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Abstract

In this article we consider modified search directions in the endgame of interior point
methods for linear programming. In this stage, the normal equations determining the search
directions become ill-conditioned. The modified search directions are computed by solving
perturbed systems in which the systems may be solved efficiently by the preconditioned
conjugate gradient solver. A variation of Cholesky factorization is presented for computing
a better preconditioner when the normal equations are ill-conditioned. These ideas have
been implemented successfully and the numerical results show that the algorithms enhance
the performance of the preconditioned conjugate gradients-based interior point methods.

1. Introduction

The development of interior point methods has led to many successful implementations
that may efficiently solve linear-programming problems

min cTx

s.t. Ax = b, (1)

x > 0,

where c and x are real n-vectors, b is a real w-vector, and A e Rmx" is a real
matrix of rank m with m < n. These methods eliminate the inequalities in (1) by
applying a logarithmic barrier function with a barrier parameter [i and then forming
the Lagrangian of the barrier subproblem. A sequence of Lagrangians corresponding
to a sequence of barrier parameters [Hk], with iik decreasing to zero, are solved for
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iterates converging to the optimal solution to the linear-programming problem. The
first order optimality conditions of the Lagrangian are

c-A
Ty-z=0, (2)

Ax - b = 0.

The vector z here is a dual slack variable, y contains Lagrangian multipliers, and e is
a vector with all 1 's. The diagonal matrices X and Z contain x and z in their main
diagonals respectively.

Newton's method is used to solve the nonlinear system (2) and the search direction
is then determined by solving the KKT (Karush-Kuhn-Tucker) system

(3)
Ax-b )

Equivalently, we may first solve the normal equations

e) + rp, (4)

where rp = b — Ax, rd = c — A1y — z and 0 = Z'lX, and then compute

Ax = ®(ATAy-rd-Ze + nX~le) (5)

and

Az = rd-A
TAy. (6)

Either direct methods or iterative methods may be used to solve the systems to
determine the search directions. The computation of the search directions is the
bulk of the computational effort for interior point methods, and thus accelerating this
computation is a key problem.

In this article, we focus on solving the normal equations by the preconditioned con-
jugate gradient method for determining the search directions. Good preconditioners
are necessary to make it competitive, but they are difficult to find: the requirements
of accuracy for beginning and later stages are greatly different, the matrix 0 may
change wildly, and 0 becomes very ill-conditioned when iterates become close to an
optimum. To overcome these difficulties, Wang and O'Leary [17] recently proposed
an algorithm that adaptively chooses either a direct method, or preconditioned con-
jugate gradients. They also discussed adaptive preconditioning strategies that either
recompute a Cholesky factorization A<9AT = LPLT, where L is an m x m unit lower
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triangular matrix and P is diagonal, or apply a rank-1 updates. That is, the current
preconditioner is computed as

LPLT + Y^ A0,,a,a,r,
a largest |A©,,|

where A 0 is the difference between the current 0 and the previous 0 satisfying
A®AT = LPLT, and a, is the i-th column of A. The adaptive algorithm switches to a
direct method whenever P contains a zero element in its main diagonal. This situation
is due to ill-conditioning in 0 and may be found in the endgame of many linear-
programming problems. Consequently, though the computational results reported in
[17] are promising, there is room for improvement.

We improve the algorithm in [17] by considering modified search directions in the
endgame. When the iterates are close to optimal solutions, we perturb small entries
in the slack variables z in the left-hand side of (3), so that preconditioned conjugate
gradients converge rapidly.

