GANONICAL FORMS FOR CERTAIN MATRICES UNDER UNITARY CONGRUENCE

J. W. STANDER and N. A. WIEGMANN

1. Introduction. If A is a matrix with complex elements and if $A=A^{\mathrm{T}}$ (where A^{T} denotes the transpose of A), there exists a non-singular matrix P such that $P A P^{\mathrm{T}}=D$ is a diagonal matrix (see (3), for example). It is also true (see the principal result of (5)) that for such an A there exists a unitary matrix U such that $U A U^{\mathrm{T}}=D$ is a real diagonal matrix with nonnegative elements which is a canonical form for A relative to the given $U, U^{\mathbf{T}}$ transformation. If $A=-A^{\mathrm{T}}$, it is known (see (3) or (4)) that there exists a non-singular matrix P such that $P A P^{\mathrm{T}}$ is a direct sum of a zero matrix (if present) and of 2×2 blocks of the form:

$$
\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

The present work is concerned with the following. First, a canonical form is obtained for a complex skew-symmetric matrix under a U, U^{T} transformation where U is a unitary complex matrix; this form is analogous to that of the symmetric matrix mentioned above. Thereafter, matrices with real quaternion elements are considered. For such an A the *-transpose (denoted by.*) is defined and is seen to be a generalization of the transpose (of a complex matrix) for the non-commutative case which at the same time retains the properties of the ordinary transpose in the commutative case. Quaternion matrices of the form $A=A^{*}$ and $A=-A^{*}$ are considered, in turn, and results analogous to those mentioned above for complex matrices are obtained which justify this generalization.
2. A normal form for a complex symmetric matrix under unitary congruence. To obtain this form the following is employed:

Lemma 1. If A is a complex, unitary, skew-symmetric matrix there exists a complex unitary matrix U such that $U A U^{\mathrm{T}}=E$ is a direct sum of 2×2 matrices of the form

$$
\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

It is evident that A must be of even order since it is skew-symmetric and non-singular. Let $A=A_{1}+i A_{2}$, where A_{1} and A_{2} are real matrices, so that $A_{1}=-A_{1}{ }^{\mathrm{T}}$ and $A_{2}=-A_{2}{ }^{\mathrm{T}}$. Since $A A^{\mathrm{CT}}=\left(A_{1}+i A_{2}\right)\left(A_{1}{ }^{\mathrm{T}}-i A_{2}{ }^{\mathrm{T}}\right)=I$,

Received April 23, 1959.
it follows that $A_{1} A_{1}{ }^{\mathrm{T}}+A_{2} A_{2}{ }^{\mathrm{T}}=I$ and $A_{2} A_{1}{ }^{\mathrm{T}}=A_{1} A_{2}{ }^{\mathrm{T}}$. The latter becomes $A_{2} A_{1}=A_{1} A_{2}$. By a known theorem (see (2), for example), there exists a real orthogonal matrix T such that $T A_{1} T^{\mathrm{T}}=E_{1}$ and $T A_{2} T^{\mathrm{T}}=E_{2}$ are direct sums of zeros and 2×2 matrices of the form

$$
\left[\begin{array}{rr}
0 & a \tag{i}\\
-a & 0
\end{array}\right]
$$

where $a>0$ is real. Furthermore, it can be shown that, as in the present case, when A_{1} and A_{2} are both skew-symmetric, E_{1} and E_{2} can be regarded as conformable direct sums of 2×2 matrices of the above form, of 2×2 zero matrices, and of 1×1 zero matrices in such a way that whenever a single zero element appears in the direct sum of one, it appears in the same diagonal position in the other. (A 2×2 matrix of form (i) in one can correspond to a 2×2 zero matrix in the other, of course.) This may be seen as follows:

The statement is true or there is a first block (in E_{1} or E_{2}) in the direct sum where it is not true; this would mean that there would be corresponding 3×3 diagonal blocks in E_{1} and E_{2}, respectively, of the form

$$
\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & b \\
0 & -b & 0
\end{array}\right] \quad\left[\begin{array}{rrr}
0 & a & 0 \\
-a & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

where $a \neq 0$ and $b \neq 0$. But since $A_{2} A_{1}=A_{1} A_{2}$, the above matrices must commute and they do not. Hence E_{1} and E_{2} can be considered to be direct sums which are conformable as described above.

Therefore $T\left(A_{1}+i A_{2}\right) T^{\mathrm{T}}=E_{1}+i E_{2}$ which is unitary (and non-singular); consequently, no 1×1 zero element can appear alone along the diagonal of E_{1} and E_{2} in the form described for each in the preceding paragraph. Therefore, E_{1} and E_{2} are each direct sums of 2×2 matrices of form (i) where $a \geqq 0$, so that $E_{1}+i E_{2}$ is a direct sum of 2×2 blocks of the form

$$
E_{0}=\left[\begin{array}{rr}
0 & \alpha \tag{ii}\\
-\alpha & 0
\end{array}\right]
$$

where α is non-zero complex. Since $E_{1}+i E_{2}$ is unitary, $\alpha \bar{\alpha}=1$. Let $\alpha=e^{i \theta}$ and form the 2×2 unitary matrix

$$
V=\left[\begin{array}{cl}
0 & e^{-i \theta / 2} \\
-e^{-i \theta / 2} & 0
\end{array}\right]
$$

Then $V E_{0} V^{\mathrm{T}}$ is a matrix of the form

$$
\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

If S is an appropriate direct sum of such V (determined from each 2×2 matrix in the direct sum $\left.E_{1}+i E_{2}\right)$, then $S T\left(A_{1}+i A_{2}\right) T^{\mathrm{T}} S^{\mathrm{T}}=E$, the direct
sum as described in the statement of the lemma, where $U=S T$ is a complex unitary matrix.

