1(Fi^ r TF1

C T) , 
or 

WVxV^DVfV^ = tF 1FiFiTZ)Fi cF 1
C T , 

so that TFFiFiT£> = ^ F i F ^ i ) . Since DW = DWX (and since Z> has rank 
r), TF and FFi have like first r rows, and so IFFiFi T and PFiFiFiT also have 
like first r rows; and from the last result in the preceding, l/FFiFiT and 
IFiFiFi T also have like first r columns. Let TFFiFiT be of the form 

An A12~\ 
A 21 X J 
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where An is an r X r matrix. Since DW = WXM = WiViVfDVfVf1', 
therefore DWVX Vf = Wi Vi VfD. From this relation it follows, after equating 
corresponding elements and noting that WiVxVf is of the same form as 
WVxVf except for X, that A12 and A2i are zero matrices. Then: 

WVxVf = Au+X, W^Vf = An + Y, 

W = (An+X)VfVf = V1UV1
CT,W1= (A11+Y)V1

CV1
CT= Vi(-UT)VfT, 

U = VfT(An+X)Vf, -UT= V1
CT(A11 + Y)V1

C. 

Therefore, UT = V1
CT(A11

T + XT) Vf = VfT(-An + [ - Y}) Vf and so 
An = — AnT and An must also be unitary (since UT is) and Y = —XT where 
X is unitary but otherwise arbitrary. So ViUVf = An + Xand Vf — UT)ViT 

= An+ Y. 
Then ViAVf = 7 i f f7 i O T 7 i [ /7 i T = 7i ( - ?7T) FxT VicHT Vf = (£>0 + 0) • 

(An + X) = {An + Y)(D0 + 0). This means that ViAVf = Z M n + 0 
where D0Au = AnD0 is of (even) order r, and An is unitary and skew-sym
metric. It follows that An = Ai + A2 + . . . + Ak} where A t is of the order 
of Dt in Do = Di + Z>2 + . . . + Dk, and that each 4̂ t is unitary and skew-
symmetric and hence of even order. From the lemma for each A t there exists 
a complex unitary Ut such that UfA fj f is a direct sum of the 2 X 2 matrices 
described in the lemma. If U = Ux + . . . + Uk, then UVXA VfUT = £>0£o 
+ 0 where E0 is a direct sum of 2 X 2 matrices of the form described in the 
lemma. Then D0Eo is the matrix E described in the theorem, and since UVi is 
unitary, the theorem has been obtained. If A is non-singular, the same proof 
holds and D = Do, U = VfTAnVf, etc., and 0 does not appear in the final 
form E + 0. 

The converse is immediate. 

3. A normal form for a *-symmetric quaternion matrix under 
unitary congruence. If two matrices A and B have elements which lie 
in a non-commutative domain, among the properties of the transpose which 
do not hold (as they do in the commutative case) is that (AB)T = BTAT. 
If a matrix A with real quaternion elements is written in the form A = Ai+j A 2 

(where Ai and A2 are complex matrices), then AT = Af + j Af. Also, by 
the conjugate transpose of A is meant the matrix ACT = AiCT + (j A2)

CT = 
AfT — j Af (where AfT denotes the complex conjugate transpose of A). 

If the *-transpose of the matrix A is defined to be the matrix A* = Af + 
^42

T7, it is seen that this includes the ordinary transpose of a complex matrix 
as a special case. Among the properties of the ^-transpose which can easily 
be verified are the following: (/I*)* = A; A* = ij ACTji; (A + B)* = A* 
+ B*; (AB)* = £*,4*; if A is non-singular, C4*)-1 = C^"1)*; (A*)CT = 
(4C T)*. Define A to be *-symmetric if A = A*, and to be *-skew-symmetric if 
A = —A*. In the following, canonical forms are found for such matrices 

https://doi.org/10.4153/CJM-1960-038-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-038-2


442 J. W. STANDER AND N. A. WIEGMANN 

under uni tary congruence which are clearly generalizations of the theorems 

for the complex case s ta ted in the two preceding sections. 

T h e following lemma is first obta ined : 

L E M M A 2. If U is a unitary quaternion matrix (that is, UUCT = I = UCTU) 
which is also ^-symmetric ( U = £/*), there exists a complex unitary matrix Z 
such that ZUZT — Do + jD where Do and D are real diagonal matrices for 
which Do2 + D2 = I. 