We survey some other related works. Many papers, for example [7,10,18], address
theoretical and implementation aspects of interior point methods. Direct methods
relying on sparse Cholesky factorization were used by Lustig, Marsten, and Shanno
(OB1-R) [10], Czyzyk, Mehrotra, and Wright (PCx) [2], Zhang (LIPSOL) [19],
and other researchers, to solve the normal equations. Iterative methods, in contrast,
were also considered, since iterative methods may take advantage of the fact that
approximate solutions are allowed in the early stage of an interior point method. See,
for example, Freund and Jarre [4], Portugal, Resende, Veiga, and Jiidice [13], and
Mehrotra and Wang [11]. Mizuno and Jarre [12] proposed, and further analyzed,
an infeasible interior point algorithm using inexact solutions of the reduced KKT
system as search directions. On the other hand, many recent studies concentrate on
the stability of highly ill-conditioned systems which may be found in the endgame
of interior point methods. Hough and Vavasis [8] consider weighted least-squares
problems with a highly ill-conditioned weight matrix. They propose a complete
orthogonal decomposition algorithm which is stable in the sense that its forward error
bound is independent of the matrix 0 . In [3], Forsgren, Gill, and Shinnerl present a
perturbation analysis of a class of symmetric diagonally ill-conditioned systems and
give a rounding-error analysis for symmetric indefinite matrix factorization.

In the next section, we discuss ideas for perturbing the normal equations to obtain
modified search directions, and then propose an algorithm based on the ideas. The
modification is closely akin to that proposed by Karmarkar [9] in order to reduce the
complexity of his interior point method to O(n25) by updating a matrix rather than
recomputing it. The differences in formulation are that his was a primal algorithm,
while ours is primal-dual; our choice of parameters is somewhat different, and we solve
the linear systems iteratively, taking advantage of the fact that the modified systems
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are much easier to solve than the original ones. Section 3 discusses implementation
issues for finding the modified search directions. Numerical results are presented in
Section 4.

We introduce the following notation to be used throughout the article. Let e be the
vector in which all elements are 1 's, and let e, be the vector with all O's except that the
i-th component is equal to 1. Let K denote the matrix A@AT. If C is a square matrix,
diag (C) is the vector formed from the main diagonal of C; if v is a vector, diag (v) is
a diagonal matrix with the elements of v on the main diagonal.

The variables xj, y, and zj denote the 7-th vector in the sequence [XJ], {yj} and
{Zj}, respectively. The Greek variable Xi denotes the i-th component of the vector
xj, where the index of* will be clear from the context, that is, Xj = (xi, • • • , Xn)T •
Similarly, we let y> = ( r? , , - - - , r?m) randz; = (£i,--- , £n)rfor;y; e Kmandz; e W.

The solution of (2) for a fixed /x is denoted as x*(/x), y*{ix) and z*(/z). Capital
letters X, Y and Z denote diagonal matrices containing vectors x, y and z on the main
diagonals respectively. Let SY = {y e Km | \\y\\ < AY] and Sz = {z e R" | 0 <
Qz? < z < Aze], where AY, f2z, A z are positive numbers.

2. Modified search directions for the endgame

We consider the course of the algorithm in the endgame, where iterates x, y, and
z are close to the solution of (2). The strict complementarity implies that, for each i,
either Xi o r £. is close to zero in the relative interior of a non-singleton solution set
(see, for example, [19]). The resulting diagonal matrix 0 , in which the j-th diagonal
entry is ©,-,• — Xi/Kt, consequently contains some very small positive entries and
some irregularly distributed large entries corresponding to small f;'s. Moreover, these
wildly changing entries may cause troubles for the preconditioned conjugate gradient
solver using the updated preconditioner. The observation, however, that

suggests that only large diagonal elements in 0 are significant. We further observe
that a slight perturbation in the small £,'s may result in a significant change in the
corresponding large 0,, 's. The following question is then raised: is it possible
to slightly perturb those small £,'s, such that the preconditioned conjugate gradient
method may benefit? In other words, we hope to find a modified search direction
by solving perturbed normal equations where the new system can be easily solved
by preconditioned conjugate gradients. At the same time, the outer iterations of the
interior point method can still converge and the performance will not be degraded.