Theorem 1. If A is a complex skew-symmetric matrix, there exists a complex unitary matrix V such that $V A V^{\mathrm{T}}=E \dot{+} 0$ where E is a direct sum of 2×2 matrices of the form

$$
\left[\begin{array}{rr}
0 & a \\
-a & 0
\end{array}\right],
$$

where $a>0$ is real; and conversely.
Let $A=H U=U K \neq 0$ be a polar representation of A where H and K are hermitian and U is unitary. (It may be noted that each $a>0$ described in the statement of the theorem is actually a characteristic root of H or K). Since $A=H U=U K=-A^{\mathrm{T}}=-U^{\mathrm{T}} H^{\mathrm{T}}=-K^{\mathrm{T}} U^{\mathrm{T}}$, and since the hermitian polar matrix H is unique, it follows from $A=H U=-K^{\mathrm{T}} U^{\mathrm{T}}$ that $H=$ K^{T} or $H=-K^{\mathrm{T}}$ (since $-K^{\mathrm{T}} U^{\mathrm{T}}$ is also a polar form of A). But since K is positive definite, K^{T} is also, and $H=-K^{\mathrm{T}}$ cannot hold (since H would not be positive definite). Therefore $H=K^{\mathrm{T}}$.

If A, skew-symmetric, is non-singular, it must be of even order; in any event, the rank of A is even. If $A=H U$, the rank of $A=$ the rank of $H=r$, an even number.

For $H=K^{\mathrm{T}}$ let V_{1} be a complex unitary matrix such that $V_{1} H V_{1}{ }^{\mathrm{CT}}=D=$ $D_{0} \dot{+} 0$ (where 0 is absent if B is non-singular) where $D_{0}=D_{1} \dot{+} D_{2} \dot{+} \ldots \dot{+} D_{k}$, where $D_{i}=d_{i} I_{i}$ is a real diagonal scalar matrix, $d_{i} \neq d_{j}$ for $i \neq j$, and $d_{1}>d_{2}>\ldots>d_{k}>0$. If A is non-singular, it is known (see (9)) that the polar representation is unique, so that $A=H U=K^{\mathrm{T}}\left(-U^{\mathrm{T}}\right)$ implies that $U=-U^{\mathrm{T}}$. If A is singular, this need not be true (8); as a matter of fact, it cannot be true if A is of odd order since U is non-singular.

Consider the case where $A=H U$ is singular. Let $V_{1} U V_{1}{ }^{\mathbf{C T}}=W$ and $V_{1}\left(-U^{\mathrm{T}}\right) V_{1}{ }^{\mathrm{CT}}=W_{1}$; also let $V_{1} K V_{1}{ }^{\mathrm{CT}}=V_{1} H^{\mathrm{T}} V_{1}{ }^{\mathrm{CT}}=M$. Then from

$$
V_{1} A V_{1}{ }^{\mathrm{CT}}=V_{1} H U V_{1}{ }^{\mathrm{CT}}=V_{1} U K V_{1}{ }^{\mathrm{CT}}=V_{1}\left(-U^{\mathrm{T}} H^{\mathrm{T}}\right) V_{1}{ }^{\mathrm{CT}}
$$

$$
=V_{1}\left(-K^{\mathrm{T}} U^{\mathrm{T}}\right) V_{1}{ }^{\mathrm{CT}}
$$

it follows that $V_{1} A V_{1}{ }^{\mathrm{CT}}=D W=W M=W_{1} M=D W_{1}$. From $W M=W_{1} M$ it follows, in turn, that

$$
W\left(V_{1} H^{\mathrm{T}} V_{1}{ }^{\mathrm{CT}}\right)=W_{1}\left(V_{1} H^{\mathrm{T}} V_{1}{ }^{\mathrm{CT}}\right)
$$

or

$$
W V_{1} V_{1}^{\mathrm{T}} D V_{1}^{\mathrm{C}} V_{1}^{\mathrm{CT}}=W_{1} V_{1} V_{1}^{\mathrm{T}} D V_{1}^{\mathrm{C}} V_{1}^{\mathrm{CT}}
$$

so that $W V_{1} V_{1}{ }^{\mathrm{T}} D=W_{1} V_{1} V_{1}{ }^{\mathrm{T}} D$. Since $D W=D W_{1}$ (and since D has rank r), W and W_{1} have like first r rows, and so $W V_{1} V_{1}{ }^{\mathrm{T}}$ and $W_{1} V_{1} V_{1}{ }^{\mathrm{T}}$ also have like first r rows; and from the last result in the preceding, $W V_{1} V_{1}{ }^{\text {T }}$ and $W_{1} V_{1} V_{1}{ }^{\mathrm{T}}$ also have like first r columns. Let $W V_{1} V_{1}{ }^{\mathrm{T}}$ be of the form