Let U — Ui + j U2, where U\ and U2 are complex matrices. Since U = L\ 
+ j U2 = U* = UX

T + U2
T j , it follows t h a t Ui = U^ and U2 = U2

CT. 
Since, also, UUCT = (U, +j U2)(U1

CT - j U2
T) = J, U^U^ +U2

C U2
T = I 

and U2b\CT = UicU2
T or, taking conjugates, U2

cUiT = UxU^ or U2
cUl 

= U\U2. Let F be a complex uni ta ry matr ix such t h a t VU2V
CT = D = Dx 

+ D2 + . . . + Dk, where Dt = dJt for dt real, dt j * dj for i 9^ j , and 
where dx > d2 > . . . > dk\ also let VcUiVCT = N. Since U2

QUx = VXU2, 
VcU2

cVTVcUlV
CT = V°U1V

CTVU2V
CT or DN = ND. Therefore N = Nl 

-j- N2 + • • • + Nk is a direct sum conformable to D. Since N = ArT, A7^ = N t
T 

for all i ; consequently, there is a complex uni ta ry Wt for each i\^ such t h a t 
WtNiW? = Du is a real diagonal matr ix . If W = ^ + W2 + . . . + Wk, 
then VF.Vl^1, = Z ) n + D12 + . . • + Dlk = DQ is a direct sum of real diagonal 
matrices. Then I F F c ( ^ i + j U2) V

CTWT = W(N + j D)Vr = D0 + j D 
where Do and D are real diagonal matrices and WV° is a complex uni ta ry 
matrix. Fur thermore , since U, V, and W are each uni ta ry , Do + j D is also 
and (Do +jD)(D0 - j D) = Do2 + D2 = I; the lemma is then t rue (and 
the converse is also, incidentally). 

T H E O R E M 2. If A is a ^-symmetric quaternion matrix, there exists a quaternion 
unitary matrix U such that UA U* = D is a real diagonal matrix with non-
negative diagonal elements; and conversely. 

This is clearly an analogue of the theorem for the complex case mentioned 
in §1, above; and its proof proceeds as does the proof for the complex case 
given in (7, p. 36) . If A = HV = VK is the polar form of the quaternion 
matr ix A (see (6)) , the proof follows the same pa t t e rn except t h a t *-transpose 
replaces T-transpose and the elements involved are quaternion ( though the 
matr ix D is still a real diagonal matr ix) . I t is then found t h a t for A = HV = 
VH*, there exists (7, p. 37) a quaternion uni ta ry matr ix U such t h a t UA U* = 
UHUCTUVU* = UVU*(U*)CTH*U* = DW = WD where D is a real diagonal 
matr ix as there described and W = UVU* = W* is now a quaternion uni ta ry 
matr ix. Since D is real diagonal with like roots arranged together along the 
diagonal, W = W\ - j- W2 + . . . - ) - Wt is a direct sum conformable to t h a t 
of D (as a direct sum of scalar matrices) and each Wt = W* is un i t a ry ; it 
may be noted t h a t if D = D\ - j- 0 (as in (7)) and if 0 is present, Wt will be 
chosen to have these properties also. By the preceding lemma, a complex 
uni ta ry Zt can be chosen so t h a t ZiWiZ* = ZfWiZ^ = Dot + j Du where 
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Doi and Du are real diagonal with the properties given. If Z = Zi + Z2 

+ . . . + ZtJ then ZUAU*Z* = ZDWZ* = DZWZ* = D(Da+jDb) = Dc 

+ j Dd where Dc and Dd are real diagonal and ZU is a quaternion unitary 
matrix. 

To obtain the form given in the theorem, an additional step is required. 
li a = a -\r i bj a and b real, is any complex number, since it is a 1 X 1 matrix 
and is equal to its transpose, there exists a complex unitary (number) u = U\ 
+ i u2so that uauT = uau = r, a real number. If j replaces i in this relation, 
the result still holds (since only j and real numbers are involved) ; therefore, 
if a — a + j b is any diagonal element of Dc + j Ddj there exists a quaternion 
unitary u = U\ + j w 2 so that uau* = r is real. If this is applied to each 
diagonal element, the form described in the theorem can be obtained under 
the transformation required. 

The converse follows immediately and the form is a canonical form, the 
diagonal elements being the characteristic roots of the hermitian polar matrix 
of A. 

4. A normal form for a *-skew-symmetric matrix under unitary 
congruence. For this case there is the following lemma: 

LEMMA 3. If A is a *-skew-symmetric, unitary quaternion matrix, there exists 
a unitary complex matrix V such that VA VT is a direct sum of 1 X 1 matrices 
of the form + j i and —j i, and of 2 X 2 matrices of the form 

[" jri a 1 
\_—a —jri A 

where a2 + r2 = 1 and a > 0 and r are real numbers. 