The answer to the question is positive and we propose a method to achieve this
goal. Let 0 be a previous diagonal matrix for which we have a preconditioner
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C@ = LPLT = A®AT. We may partition the diagonal entries of 0 as [0B, 0 s ] ,
where 0 B and 0 s contain the big and small entries in 0 respectively. The matrix 0 is
then partitioned compatibly as [0B, 0 5 ] . The main idea is that we slightly perturb the
small £'s so that the resulting perturbed matrix 0 B = /c0B. Rather than perturb all
the 0 B entries, however, we may wish to perturb only 0B l , the part of 0 B containing
really small £ 's and fairly large x's. Therefore, the corresponding perturbation sizes
remain small. Let

0B = [0 B \0 B 2 ] . (7)

We may choose £, e K, V / € By, such that

li = Ki+e,, where £• > 0 (8)

and

( B ) ^ ^ ^ ( B ) . (9)( 0 ) . .
V ' " Si Si+e,

The perturbed system is then

AQAT = J2 ©JW + E *>"? + E *><"?
= K(LPLT) + Y, *®?fa-a! + J2 A&fia-a!'

where A0B2 = 0B2 - K@?,2. Using LPLT as a preconditioner of (10),

(LPLTyl(A@AT) = KI + (LPLTy

If we perturb most of the small t, 's, the second term in (11) will be a small rank matrix
and the third term has small rank or norm. Consequently, the preconditioned conjugate
gradient method will converge rapidly. For further improving the performance of the
preconditioned conjugate gradients, we may apply rank-1 updates on some largest

Xj

-I
0

Zj

0
A

0
AT

0

The discussion above leads to a theoretical algorithm that solves a sequence of
perturbed 3 x 3 block KKT systems. The j -th in the sequence is

(12)

The system (12) contains the perturbed matrix Zj and this is the only difference
between (3) and (12). In [15], we describe the theoretical algorithm and prove its
global convergence. By assuming primal feasibility, (that is, the starting point satisfies
Ax — b), we further establish the superiinear convergence rate of the iteration in the
inner loop of the algorithm [15].
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3. Implementation

We now discuss a practical way to implement the idea of using a perturbed sys-
tem for determining a modified search direction. We consider the perturbed normal
equations

(A@AT)Ay =A@(rd + Ze-nX-1e) + rp. (13)

The search directions are

Ax = e(ATAy-rd-Ze + /xX-le) (14)

and

Az = rd-A
TAy. (15)

We now focus on how we modify the current diagonal matrix 0 . Suppose that
we have a Cholesky factorization of A&AT = LPLT. Recall that our goal is to
determine the index set B\ and the proportionality factor K such that the corresponding
0B> =K@B>. See (7) for the definition of 0B l . After the modified matrix © has been
determined, we update the preconditioner using 0 and then use the preconditioned
conjugate gradient method to solve the normal equations involving A©AT.

We first set the index set Bt containing all the large entries of the current 0 . We
then find the ratios of 0,, to 0,,, for every i e B\. The mean and the variance of
those ratios are computed and K is assigned as the mean value. If the variance value
is small, we calculate 0,, = K@ih for / e B\. Otherwise, we take out the indices
corresponding to some largest and smallest ratios from Bi to form a new fit. The
mean value of the ratios corresponding to the new Bx is re-computed to obtain a new
K and then the current 0 is perturbed using the new K.

The ideas discussed above are implemented by modifying OBl-R, which considers
linear-programming problems with simple upper bounds

(16)

where u € K" contains upper bounds for the entries of x and some of them may be
infinite. Since the problem considered by OBl-R is slightly different from our model

min

s.t.

cTx

Ax

X +

X >

s >

= b,

s = u,

0,

0,
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problem (1), we elaborate the corresponding equations for clarity. The Newton search
directions may be determined by solving the equations

Ay = (AeAT)-l(A&W(iM) + rd) + (b - Ax)), (17)

&x=@(ATAy-W(fj,) + rd)), (18)

Aw = nS~le- We-S~lWAs, (19)

Az = ixX-le-Ze-X~lZAx, (20)

