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FREE GROUPS IN SUBNORMAL SUBGROUPS AND 
THE RESIDUAL NILPOTENCE OF THE GROUP OF 

UNITS OF GROUPS RINGS 

BY 

J A I R O Z. G O N Ç A L V E S 

ABSTRACT. Let KG be the group ring of the group G over the 
field K and U(KG) its unit group. When G is finite we derive 
conditions which imply that every noncentral subnormal subgroup 
of U(KG) contains a free group of rank two. We also show that 
residual nilpotence of U(KG) coincides with nilpotence, this being 
no longer true if G is infinite. 

We can answer partially the following question: when is G 
sub-normal in l/(KG)? 

1. Introduction. Let K be a field, G be a finite group, KG the group ring of 
G over K and U(KG) its unit group. In [2], the author established necessary 
and sufficient conditions for U(KG) to contain no free subgroup of rank two. 
Now we will work in the reverse direction, studying when every subnormal 
subgroup of U(KG), not contained in the center, has a free subgroup of rank 
two. 

As a corollary, we can give a partial answer to a question posed by Polcino 
Milies, [7], (2.18): when is G subnormal in U(KG)1 This is the content of 
Section 2. 

In Section 3, motivated by a paper of Musson and Weiss [6], we study the 
residual nilpotence of U(KG) and show that when G is finite this coincides 
with the nilpotence of U(KG). In the infinite case this is no longer true. 

We are indebted to Arnaldo Mandel and Fernando Quadros for many useful 
conversations. 

2. Free groups in subnormal subgroups of the multiplicative group of 
division rings 

THEOREM 2.1. Let Dbe a division ring, finite dimensional over its center Z, and 
let H be a subnormal subgroup of D* = D — {0}, not contained in Z*. Then H 
contains a free subgroup of rank two. 
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Proof. Suppose not. Then by [12], Theorems 1 and 2 H contains a normal 
solvable subgroup L such that H/L is locally finite. Hence by [10], Theorem 
1 4 . 4 . 4 L ç Z * . 

Now, let N be the norm on D to Z and H' be the commutator subgroup of 
H. Since every element x of H' is a product of commutators h^hï^h^1, 
hl7h2^H and, for some m xm = A e Z * , it follows that N(x) = l and 1 = 
N(xm) = N(x) = N(À) = Àr, where r = dimz D. Therefore H' is a torsion subnor
mal subgroup of D*. By [4], Theorem 8 H'^Z*. Hence H is a solvable 
subnormal subgroup of D* and by [10], Theorem 14.4.4 again, H ç Z * , a 
contradiction. 

The theorem above was motivated by the conjecture that the multiplicative 
group of a division ring contains a free subgroup of rank two [5]. 

In support to that conjecture we prove: 

PROPOSITION 2.2. Let D be a division ring containing a noncentral torsion 
element a. Then D* contains a free subgroup of rank two. 

Proof. Let n be the order of (a), the cyclic group generated by a. Since 
p(X) = irrat(a, Z) divides Xn -1, every root of p(X) is a power of a. Let 

4> :Z(a) —* Z(a) 

4>(a) = ar 

be a nonidentity automorphism of Z(a). By the Noether-Skolem theorem 
there is a b eD such that b~xab = ar. 

Since a •-> b~1ab is an automorphism of (a), (r, n), the greatest common 
divisor of r and n, is equal to 1. Hence there exists a positive integer m such 
that rm = 1 (mod M) and that bma = afrm. 

Let A={L, J ai J a i & J GD|a i j GZ(b m )} . Then A is a Z(frm)-algebra finitely 
generated over Z(bm). By Wedderburn's Theorem, A is a division ring finite 
dimensional over its center. By Theorem 2.1 U(A) contains a free subgroup of 
rank two. 

Let now D be a division ring or a field. We will denote by GLn(D) the 
general linear group, by SLn(D) the n x n special linear group and by GF(p), 
for a rational prime p, the Galois field with p-elements. 