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & X
\end{array}\right]
$$

where A_{11} is an $r \times r$ matrix. Since $D W=W_{1} M=W_{1} V_{1} V_{1}{ }^{\mathrm{T}} D V_{1}{ }^{\mathrm{C}} V_{1}{ }^{\mathrm{cT}}$, therefore $D W V_{1} V_{1}{ }^{\mathrm{T}}=W_{1} V_{1} V_{1}{ }^{\mathrm{T}} D$. From this relation it follows, after equating corresponding elements and noting that $W_{1} V_{1} V_{1}{ }^{\mathbf{T}}$ is of the same form as $W V_{1} V_{1}{ }^{\mathrm{T}}$ except for X, that A_{12} and A_{21} are zero matrices. Then:

$$
W V_{1} V_{1}^{\mathrm{T}}=A_{11} \dot{+} X, \quad W_{1} V_{1} V_{1}^{\mathrm{T}}=A_{11} \dot{+} Y
$$

$W=\left(A_{11} \dot{+} X\right) V_{1}{ }^{\mathrm{C}} V_{1}{ }^{\mathrm{T}}=V_{1} U V_{1}{ }^{\mathrm{CT}}, W_{1}=\left(A_{11} \dot{+} Y\right) V_{1}{ }^{\mathrm{C}} V_{1}{ }^{\mathrm{CT}}=V_{1}\left(-U^{\mathrm{T}}\right) V_{1}{ }^{\mathrm{CT}}$,
$U=V_{1}{ }^{\mathrm{CT}}\left(A_{11} \dot{+} X\right) V_{1}{ }^{\mathrm{c}},-U^{\mathrm{T}}=V_{1}{ }^{\mathrm{CT}}\left(A_{11} \dot{+} Y\right) V_{1}{ }^{\mathrm{c}}$.
Therefore, $U^{\mathrm{T}}=V_{1}{ }^{\mathrm{CT}}\left(A_{11}{ }^{\mathrm{T}} \dot{+} X^{\mathrm{T}}\right) V_{1}{ }^{\mathrm{C}}=V_{1}{ }^{\mathrm{CT}}\left(-A_{11} \dot{+}[-Y]\right) V_{1}{ }^{\mathrm{C}}$ and so $A_{11}=-A_{11}^{\mathrm{T}}$ and A_{11} must also be unitary (since U^{T} is) and $Y=-X^{\mathrm{T}}$ where X is unitary but otherwise arbitrary. So $V_{1} U V_{1}{ }^{\mathrm{T}}=A_{11}+X$ and $V_{1}\left(-U^{\mathrm{T}}\right) V_{1}{ }^{\mathrm{T}}$ $=A_{11}+Y$.
Then $V_{1} A V_{1}{ }^{\mathrm{T}}=V_{1} H V_{1}{ }^{\mathrm{CT}} V_{1} U V_{1}{ }^{\mathrm{T}}=V_{1}\left(-U^{\mathrm{T}}\right) V_{1}{ }^{\mathrm{T}} V_{1}{ }^{\mathrm{C}} H^{\mathrm{T}} V_{1}{ }^{\mathrm{T}}=\left(D_{0} \dot{+} 0\right)$. $\left(A_{11} \dot{+} X\right)=\left(A_{11} \dot{+} Y\right)\left(D_{0}+0\right)$. This means that $V_{1} A V_{1}{ }^{\mathrm{T}}=D_{0} A_{11} \dot{+} 0$ where $D_{0} A_{11}=A_{11} D_{0}$ is of (even) order r, and A_{11} is unitary and skew-symmetric. It follows that $A_{11}=A_{1} \dot{+} A_{2} \dot{+} \ldots \dot{+} A_{k}$, where A_{i} is of the order of D_{i} in $D_{0}=D_{1}+D_{2} \dot{+} \ldots \dot{+} D_{k}$, and that each A_{i} is unitary and skewsymmetric and hence of even order. From the lemma for each A_{i} there exists a complex unitary U_{i} such that $U_{i} A_{i} U_{i}{ }^{\mathrm{T}}$ is a direct sum of the 2×2 matrices described in the lemma. If $U=U_{1} \dot{+} \ldots \dot{+} U_{k}$, then $U V_{1} A V_{1}{ }^{\mathrm{T}} U^{\mathrm{T}}=D_{0} E_{0}$ $\dot{+} 0$ where E_{0} is a direct sum of 2×2 matrices of the form described in the lemma. Then $D_{0} E_{0}$ is the matrix E described in the theorem, and since $U V_{1}$ is unitary, the theorem has been obtained. If A is non-singular, the same proof holds and $D=D_{0}, U=V_{1}{ }^{\text {CT }} A_{11} V_{1}{ }^{\text {C }}$, etc., and 0 does not appear in the final form $E \dot{+} 0$.