As = x + s — u — Ax, (21)

where f(ix) = n(S~l + X~l)e - (W - Z)e and 0" ' = (S~l W + X~lZ)._
The modified search directions, perturbing the diagonal matrix Z to Z, may be

written as

Ay = (AeATyl(A@W(n) + rd) + (b - Ax)), (22)

Ax = S(ATAy - ($(n) + rd)), (23)

Aw = nS~1e- We-S~lWAs, (24)

Al = fiX-le-Ze-X~lZAx, (25)

As = x + s — u — Ax, (26)

where @~' = (S~lW + X~lZ) and Aw and As are the same as (19) and (21),
respectively. All the discussion may be easily extended to the problems (16). However,
it is worth mentioning that the perturbed matrix Z is needed for determining Az and
may be computed by solving

after @ has been determined.
We now present computational results of some test problems to show the modified

search direction may improve performance in the endgame. In other words, in the
endgame, we determine the perturbed matrix 0 and then solve (22) to (26) to find the
search directions. Table 1 illustrates the performance of the preconditioned conjugate
gradient solver in the last /x values. The original and the perturbed normal equations
are solved for the problems p i l o t and p i l o t 8 7 from the NETLIB collection [5].
The number of preconditioned conjugate gradient iterations and the time for forming
and solving the normal equations (in seconds) are compared for both approaches. The
preconditioned conjugate gradient solvers use the same stopping criterion. Complete
Cholesky factorization is performed to determine the preconditioners at the 73rd and
77th iterations in p i l o t and at the 75th, 79th and 83rd iterations in p i l o t 8 7 . All
other iterations use updated preconditioners. From the table, we observe that, by
perturbing the normal equations, we may improve both the preconditioned conjugate
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TABLE 1. Solving the normal equations with and without perturbing

Prtrb.
Yes PCG

Time
No PCG

Time

Prtrb.
Yes

No

iter.

PCG iter.
Time (s)

PCG iter.
Time (s)

75 76
1 32

(s) 22.50 8.51
iter. 1 37
(s) 22.51 9.68

Problen

73
3

6.86

3
6.71

Problem

77

50

l : pilot
Outer
74
26

iteration
75
38

3.34 4.71

31
3.81 5

: pilot87

45
i.38

76
40

4.96

57
6.73

Outer iteration
78
49

14.68 17.58 22.
72 100

79
1

50
1

20.34 35.00 22.61

80
22

6.04 (
35

77
3

6.89

3
6.75

81
25

5.28 8
43

9.23 10.80 13

82
33
.26
54
.36

83
1

22.50
1

22.54

gradient iteration numbers and timing. Furthermore, the number of outer iterations
remains the same for using OB1-R.

We combine these ideas in an algorithm to solve the (perturbed) normal equations
using preconditioned conjugate gradients. To factor an ill-conditioned matrix, we use
a variant of the standard Cholesky factorization. See Algorithm 1 in the Appendix for
details.

The preconditioned conjugate gradient solver is used through the whole interior
point method, except for the first fi, with one exception. If we factor the matrix
A@AT and preconditioned conjugate gradients converge in more than, for example,
50 iterations, even if the hybrid modified Cholesky factorization is used, we switch
to a direct method in the next /x iteration. This situation occurs in the case when
the matrix A@AT is too ill-conditioned to make the refactored Cholesky factors an
efficient preconditioner. This is an unusual occurrence: only one problem (df 1001)
met the criterion among all the problems we tested using all the default parameters;
but we include the criterion as a "safe guard" for efficiency.