Since A = Ax+jA2= -A* = -{AX
T + A2

Tj), it follows that Ax = 
- . l i T and A2 = -A2

CT. Since .4.4CT = I = ACTA, it follows, among other 
relations, that A2A1

CT = AX
CA2

T and AX
TA2 = A2

TAX. Since A2 is skew-
hermitian, let Uhe a complex unitary matrix such that UA2U

CT = D = D\ + 
D2 + £*3 + • • • + Dk is a direct sum of Ds = i r s / s (where r, is real), that is, 
of pure imaginary scalar matrices, arranged as follows: rs ^ rt if s 9^ t\ if 
irs and — irs are roots of A2l their corresponding blocks appear successively 
on the diagonal; all such successive pairs of blocks, if present, appear first 
in D; and Dk = 0 if 0 is a root of A2. Let IPA^^ = M. 

From A2AfT = A1
CA2

T it follows that 

UA2U
CTUA1

CTUT = UA1
CUTUCA2

TUT, 

or DMCT = MCDT; taking conjugates, DCMT = MDCT or -D(-M) = 
M{-D) or DM = -MD (since MT = - M ) . Therefore, D2 i f = DDM = 
-D(MD) = MD2. Let D = (Px + ^2) + • . . + (Dt-i + Dt) + Dt+l + . .. 
-j- Dk where the parentheses contain the successive pairs described earlier. 
Then M = M12 + . . . + Mt-ltt + Mt+1 + . . . + Mk where Mrs is of the 
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dimension of Dr + Ds, Mi is of the dimension of Du and all Mrs and Mt are 
complex skew-symmetric (since M is). Furthermore, since — DM = MD, it 
follows that -(Dr + Ds)Mrs = Mrs(DT + Ds) and -DtMi = MJ)i for 
all Mrs and ikf< involved. Finally, it may be noted that U°A UCT = U°{A1 + 
jA2)U

CT = VCAYVC1: + j UA2U
CT = M + j D must be *-skew symmetric 

and unitary. (Note that U is complex and UCA{UC)* = UCAUCT is *-skew 
symmetric since A is also.) 

(a) Consider, first, any relation - (Dr + Ds)Mrs = Mrs(Dr + Ds) and, 
for convenience, the case where r = 1 and s = 2. Let Di + D2 = ril\ + 
( — ri)I2 where I\ and I2 are, respectively, p X p and q X q identity matrices, 
r 9e 0, and assume, for specificity, that p ^ q. Let Mi2 be of the form 

M1 Mil 
-MzT M A 

where M\ and M2 are, respectively, p X p and q X q matrices. From the 
relation - {D1 + D2)M12 = M12{DX + D2), it follows that M2 and Mx are 
zero matrices (since r ^ 0). Now Mz may be a zero matrix or it may not; before 
proceeding further, consider the latter case. 

If Mz, a p X q matrix, is not zero, by a theorem of Eckert and Young (1) 
it follows that there exist complex unitary matrices V and W, of orders 
p X p and q X q, respectively, such that VMzW = D is a p X q diagonal 
matrix with non-negative real elements (at least one of which is not 0 here) 
along the diagonal. (ApXq matrix is diagonal if the only non-zero elements 
are of the form a a.) Form the matrix 

x~lv o J 
which is complex unitary. Then X(M12 + j D12)X

T = XMl2X
T + j XCD12X

T 

is a matrix of the form 

~D2 0 "1 

_o DA 
where D is the above-mentioned p X q diagonal matrix. Let A7i = XM\2X

T 

and N2 = XCD12X
T, and note that the dimension of D2 = q ^ p = dimension 

of D1} that Dx and D2 have non-0 diagonal elements, and D has at least one 
non-zero diagonal element; also, let the non-0 diagonal elements of D appear 
first along the diagonal. Consider Ni and N2 and perform the following opera
tions on them: interchange the q + 1st column of N successively with the 
gth, q — 1st, q — 2nd, . . . , 2nd so that the q + 1st column becomes the 
second column and all succeeding columns are in the same order as before; 
and also perform the same row operations. This can be accomplished by a 
real orthogonal simularity transformation and there result from Ari and A7

2, 
respectively, the matrices 

0 
.D 0 . + j 
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0 ax 0 0 \ -ri 0 0 0 
- a 0 0 0 0 ri 0 0 