The converse is immediate.
3. A normal form for a *-symmetric quaternion matrix under unitary congruence. If two matrices A and B have elements which lie in a non-commutative domain, among the properties of the transpose which do not hold (as they do in the commutative case) is that $(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}$. If a matrix A with real quaternion elements is written in the form $A=A_{1}+j A_{2}$ (where A_{1} and A_{2} are complex matrices), then $A^{\mathrm{T}}=A_{1}{ }^{\mathrm{T}}+j A_{2}{ }^{\mathrm{T}}$. Also, by the conjugate transpose of A is meant the matrix $A^{\mathrm{CT}}=A_{1}{ }^{\mathrm{CT}}+\left(j A_{2}\right)^{\mathrm{CT}}=$ $A_{1}{ }^{\text {CT }}-j A_{2}{ }^{\text {T }}$ (where $A_{1}{ }^{\text {CT }}$ denotes the complex conjugate transpose of A).

If the *-transpose of the matrix A is defined to be the matrix $A^{*}=A_{1}{ }^{\mathrm{T}}+$ $A_{2}{ }^{\mathrm{T}} j$, it is seen that this includes the ordinary transpose of a complex matrix as a special case. Among the properties of the *-transpose which can easily be verified are the following: $\left(A^{*}\right)^{*}=A ; A^{*}=i j A^{\mathrm{CT}} j i ;(A+B)^{*}=A^{*}$ $+B^{*} ;(A B)^{*}=B^{*} A^{*}$; if A is non-singular, $\left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*} ;\left(A^{*}\right)^{\mathrm{CT}}=$ $\left(A^{\mathrm{CT}}\right)^{*}$. Define A to be ${ }^{*}$-symmetric if $A=A^{*}$, and to be ${ }^{*}$-skew-symmetric if $A=-A^{*}$. In the following, canonical forms are found for such matrices
under unitary congruence which are clearly generalizations of the theorems for the complex case stated in the two preceding sections.

The following lemma is first obtained:
Lemma 2. If U is a unitary quaternion matrix (that is, $U U^{\mathbf{C T}}=I=U^{\mathbf{C T}} U$) which is also *-symmetric $\left(U=U^{*}\right)$, there exists a complex unitary matrix Z such that $Z U Z^{\mathrm{T}}=D_{0}+j D$ where D_{0} and D are real diagonal matrices for which $D_{0}{ }^{2}+D^{2}=I$.

Let $U=U_{1}+j U_{2}$, where U_{1} and U_{2} are complex matrices. Since $U=U_{1}$ $+j U_{2}=U^{*}=U_{1}{ }^{\mathrm{T}}+U_{2}{ }^{\mathrm{T}} j$, it follows that $U_{1}=U_{1}{ }^{\mathrm{T}}$ and $U_{2}=U_{2}{ }^{\mathrm{CT}}$. Since, also, $U U^{\mathrm{CT}}=\left(U_{1}+j U_{2}\right)\left(U_{1}{ }^{\mathrm{CT}}-j U_{2}{ }^{\mathrm{T}}\right)=I, U_{1} U_{1}{ }^{\mathrm{CT}}+U_{2}{ }^{\mathrm{C}} U_{2}{ }^{\mathrm{T}}=I$ and $U_{2} U_{1}{ }^{\mathrm{CT}}=U_{1}{ }^{\mathrm{C}} U_{2}{ }^{\mathrm{T}}$ or, taking conjugates, $U_{2}{ }^{\mathrm{C}} U_{1}{ }^{\mathrm{T}}=U_{1} U_{2}{ }^{\mathrm{CT}}$ or $U_{2}{ }^{\mathrm{C}} U_{1}$ $=U_{1} U_{2}$. Let V be a complex unitary matrix such that $V U_{2} V^{\text {CT }}=D=D_{1}$ $\dot{+} D_{2} \dot{+} \ldots \dot{+} D_{k}$, where $D_{i}=d_{i} I_{i}$ for d_{i} real, $d_{i} \neq d_{j}$ for $i \neq j$, and where $d_{1}>d_{2}>\ldots>d_{k}$; also let $V^{\mathrm{C}} U_{1} V^{\mathrm{CT}}=N$. Since $U_{2}{ }^{\mathrm{C}} U_{1}=U_{1} U_{2}$, $V^{\mathrm{C}} U_{2}{ }^{\mathrm{C}} V^{\mathrm{T}} V^{\mathrm{C}} U_{1} V^{\mathrm{CT}}=V^{\mathrm{C}} U_{1} V^{\mathrm{CT}} V U_{2} V^{\mathrm{CT}}$ or $D N=N D$. Therefore $N=N_{1}$ $\dot{+} N_{2} \dot{+} \ldots \dot{+} N_{k}$ is a direct sum conformable to D. Since $N=N^{\mathrm{T}}, N_{i}=N_{i}{ }^{\mathrm{T}}$ for all i; consequently, there is a complex unitary W_{i} for each N_{i} such that $W_{i} N_{i} W_{i}^{\mathrm{T}}=D_{1 i}$ is a real diagonal matrix. If $W=W_{1} \dot{+} W_{2} \dot{+} \ldots \dot{+} W_{k}$, then $W N W^{\mathrm{T}}=D_{11}+D_{12} \dot{+} \ldots \dot{+} D_{1 k}=D_{0}$ is a direct sum of real diagonal matrices. Then $W V^{\mathrm{C}}\left(U_{1}+j U_{2}\right) V^{\mathrm{CT}} W^{\mathrm{T}}=W(N+j D) W^{\mathrm{T}}=D_{0}+j D$ where D_{0} and D are real diagonal matrices and $W V^{\mathrm{C}}$ is a complex unitary matrix. Furthermore, since U, V, and W are each unitary, $D_{0}+j D$ is also and $\left(D_{0}+j D\right)\left(D_{0}-j D\right)=D_{0}{ }^{2}+D^{2}=I$; the lemma is then true (and the converse is also, incidentally).