If the ratio of the last barrier parameter to the current barrier parameter is large
near the endgame, we refactor the matrix A&AT to obtain the preconditioner for the
current iteration. Since the barrier parameter is proportional to the duality gap, a
large change in the two successive barrier parameters implies a large change in the
corresponding duality gaps. In this case, the iterates made a "big" improvement and
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TABLE 2. Statistics for the test problems from NETLIB

Problem

cre-b
cre-d
dflOOl
maros-r7

pds-06
pds-10
pilot

pilot87

80bau3b
d2qO6c
d6cube
degen3

fit2d
greenbea
greenbeb
ken-11

ken-13
maros
osa-07
osa-14

scfxm3
seba
ship 121
stoch3

truss
vtp.base
woodlp
woodw

LP
Rows

7240
6476
6071
3136

9881
16558
1441

2030

2237
2171
404
1503

25
2389
2389
14694

28632
845
1118
2337

990
515
1042
16675

1000
198
244
1098

size and nonzeros
Columns ]Nonzeros

Nonzeros

AAT

More costly problems
72447
69980
12230
9408

28655
48763
3652

256095
242646
35632
144848

62524
106436
43167

194579
181670
38098
330472

39061
66550
59540

Smaller cost problems
4883

9799
5167
6184
1818

10500
5405
5405
21349

42659
1443

23949
52460

1371
1028
5427
15695

8806
203
2594
8405

73152

21002
32417
37704
24646

129018
30877
30882
49058

97246
9614

143694
314760

7777
4352
16170
64875

27836
909

70215
37474

115951

9972
26991
13054
50178

296
33791
33766
33880

66586
11409
52466
113843

8749
51400
10673
103360

12561
1575
18046
20421

L

940374
853300
1634257
1195107

582158
1674872
193137

421194

40895
165676
54445
119403

299
81914
80503
118869

315642
24839
54783
116160

13520
53748
11137

206731

52509
2121
18082
47657

Density

AAT

.01

.01

.00

.07

.00

.00

.06

.06

.00

.01

.16

.04

.99

.01

.01

.00

.00

.03

.08

.04

.02

.39

.02

.00

.03

.08

.61

.03

L

.04

.04

.09

.24

.01

.01

.19

.20

.02

.07

.67

.11

1.00
.03
.03
.00

.00

.07

.09

.04

.03

.41

.02

.00

.11

.11

.61

.08
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TABLE 3. Computational results for the test problems from NETLIB

Problem

cre-b
cre-d
dflOOl
maros-r7

pds-06
pds-10
pilot
pilot87

80bau3b
d2q06c
d6cube
degen3

fit2d
greenbea
greenbeb
ken-11

ken-13
maros
osa-07
osa-14

scfxm3
seba
ship 121
stoch3

truss
vtp.base
woodlp
woodw

IPM
OB1-R

91
92
98
29

102
128
77
82

78
55
77
30

54
52
74
33

51
45
53
55

39
30
26
87

30
26
18
37

ite.
Adap2

91
92
98
29

102
128
77
83

78
55
77
30

54
52
74
33

51
45
53
55

39
30
26
87

30
26
18
37

Rel. dual gap
OB1-R Adap2 OB1-R

More costly problems
-.16e-07
-.69e-08
.27e-06
.31e-09

.48e-09

.19e-08

.71e-08

.94e-08

-.16e-07
-.56e-08
.27e-06
.31e-09

.44e-09

.29e-08

.61e-08

.16e-08

5020.10
3872.00

19844.37
1952.93

2817.62
19650.00

485.08
1948.82

Smaller cost problems
.44e-08
.25e-08
.67e-06
.16e-09

.21e-08
-.62e-04
.80e-09
.16e-09

.43e-08

.lle-08

.lle-05
-.81e-06

.21e-08

.15e-08

.53e-O8

.70e-09

.8Oe-O9

.33e-08

.35e-08

.27e-08

.44e-08

.46e-08

.85e-08

.16e-09

.21e-08
-.62e-04
.22e-09
.16e-09

.43e-08

.12e-08

.lle-05
-.81e-06

.21e-08

.18e-09
,53e-08
.70e-09

.80e-09

.38e-08

.35e-08

.27e-08

46.15
257.13
113.90
66.22

46.80
52.03
69.15
53.28

244.95
11.17
80.68

191.52

4.25
43.05

4.15
142.22

19.55
0.45

12.95
25.30

Time
Adap2

4954.07
3839.33

14436.65
1743.57

2742.75
14320.02

388.92
1430.97

47.15
245.23
110.80
75.12

49.03
53.78
71.20
68.50

277.92
11.62
91.08

225.02

4.63
35.79
5.22

159.12

21.23
0.58

18.23
27.05

Diff

66.03
32.67

5407.72
209.36

74.87
5329.98

96.16
517.85

-1.00
11.90
3.10

-9.90

-2.23
-1.75
-2.05

-15.22

-32.97
-0.45

-10.40
-33.50

-0.38
7.26

-1.07
-16.90

-1.68
-0.13
-5.28
-1.75
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TABLE 4. Results for the problems keeping artificial variables