LEMMA 2.3. Suppose that D is different from GF(2) and GF(3) and let N be a 
noncentral subnormal subgroup of GLn(D). Then SLn(D)^N 

Proof. By [11], Theorems II 10.1 and II 10.2, every noncentral subgroup of 
GLn(D) normalized by SLn(D) contains SLn(D). Now apply induction on the 
length of the subnormal series. 

THEOREM 2.4. Let K be a field of characteristic 0 and G be a nonabelian finite 
group. Then every noncentral subnormal subgroup of U(KG) contains a free 
subgroup of rank two. 
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Proof. By Wedderburn's Theorem KG = © ^ M ^ A ) , the direct sum of 
full matrix rings over division rings, each one finite dimensional over its center. 
Let 7Ti, l < i < r , denote the projection of the direct sum onto the tth compo
nent. If N is a noncentral subnormal subgroup of U(KG), for some m, 1 < m < 
r, Trm(N) is a noncentral subnormal subgroup of GL^D^. If nm = 1, by 
Theorem 2.1 7rm(N) contains a free subgroup of rank two. If n m > l , by 
Lemma 2.3 irm(N) contains SL^D^. Now 

which can be obviously embedded in SL^D^, generate a free subgroup of 
rank two, as is well known. 

COROLLARY 2.5. Let K be a field of characteristic O and G be a finite 
nonabelian group. Then G is not subnormal in U(KG). 

THEOREM 2.5. Let Kbe a field of characteristic p > 0 , G be a finite group and 
Op the maximal normal p-subgroup of G. Suppose, moreover, that: 

(i) K is not algebraic over GF(p) and 
(ii) G/Op is nonabelian. 

Then a subnormal subgroup of U(KG) is either solvable or contains a free 
subgroup of rank two. 

Proof. Let J(KG) be the Jacobson radical of KG. Since J(KG) is a nilpotent 
ideal it follows that N = 1 + J(KG) is a nilpotent normal subgroup of U(KG) 
and the restriction of the canonical epimorphism 

V:KG^KGU(KG) 

to U(KG) is a group epimorphism 

¥ : U(KG) -> U((KG)/J(KG)) 

whose kernel is N. 
We observe initially that the semisimple algebra KG/J(KG) is noncommuta-

tive, since we have the embedding G/Op ^ U ((KG) IJ (KG)). 
Next we note that a nonsolvable subnormal subgroup H of U(KG) has a 

noncentral subnormal image in U (KG/J (KG)). 
Suppose that ^(H) is central. In particular ^(H) is abelian and therefore H' 

is contained in N. Hence HN/N is abelian and since HN/N = H/HDN it 
follows that H is solvable, a contradiction. 

Finally, let A be an element of K transcendental over GF(p). By [12], 
Proposition 3.12, some power of the matrices 

fA 0 "I J J A 0 1 . , n Tl + A A 1 
. and Pi AP~\ where P=\ 

LO A _ 1J LO A _ 1J L - A 1 - A J ' 
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belonging to SL2(K) freely generate a free subgroup. Now arguing as in the 
proof of Theorem 2.4 we get our conclusion. 

COROLLARY 2.6. Let K be a field of characteristic p > 0 , not algebraic over 

GF(p) and G be a nonsolvable finite group. Then G is not subnormal in U(KG). 

3. The residual nilpotency of the group of units 

LEMMA 3.1. Let D be a field or a division ring. Then GLn(D), n>2, is not 
residually nilpotent. 

Proof. If n = 2 and D = GF{2) or GF(3) the result is immediate. The 
remaining case follows from Lemma 2.3. 

Let H be the quaternion algebra over the rational field Q, i.e., 

H = {x1 + x2i + x3j4-x4k | i2 = j2 = - 1 , ji = ~ij = - k , xt e Q, 1 < i <4} 

and let us denote by H* its multiplicative group. 

LEMMA 3.2. H* is not residually nilpotent. 

Proof. It is enough to observe that H* contains 

Ê24 = [ ± 1 , ±i, ±7, ±k9 Y~ J 

the binary tetrahedral group with 24 elements which is not nilpotent. 

THEOREM 3.3. Let K be a field of characteristic p and G be a finite group 
without p-elements (if p > 0 ) . Then U(KG) is residually nilpotent if and only if 
U(KG) is nilpotent. 