Theorem 2. If A is a^{*}-symmetric quaternion matrix, there exists a quaternion unitary matrix U such that $U A U^{*}=D$ is a real diagonal matrix with nonnegative diagonal elements; and conversely.

This is clearly an analogue of the theorem for the complex case mentioned in $\S 1$, above; and its proof proceeds as does the proof for the complex case given in (7, p. 36). If $A=H V=V K$ is the polar form of the quaternion matrix A (see (6)), the proof follows the same pattern except that *-transpose replaces T-transpose and the elements involved are quaternion (though the matrix D is still a real diagonal matrix). It is then found that for $A=H V=$ $V H^{*}$, there exists (7, p. 37) a quaternion unitary matrix U such that $U A U^{*}=$ $U H U^{\mathrm{CT}} U V U^{*}=U V U^{*}\left(U^{*}\right)^{\mathrm{CT}} H^{*} U^{*}=D W=W D$ where D is a real diagonal matrix as there described and $W=U V U^{*}=W^{*}$ is now a quaternion unitary matrix. Since D is real diagonal with like roots arranged together along the diagonal, $W=W_{1} \dot{+} W_{2} \dot{+} \ldots \dot{+} W_{t}$ is a direct sum conformable to that of D (as a direct sum of scalar matrices) and each $W_{i}=W_{i}^{*}$ is unitary; it may be noted that if $D=D_{1} \dot{+} 0$ (as in (7)) and if 0 is present, W_{t} will be chosen to have these properties also. By the preceding lemma, a complex unitary Z_{i} can be chosen so that $Z_{i} W_{i} Z_{i}{ }^{*}=Z_{i} W_{i} Z_{i}{ }^{\mathrm{T}}=D_{0 i}+j D_{1 i}$ where
$D_{0 i}$ and $D_{1 i}$ are real diagonal with the properties given. If $Z=Z_{1} \dot{+} Z_{2}$ $\dot{+} \ldots \dot{+} Z_{t}$, then $Z U A U^{*} Z^{*}=Z D W Z^{*}=D Z W Z^{*}=D\left(D_{a}+j D_{b}\right)=D_{c}$ $+j D_{d}$ where D_{c} and D_{d} are real diagonal and $Z U$ is a quaternion unitary matrix.

To obtain the form given in the theorem, an additional step is required. If $\alpha=a+i b, a$ and b real, is any complex number, since it is a 1×1 matrix and is equal to its transpose, there exists a complex unitary (number) $u=u_{1}$ $+i u_{2}$ so that $u \alpha u^{\mathrm{T}}=u \alpha u=r$, a real number. If j replaces i in this relation, the result still holds (since only j and real numbers are involved); therefore, if $\alpha=a+j b$ is any diagonal element of $D_{c}+j D_{d}$, there exists a quaternion unitary $u=u_{1}+j u_{2}$ so that $u \alpha u^{*}=r$ is real. If this is applied to each diagonal element, the form described in the theorem can be obtained under the transformation required.

The converse follows immediately and the form is a canonical form, the diagonal elements being the characteristic roots of the hermitian polar matrix of A.

4. A normal form for a *-skew-symmetric matrix under unitary

 congruence. For this case there is the following lemma:Lemma 3. If A is a^{*}-skew-symmetric, unitary quaternion matrix, there exists a unitary complex matrix V such that $V A V^{\mathrm{T}}$ is a direct sum of 1×1 matrices of the form $+j i$ and $-j i$, and of 2×2 matrices of the form