Problem
cre-b
cre-d
pds-06
pds-10

IPM
OB1-R

102
103
117
131

ite.
Adap2

103
103
116
131

Rel. dual gap
OB1-R

-.99e-09
-.60e-08
.5Oe-O8
.69e-08

Adap2
.14e-08
.10e-08
.76e-08
.32e-08

OB1-R
5365.32
4415.48
3216.82

19978.53

Time
Adap2

4157.33
3511.63
2470.22

12965.85

Diff
1207.99
903.85
746.60

7012.68

thus the variables and the current resulting matrix 0 may change widely. The update
strategy is thus not suitable.

More algorithmic details are given in the Appendix.

4. Numerical results

We modify OB1-R, by Lustig, Marsten and Shanno [10] to implement our ideas.
In Section 4.1, we make comparisons with the computational results of OB1-R. In
Section 4.2 we further compare our algorithm with the adaptive algorithm reported in
[17] (Adapl).

All the algorithms are coded in FORTRAN using double precision arithmetic.
The codes are compiled on a SUN SPARCstation 20 containing 64 megabytes main
memory and running SunOS Release 4.1.3. Optimization level -03 is turned on for
compiling the programs. Numerical experiments are performed on the same platform.
The timings reported are CPU time in seconds. Since all three codes use the same
preprocessor HPREP, we omit the preprocessing time.

Test problems are chosen from the NETLIB problem collection [5], a standard
linear-programming test-problem set. Small problems have a relatively small cost for
forming and factoring the coefficient matrix in the normal equations, as mentioned
in [4] and [17], so we do not expect an interior point algorithm based on iterative
solvers to prevail over a direct solver based algorithm. We consequently run a few
small problems (maros, scfxm3, seba , s h i p l 2 1 , and v t p . b a s e ) from the
NETLIB collection, but concentrate on the larger problems, those containing more
than 25 000 nonzero entries in the coefficient matrix A. The problem f i 12 p, however,
is neglected since all three codes fail to solve the problem on our workstation in a
reasonable time, due to the problem containing a large dense matrix A@AT. Another
large problem set found in the NETLIB site is the "Kennington" problems used by
Carolan, Hill, Kennington, Niemi and Wichmann [1]. We also present the problems
from the set containing 25 000 to 370000 nonzero elements in the matrix A.

Table 2 shows the characteristics of the tested problems. The numbers of rows,
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TABLE 5. Computational results for Adapl and our algorithm Adap2