0 0 0 -D7 0 0 -rih 0 
0 0 2?3 0 0 0 0 rih 

where 1% and 74 are, respectively, identi ty matrices of order q — 1 and p — 1, 
respectively. If the same procedure is applied to the lower right blocks (ignor
ing the first two rows and columns of each), it can be seen t h a t a series of such 
steps provides a real orthogonal matr ix Y such t h a t the matr ix YX(M\2 + 
j Di2)X

T YT is a direct sum of 2 X 2 blocks of the form 

[-jri atl 
l_—at jri J 

(where a t and r are non-zero and real), and of single elements —jri and +jri. 
But since YX is complex uni tary, so is this direct sum, and so each 2 X 2 
block and jri mus t be uni tary. This means t ha t r2 -\- a2 = 1 and r2 = 1 ; 
bu t since at ^ 0, this can only mean t h a t jri and —jri cannot appear singly 
in the direct sum. Therefore YX(M12 + j D12)X

TYT is a direct sum of 2 X 2 
blocks of the above form where r2 + at

2 = 1, r ^ 0 and at ^ 0. (If in the 
above p ^ q, the roles of +jri and —jri are interchanged, bu t a simple (and 
allowable) operation a t the close can still place the element —jri in the 1 — 1 
position.) 

All of the above in (a) occurs if ikf3 is not a zero matrix. If Mz = 0, then 
Mi2 + j D12 = j Di2 = j (Di + D2) which is a direct sum with diagonal 
elements + j r i, r2 = 1 ; in this case no X and Y are required. 

Therefore in UCA UCT = M + j D, each Mrs + j {Dr + D8) can be t reated 
as above depending on whether or not Mrs is a zero matrix. 

(b) Consider any relation —DtMi = MiDt where D j is a non-0 pure 
imaginary scalar matrix. Then Mt = —Mi so Mt is a zero matrix and Mt + 
j Di = j Dt which has diagonal elements jri, r2 = 1. 

(c) UDk = 0 is present in UA2U
CT = D, then Mk + j Dk = Mk = -Mky

T 

a complex uni tary matrix. By Lemma 1 there exists a complex uni tary matrix 
U such t h a t UA UT = E is a direct sum as described in the lemma. 

If the results of (a), (b), and (c) are combined, it is evident t h a t a complex 
uni tary matr ix Wean be constructed so t ha t WUCA UCTWT = W(M + jD) WT 

is a direct sum of 2 X 2 matrices of the form 

jri a 1 
— a —jri J 

(where a2 + r2 = 1, a > 0 and r are real) and of 1 X 1 matrices of the form 
ji and —ji. 

T H E O R E M 3. If A is a *-skew-symmetric quaternion matrix, there exists a 
quaternion unitary matrix V such that VA V* = E + 0 where E is a direct 
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sum of I XI matrices of the form kji and — kji, k > 0 real, and of 2 X 2 matrices 
of the form 

I sji t 1 
L-t ~sji J 

where t > 0 and s are real. 

The proof follows the pattern of that of Theorem 1. If A = 0, the result is 
trivial. If A ^ 0, let A = HU = UK be a polar representation of .1 . If 
*-transpose replaces T-transpose in the earlier proof, it is evident that H = K*. 
Here, however, the rank of a *-skew-symmetric matrix is not necessarily even 
(as the preceding lemma shows). If the earlier proof is followed, it is seen 
eventually that, using the same letters, U = F i C T ( ^ n + X) Fi*CT and U* = 
- F i 0 T G 4 n + Y)V1*

CT so that U* = Vf {An* + X*) VX
CT = - F 1

C T ( . l 1 1 

+ F)Fi*C T and, since ViCT* = Fi*CT, i n * = —An is quaternion uni
tary. Then F i i F i * = VJIV^ViUVf = {Dx + 0 ) ( i n + X) = (D.An + 
0) = Vi(-U*)V1*V1*

CTH*V1* = (An + Y)(Di + 0) = (AllD1 + 0). Since 
DiAu = AiiDi, An is a direct sum, Ax + A2 + . . . + Ak, (of *-skew-sym-
metric, unitary quaternion matrices) conformable to the direct sum of Dx. 
For each A t there exists, by the preceding lemma, a complex unitary matrix 
Wi so that WiAiWl

T has the form described in the lemma. If W = Wi + W2 

+ . . . + Wk + I (where / is of the order of 0 in D1 + 0 ) , WVU1 V{*WT is 
then a direct sum of 1 X 1 matrices of the form kji and —kji (k > 0 is real), 
of 2 X 2 matrices of the form 

jrci ac 
\_—ac —jrci j 

where ac > 0 is real, and of a zero matrix. (IFFi is a unitary quaternion 
matrix.) 
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