$$
\left[\begin{array}{cl}
j r i & a \\
-a & -j r i
\end{array}\right]
$$

where $a^{2}+r^{2}=1$ and $a>0$ and r are real numbers.
Since $A=A_{1}+j A_{2}=-A^{*}=-\left(A_{1}{ }^{\mathrm{T}}+A_{2}{ }^{\mathrm{T}} j\right)$, it follows that $A_{1}=$ $-A_{1}{ }^{\mathrm{T}}$ and $A_{2}=-A_{2}{ }^{\mathrm{CT}}$. Since $A A^{\mathrm{CT}}=I=A^{\mathrm{CT}} A$, it follows, among other relations, that $A_{2} A_{1}{ }^{\mathrm{CT}}=A_{1}{ }^{\mathrm{C}} A_{2}{ }^{\mathrm{T}}$ and $A_{1}{ }^{\mathrm{T}} A_{2}=A_{2}{ }^{\mathrm{T}} A_{1}$. Since A_{2} is skewhermitian, let U be a complex unitary matrix such that $U A_{2} U^{\mathrm{CT}}=D=D_{1} \dot{+}$ $D_{2} \dot{+} D_{3} \dot{+} \ldots \dot{+} D_{k}$ is a direct sum of $D_{s}=i r_{s} I_{s}$ (where r_{s} is real), that is, of pure imaginary scalar matrices, arranged as follows: $r_{s} \neq r_{t}$ if $s \neq t$; if $i r_{s}$ and $-i r_{s}$ are roots of A_{2}, their corresponding blocks appear successively on the diagonal; all such successive pairs of blocks, if present, appear first in D; and $D_{k}=0$ if 0 is a root of A_{2}. Let $U^{\mathrm{C}} A_{1} U^{\mathrm{CT}}=M$.

From $A_{2} A_{1}{ }^{\mathrm{CT}}=A_{1}{ }^{\mathrm{C}} A_{2}{ }^{\mathrm{T}}$ it follows that

$$
U A_{2} U^{\mathrm{CT}} U A_{1}^{\mathrm{CT}} U^{\mathrm{T}}=U A_{1}^{\mathrm{C}} U^{\mathrm{T}} U^{\mathrm{C}} A_{2}^{\mathrm{T}} U^{\mathrm{T}}
$$

or $D M^{\mathrm{CT}}=M^{\mathrm{C}} D^{\mathrm{T}}$; taking conjugates, $D^{\mathrm{C}} M^{\mathrm{T}}=M D^{\mathrm{CT}}$ or $-D(-M)=$ $M(-D)$ or $D M=-M D$ (since $M^{\mathrm{T}}=-M$). Therefore, $D^{2} M=D D M=$ $-D(M D)=M D^{2}$. Let $D=\left(D_{1} \dot{+} D_{2}\right) \dot{+} \ldots \dot{+}\left(D_{t-1} \dot{+} D_{t}\right) \dot{+} D_{t+1} \dot{+} \ldots$ $\dot{+} D_{k}$ where the parentheses contain the successive pairs described earlier. Then $M=M_{12} \dot{+} \ldots \dot{+} M_{t-1, t} \dot{+} M_{t+1} \dot{+} \ldots \dot{+} M_{k}$ where $M_{r s}$ is of the
dimension of $D_{r} \dot{+} D_{s}, M_{i}$ is of the dimension of D_{i}, and all $M_{r s}$ and M_{i} are complex skew-symmetric (since M is). Furthermore, since $-D M=M D$, it follows that $-\left(D_{r} \dot{+} D_{s}\right) M_{r s}=M_{r s}\left(D_{r} \dot{+} D_{s}\right)$ and $-D_{i} M_{i}=M_{i} D_{i}$ for all $M_{r s}$ and M_{i} involved. Finally, it may be noted that $U^{\mathbf{C}} A U^{\mathbf{C T}}=U^{\mathrm{C}}\left(A_{1}+\right.$ $\left.j A_{2}\right) U^{\mathbf{C T}}=U^{\mathbf{C}} A_{1} U^{\mathbf{C T}}+j U A_{2} U^{\mathbf{C T}}=M+j D$ must be *-skew symmetric and unitary. (Note that U is complex and $U^{\mathrm{C}} A\left(U^{\mathrm{C}}\right)^{*}=U^{\mathrm{C}} A U^{\mathrm{CT}}$ is ${ }^{*}$-skew symmetric since A is also.)
(a) Consider, first, any relation $-\left(D_{r} \dot{+} D_{s}\right) M_{r s}=M_{r s}\left(D_{r} \dot{+} D_{s}\right)$ and, for convenience, the case where $r=1$ and $s=2$. Let $D_{1} \dot{+} D_{2}=r i I_{1} \dot{+}$ $(-r i) I_{2}$ where I_{1} and I_{2} are, respectively, $p \times p$ and $q \times q$ identity matrices, $r \neq 0$, and assume, for specificity, that $p \leqq q$. Let M_{12} be of the form

$$
\left[\begin{array}{cc}
M_{1} & M_{3} \\
-M_{3}{ }^{\mathrm{T}} & M_{2}
\end{array}\right]
$$

where M_{1} and M_{2} are, respectively, $p \times p$ and $q \times q$ matrices. From the relation $-\left(D_{1} \dot{+} D_{2}\right) M_{12}=M_{12}\left(D_{1} \dot{+} D_{2}\right)$, it follows that M_{2} and M_{1} are zero matrices (since $r \neq 0$). Now M_{3} may be a zero matrix or it may not; before proceeding further, consider the latter case.