323

Problem

maros-r7
pilot87
cre-b

cre-d
pds-O6
pds-10

dflOOl
cre-b
cre-d

pds-O6
pds-10
NET0416

IPM
Adapl

29
82
91

92
102
128

98
102
103

116
131
53

ite.
Adap2

Rel. dual gap
Adapl Adap2 Adapl

Without artificial variables
29
83
91

92
102
128

.31e-09

.94e-08
-.16e-07

-.69e-08
.48e-09
.19e-08

.31e-09

.16e-08
-.16e-07

-.56e-08
.44e-09
.29e-08

1825.87
1626.55
4872.30

3761.92
2781.30

18718.57
Keeping artificial variables

98
103
103

116
131
53

.27e-06
-.10e-08
-.60e-08

.64e-08

.69e-08

.50e-09

.27e-06

.14e-08

.10e-08

.76e-08

.32e-08

.45e-09

16644.35
4472.75
3698.33

2554.35
13546.32
9265.85

Time
Adap2

1743.57
1430.97
4954.07

3839.33
2742.75

14320.02

14436.65
4157.33
3511.63

2470.22
12965.85
8281.15

Diff

82.30
195.58
-81.77

-77.41
38.55

4398.55

2207.70
315.42
186.70

84.13
580.47
984.70

columns, and nonzeros of coefficient matrix A are reported. The numbers are obtained
from output of the preprocessor HPREP and may not be identical to the data in [5].
Only the nonzero elements in the lower sub-diagonal part of AAT and L are counted
and tabulated. We calculate the density of the matrix AAT and L by computing the
ratio of the number of nonzeros to the number of the entries in the lower sub-diagonal
parts of the matrices.

4.1. Comparison with a direct solver based algorithm Numerical results of OB 1-
R and our Adap2 code on the NETLIB problems are shown in Table 3. The table
indicates the name of the problem and compares the number of /A values needed by
the interior point methods for both codes, final relative duality gaps and CPU time
in seconds used by both codes. The time differences between the two programs are
shown in the last column. Our Adap2 codes are faster for the problems with positive
time difference.

Both OB 1 -R and Adap2 take the same number of /i. numbers to achieve similar small
relative duality gaps, except on problems p i l o t 8 7 and g r e e n b e a . Adap2 takes
one additional IJ, value i n p i l o t 8 7 , achieves a slightly smaller relative duality gap,
and uses less time. In the problem g r e e n b e a , both algorithms stop unsuccessfully
since they fail to converge with small duality gaps. The problem, as mentioned in
[14], is difficult to solve by interior point methods. On the problem d6cube, our
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algorithm attains a duality gap two orders smaller and is a little quicker.
Performance of the two algorithms is similar for the problems taking about four

minutes or less. On the costly problems, like maros - r7 and p i l o t 8 7 , our al-
gorithm tends to outperform OB1-R. In the most expensive problems df 1001 and
pds -10 , our algorithm is significantly faster than OB1-R.

We keep the artificial variables, the slack variables of the equality constraints, to
prevent rank deficiency on df 1001. Without doing so, neither method terminates
successfully, since the matrix AQAT is very ill-conditioned. We further observe that
Adap2 may benefit from keeping the artificial variables. Keeping the artificial variables
ensures that the rows in A are independent, and thus may lead the matrix A@AT to
smaller condition number. Table 4 shows that Adap2 significantly outperforms OB 1 -R
on the costly problems if we keep all artificial variables to prevent rank deficiency.
Even if OBI-R eliminates the artificial variables and solves the smaller problems, the
cost of Adap2 keeping the artificial variables is still less than that of OBI-R.

4.2. Comparison with the adaptive algorithm We compare the numerical perfor-
mance of our algorithm (Adap2) with the adaptive algorithm (Adapl) of [17]. The
main differences between the two approaches are as follows.

• Adap2 uses modified search directions in the endgame; however, Adapl does
not.

• Adap2 uses the OB 1 -R Cholesky factorization first until the OB 1 -R Cholesky
factorization fails to generate a good preconditioner, in the sense that the
preconditioned conjugate gradient solver does not converge within 5 iterations
by using the refactored preconditioner. We then switch to the hybrid modified
Cholesky factorization. In contrast, Adapl uses only the OB1-R Cholesky
factorization.

• Adap2 allows zero in the diagonal Cholesky factor P while Adapl can not
handle the situation. Adap2 uses a portion of the modified Cholesky factor
by Gill and Murray [6] (see [16, Chap. 5] for details).