Proof. Only the necessity deserves a proof. 
We will consider two cases: 
(i) p = 0. We can suppose that Q^K and, by Wedderburn's Theorem 

OG-0MJA) 
i = i 

the direct sum of full matrix rings over division rings. Therefore 

U(QG) = l\GLni(Di) 
i = i 

and by Lemma 3.1 nt = 1 for 1 < i < r and 

QG=é> A 
i = l 

This implies that every idempotent of QG is central and by [8], 2.6, G is a 
Hamiltonian group. 
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As is well known, G = Ax Ex K8, the direct product of an abelian group A 
of odd order by a 2-elementary abelian group E by the quaternion group K8 of 
order 8. 

Since QK8= Q 0 Q 0 Q 0 Q 0 1 H 1 we conclude that H* is residually nilpotent, 
contradicting Lemma 3.2. 

(ii) p > 0 . We can argue as in (i) above and conclude that G is a Hamiltonian 
group. Since G has no p-elements it follows that p ^ 2 . 

Let HK = {%! + x2i + x3j + x4k \ i2 = j2 = —1, ji — — ij = —k, xteK, 1 < i < 4} be 
the quaternion algebra over K. As HK contains the nonabelian finite group 
(i,j), HK is not a division algebra. Hence 

MK=M2(K) 

and U(KG)^GL2(K), in contradiction with Lemma 3.1. 

COROLLARY 3.4. Let K be a field of characteristic p > 0 and G be a finite 
group. Then U(KG) is residually nilpotent if and only if U(KG) is nilpotent. 

Proof. Suppose U(KG) residually nilpotent. 
Since G is finite G is nilpotent and therefore the direct product of its 

q-Sylow subgroups Sq(G) 

G = Sp(G)xl\SQ(G) 

From Theorem 3.3 we conclude that Y\Q^PSQ(G) is abelian, and by [1] that 
U(KG) is nilpotent. 

THEOREM 3.5. Let K be a field of characteristic p, let G be a nontorsion 
nilpotent group and let T be its torsion subgroup. Suppose that T has no 
p-elements (if p > 0 ) and that every element of T has prime order. Then U(KG) 
is residually nilpotent if and only if T is central. 

Proof. If T is central in G by [9], Theorem VI 3.6, U(KG) is nilpotent. 
Now, let us suppose U(KG) residually nilpotent. 
Let a,beT Since (a, b) is a finite group, by Theorem 3.3 (a, b) is abelian. 
We claim, first, that every finite subgroup of T is normal in G. Suppose not. 

Then there exist a finite subgroup H of T and an element xeG which does not 
normalize T. Now, arguing as in [3], Lemma 4, we conclude that U(KG) 
contains GL2(K), contradicting Lemma 3.1. 

But this implies that every idempotent of KT is central in KG. Since this is 
not the case, by [9], Lemma VI 3.12, U(KG) contains GLm(K) for some m > 1 
a contradiction. 

Suppose now that T is not central. We may assume that G = (T, x), |T|<°° 
and x, |(x)| = oo, does not centralize T. 
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By Wedderburn's Theorem 

r 

KT= © Fh a direct sum of fields. 
i = i 

Hence 

KG = (KTUx) = ( é Pi) <x> = é (FXOc), 
M = l / o - i = l 

where a —> cr(a) = xax~x is the automorphism of Ft induced by conjugation by 
x and (Fi)cr(x) denotes the skew group ring of (x) over Fi9 with automorphism 
<x. 

Hence, we can assume that U(KG) contains the nonabelian subgroup 
H — (6, x | 6P = 1, x0x -1 = 0J), where p is a rational prime greater than 2 and 

(P,J) = 1. 
Finally, we claim that H is not residually nilpotent. 
In fact, by [6], Lemma 4.1, a residually nilpotent finitely generated FC group 

is nilpotent. 
Let m be the order of / in GF(p)*. We have that Z(H), the center of H, is 

<xm) and that H/Z(H) = (6,x\6v = xm = 1, xOx'1 = 6j) is nilpotent, a contradic
tion. 
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