If M_{3}, a $p \times q$ matrix, is not zero, by a theorem of Eckert and Young (1) it follows that there exist complex unitary matrices V and W, of orders $p \times p$ and $q \times q$, respectively, such that $V M_{3} W=D$ is a $p \times q$ diagonal matrix with non-negative real elements (at least one of which is not 0 here) along the diagonal. (A $p \times q$ matrix is diagonal if the only non-zero elements are of the form $a_{i i}$.) Form the matrix

$$
X=\left[\begin{array}{ll}
0 & W^{\mathrm{T}} \\
V & 0
\end{array}\right]
$$

which is complex unitary. Then $X\left(M_{12}+j D_{12}\right) X^{\mathbf{T}}=X M_{12} X^{\mathbf{T}}+j X^{\mathrm{C}} D_{12} X^{\mathbf{T}}$ is a matrix of the form

$$
\left[\begin{array}{cc}
0 & -D^{\mathrm{T}} \\
D & 0
\end{array}\right]+j\left[\begin{array}{ll}
D_{2} & 0 \\
0 & D_{1}
\end{array}\right]
$$

where D is the above-mentioned $p \times q$ diagonal matrix. Let $N_{1}=X M_{12} X^{\mathrm{T}}$ and $N_{2}=X^{\mathbf{C}} D_{12} X^{\mathbf{T}}$, and note that the dimension of $D_{2}=q \geqq p=$ dimension of D_{1}, that D_{1} and D_{2} have non- 0 diagonal elements, and D has at least one non-zero diagonal element; also, let the non-0 diagonal elements of D appear first along the diagonal. Consider N_{1} and N_{2} and perform the following operations on them: interchange the $q+1$ st column of N successively with the q th, $q-1$ st, $q-2$ nd, $\ldots, 2$ nd so that the $q+1$ st column becomes the second column and all succeeding columns are in the same order as before; and also perform the same row operations. This can be accomplished by a real orthogonal simularity transformation and there result from N_{1} and N_{2}, respectively, the matrices

$$
\left[\begin{array}{cllc}
0 & a_{1} & 0 & 0 \\
-a & 0 & 0 & 0 \\
0 & 0 & 0 & -D_{3}{ }^{\mathrm{T}} \\
0 & 0 & D_{3} & 0
\end{array}\right] \quad\left[\begin{array}{clll}
-r i & 0 & 0 & 0 \\
0 & r i & 0 & 0 \\
0 & 0 & -r i I_{3} & 0 \\
0 & 0 & 0 & r i I_{4}
\end{array}\right]
$$

where I_{3} and I_{4} are, respectively, identity matrices of order $q-1$ and $p-1$, respectively. If the same procedure is applied to the lower right blocks (ignoring the first two rows and columns of each), it can be seen that a series of such steps provides a real orthogonal matrix Y such that the matrix $Y X\left(M_{12}+\right.$ $\left.j D_{12}\right) X^{\mathrm{T}} Y^{\mathrm{T}}$ is a direct sum of 2×2 blocks of the form

$$
\left[\begin{array}{ll}
-j r i & a_{t} \\
-a_{t} & j r i
\end{array}\right]
$$

(where a_{t} and r are non-zero and real), and of single elements $-j r i$ and $+j r i$. But since $Y X$ is complex unitary, so is this direct sum, and so each 2×2 block and $j r i$ must be unitary. This means that $r^{2}+a_{t}{ }^{2}=1$ and $r^{2}=1$; but since $a_{\iota} \neq 0$, this can only mean that $j r i$ and $-j r i$ cannot appear singly in the direct sum. Therefore $Y X\left(M_{12}+j D_{12}\right) X^{\mathbf{T}} Y^{\mathbf{T}}$ is a direct sum of 2×2 blocks of the above form where $r^{2}+a_{t}{ }^{2}=1, r \neq 0$ and $a_{t} \neq 0$. (If in the above $p \geqq q$, the roles of $+j r i$ and $-j r i$ are interchanged, but a simple (and allowable) operation at the close can still place the element $-j r i$ in the $1-1$ position.)

All of the above in (a) occurs if M_{3} is not a zero matrix. If $M_{3}=0$, then $M_{12}+j D_{12}=j D_{12}=j\left(D_{1} \dot{+} D_{2}\right)$ which is a direct sum with diagonal elements $+j r i, r^{2}=1$; in this case no X and Y are required.

Therefore in $U^{\mathrm{C}} A U^{\mathrm{CT}}=M+j D$, each $M_{r s}+j\left(D_{r} \dot{+} D_{s}\right)$ can be treated as above depending on whether or not $M_{r s}$ is a zero matrix.
(b) Consider any relation $-D_{i} M_{i}=M_{i} D_{i}$ where D_{i} is a non-0 pure imaginary scalar matrix. Then $M_{i}=-M_{i}$ so M_{i} is a zero matrix and $M_{i}+$ $j D_{i}=j D_{i}$ which has diagonal elements $j r i, r^{2}=1$.
(c) If $D_{k}=0$ is present in $U A_{2} U^{\mathrm{CT}}=D$, then $M_{k}+j D_{k}=M_{k}=-M_{k}$, ${ }^{\mathrm{T}}$ a complex unitary matrix. By Lemma 1 there exists a complex unitary matrix U such that $U A U^{\mathrm{T}}=E$ is a direct sum as described in the lemma.