Table 5 compares Adapl and Adap2 in the costly problems that take Adapl more
than 1 500 seconds to solve. Both algorithms perform similarly for other cheaper
problems not listed. Adap2 outperforms in all the problems except the problems
c r e - b and c r e - d without artificial variables. These two problems are not suitable
for iterative solvers since the 0's are ill-conditioned and change wildly in the first ix,
values. Consequently, Adap2 detects two successive tx values at which the number of
preconditioned conjugate gradient iterations exceed the maximum number of iterations
allowed. We thus decide to use a direct method at the 9th and 14th \x value in the
problem c r e - b and c r e - d , respectively. In contrast, Adapl detects zero in the
diagonal Cholesky factor P in the second /x value and thus switches to a direct
method for the two problems.
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For the problems that switch to a direct method in the later phases in Adapl (for
example, df 1001 and pds-10) , Adap2 achieves significant saving.

5. Conclusion

We have presented an algorithm using the preconditioned conjugate gradient solver
through the whole process of interior point methods for linear programming problems.
If the algorithm recomputes the preconditioners in later phases, we adopt the hybrid
modified Cholesky factorization as an alternative to the Cholesky factorization used
by OBl-R. The hybrid modified Cholesky factorization generates a more efficient
preconditioner. We modify the preconditioned conjugate gradient solver and rank-1
update and downdate procedure to handle a zero component in the diagonal Cholesky
factor P.

In the endgame, we perturb the diagonal matrix © for determining modified search
directions. The resulting coefficient matrix A@AT is thus more closely related to
the preconditioner. We discuss the motivation of the modified search directions.
Numerical results show that the algorithms enhance the performance of OBl-R and
the adaptive algorithm in [17].
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Appendix

[15]

ALGORITHM 1. (A hybrid modified Cholesky factorization)

Initialize p i i - t i n y «- a positive tiny number,
do (i = 1 : m)

Determine Pu by the modified Cholesky factorization in [6].
if (/"« < p i i - t i n y )

Set Pu = 0.
Skip computation of the ith column of L.

else
Determine the ith column of L using Pu.

end if
end do

ALGORITHM 2. (Interior point algorithm with adaptive solver)

Initialize k <— 1; ix0 > 0; x0, y0, Zo > 0; UseDi rec t «— False,
while (not convergent)

if [(k > 1) and (UseDirec t = False)] then
Solve using PCG. (See Algorithm 3 for details.)
Determine the preconditioner.
Iterate the PCG method using Algorithm 3.

end if

if [(k = 1) or (UseDirec t = True)] then
Solve using direct solver.

Form the matrix A@AT.
Factor A@AT = LPLT.
Solve the normal equations using LPLT,

applying iterative refinement if necessary.
Compute d r c t - c o s t as the elapsed time of the direct solver.

end if

Update the primal and dual variables.
Compute xk+i

zk+\

•xk + apAx;yk+i
zk + ccdAz.

Choose fj.k+i < fj,k.

Set* <-k + l.
end while
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ALGORITHM 3. (The modified PCG solver)

Solve using PCG

Determine the preconditioner
updt_nmbr <— the number of rank-one updates to be performed.
pred_cos t <- predicted cost of iterative solution.
if [(prev_cost > 0.8x d r c t _ c o s t ) or(pred_cost > d r c t . c o s t ) or
(the ratio of /i*_i to /xk is large near endgame)] then

UseRefact <—True.
Form the matrix A@AT.
if [UseStdChol = True] then

Factor A@AT using the standard Cholesky algorithm.
else

Factor A&AT using the hybrid Cholesky algorithm (Algorithm 1).
end if

else
UseRefact -«— False.
Compute the modified diagonal matrix 0 .
Perform updt_nmbr rank-one updates based on A@AT.

end if

Iterate the PCG method
p c g . i t n <— 0.
until (convergent)

Execute a PCG iteration using the modified A®AT.
p c g . i t n «— ( p c g . i t n + 1).
if (pcg- i tn > max_pcg_itn) then

if (this happened for the previous /z) then (UseDirec t <— True).
UseRefact -«-True.
Factor (A@AT) to reinitialize the preconditioner.
Restart the PCG iteration,

end if
end until
if [(UseRefact = True) and (pcg_i tn > 5)] then

UseStdChol «- False,
else if [(UseRefact = True) and ( p c g . i t n > 50)] then

UseDi rec t <- True,
end if
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