If the results of (a), (b), and (c) are combined, it is evident that a complex unitary matrix W can be constructed so that $W U^{\mathrm{C}} A U^{\mathbf{C T}} W^{\mathbf{T}}=W(M+j D) W^{\mathbf{T}}$ is a direct sum of 2×2 matrices of the form

$$
\left[\begin{array}{cc}
j r i & a \\
-a & -j r i
\end{array}\right]
$$

(where $a^{2}+r^{2}=1, a>0$ and r are real) and of 1×1 matrices of the form $j i$ and $-j i$.

Theorem 3. If A is a^{*}-skew-symmetric quaternion matrix, there exists a quaternion unitary matrix V such that $V A V^{*}=E+0$ where E is a direct
sum of 1×1 matrices of the form kji and $-k j i, k>0$ real, and of 2×2 matrices of the form

$$
\left[\begin{array}{cc}
s j i & t \\
-t & -s j i
\end{array}\right]
$$

where $t>0$ and s are real.
The proof follows the pattern of that of Theorem 1 . If $A=0$, the result is trivial. If $A \neq 0$, let $A=H U=U K$ be a polar representation of A. If *-transpose replaces T-transpose in the earlier proof, it is evident that $H=K^{*}$. Here, however, the rank of a *-skew-symmetric matrix is not necessarily even (as the preceding lemma shows). If the earlier proof is followed, it is seen eventually that, using the same letters, $U=V_{1}{ }^{\mathrm{CT}}\left(A_{11}+X\right) V_{1}{ }^{* \mathrm{CT}}$ and $U^{*}=$ $-V_{1}{ }^{\mathrm{CT}}\left(A_{11} \dot{+} Y\right) V_{1}{ }^{* \mathrm{CT}}$ so that $U^{*}=V_{1}{ }^{\mathrm{CT}}\left(A_{11}{ }^{*} \dot{+} X^{*}\right) V_{1}{ }^{\mathrm{CT}}=-V_{1}{ }^{\mathrm{CT}}\left(A_{11}\right.$ $\dot{+} Y) V_{1}{ }^{* \mathrm{CT}}$ and, since $V_{1}{ }^{\mathrm{CT} *}=V_{1}{ }^{* \mathrm{CT}}, A_{11}{ }^{*}=-A_{11}$ is quaternion unitary. Then $V_{1} A V_{1}{ }^{*}=V_{1} H V_{1}{ }^{\text {cT }} V_{1} U V_{1}{ }^{*}$. $=\left(D_{1} \dot{+} 0\right)\left(A_{11} \dot{+} X\right)=\left(D_{1} A_{11} \dot{+}\right.$ $0)=V_{1}\left(-U^{*}\right) V_{1}{ }^{*} V_{1}{ }^{* \mathrm{CT}} I^{*} V_{1}{ }^{*}=\left(A_{11} \dot{+} Y\right)\left(D_{1} \dot{+} 0\right)=\left(A_{11} D_{1} \dot{+} 0\right)$. Since $D_{1} A_{11}=A_{11} D_{1}, A_{11}$ is a direct sum, $A_{1}+A_{2} \dot{+} \ldots \dot{+} A_{k}$, (of ${ }^{*}$-skew-symmetric, unitary quaternion matrices) conformable to the direct sum of D_{1}. For each A_{i} there exists, by the preceding lemma, a complex unitary matrix W_{i} so that $W_{i} A_{i} W_{i}{ }^{\mathrm{T}}$ has the form described in the lemma. If $W=W_{1}+W_{2}$ $\dot{+} \ldots \dot{+} W_{k} \dot{+} I$ (where I is of the order of 0 in $\left.D_{1} \dot{+} 0\right), W V_{1} A V_{1}{ }^{*} W^{\mathrm{T}}$ is then a direct sum of 1×1 matrices of the form $k j i$ and $-k j i(k>0$ is real), of 2×2 matrices of the form

$$
\left[\begin{array}{cc}
j r c i & a c \\
-a c & -j r c i
\end{array}\right]
$$

where $a c>0$ is real, and of a zero matrix. ($W V_{1}$ is a unitary quaternion matrix.)

References

1. C. Eckert and G. Young, A principal axis transformation for non-hermitian matrices, Bull. Amer. Math. Soc., 45 (1939), 118-121.
2. N. Jacobson, Lectures in abstract algebra (New York: D Van Nostrand, 1953), 184.
3. C. C. MacDuffee, The theory of matrices (Chelsea, 1946).
4. S. Perlis, Theory of matrices (Cambridge, 1952).
5. I. Schur, Ein Satz ueber quadratische Formen mit komplexen Koeffizienten, Amer. J. Math., 67 (1945), 472.
6. N. A. Wiegmann, Some theorems on matrices with real quaternion elements, Can. J. Math., 7 (1955), 191-201.
7. - On unitary and symmetric matrices with real quaternion elements, Can. J. Math, 8, (1954), 32-39.
8. J. Williamson, A polar representation of singular matrices, Bull. Amer. Math. Soc., 41 (1935), 118-123.
9. A. Wintner and F. D. Murnaghan, On a polar representation of non-singular square matrices, Proc. Nat. Acad. Sci., U.S.A , 17 (1931), 676-678

Catholic University
 Washington, D.C.

