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Convex Subordination Chains in
Several Complex Variables

Ian Graham, Hidetaka Hamada, Gabriela Kohr, and John A.
Pfaltzgraff

Abstract. In this paper we study the notion of a convex subordination chain in several complex vari-

ables. We obtain certain necessary and sufficient conditions for a mapping to be a convex subordina-

tion chain, and we give various examples of convex subordination chains on the Euclidean unit ball in

C
n. We also obtain a sufficient condition for injectivity of f (z/‖z‖, ‖z‖) on Bn \ {0}, where f (z, t) is

a convex subordination chain over (0, 1).

1 Introduction and Preliminaries

Let C
n denote the space of n complex variables z = (z1, . . . , zn) with the Euclidean

inner product 〈z, w〉 =
∑n

j=1 z jw j and the Euclidean norm ‖z‖ = 〈z, z〉1/2. The

open ball {z ∈ C
n : ‖z‖ < r} is denoted by Bn

r , and the unit ball Bn
1 is denoted by

Bn. The closed unit ball in C
n is denoted by B

n
, and the boundary of Bn is denoted by

∂Bn. In the case of one variable, B1 is denoted by U .

Let L(C
n, C

m) denote the space of linear operators from C
n into C

m with the stan-

dard operator norm, and let In be the identity in L(C
n, C

n). If Ω is a domain in C
n,

let H(Ω) be the set of holomorphic mappings from Ω into C
n. If f ∈ H(Bn), we say

that f is normalized if f (0) = 0 and D f (0) = In. If f ∈ H(Bn) is normalized, then f

has the Taylor series expansion

f (z) = z +

∞∑

k=2

Ak(zk), z ∈ Bn,

where Ak =
1
k!

Dk f (0) is the k-th Fréchet derivative of f at z = 0.

Let S(Bn) be the set of normalized biholomorphic mappings on Bn. In the case of

one complex variable, the set S(B1) is denoted by S. Also let K(Bn) be the subset of

S(Bn) consisting of convex mappings on Bn. In the case of one complex variable, the

set K(B1) is denoted by K .

If f ∈ H(Bn), we say that f is locally biholomorphic on Bn if J f (z) 6= 0, z ∈ Bn,

where J f (z) = det D f (z) and D f (z) is the derivative of f at z.
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If f , g ∈ H(Bn), we say that f is subordinate to g ( f ≺ g) if there exists a Schwarz

mapping v (i.e., v ∈ H(Bn) and ‖v(z)‖ ≤ ‖z‖, z ∈ Bn) such that f = g ◦ v.

A mapping f : Bn × [0,∞) → C
n is called a Loewner chain if f ( · , t) is biholo-

morphic on Bn, f (0, t) = 0, D f (0, t) = et In for t ≥ 0, and f ( · , s) ≺ f ( · , t),

0 ≤ s ≤ t < ∞.

The subordination condition is equivalent to the existence of a unique Schwarz

mapping v = v(z, s, t), called the transition mapping of f (z, t), such that

f (z, s) = f (v(z, s, t), t), z ∈ Bn, t ≥ s ≥ 0.

In [19] and [4] the authors obtained the following sufficient condition for a map-

ping to be a Loewner chain (see also [7, Theorem 8.1.6]; cf. [22]).

Lemma 1.1 Let h = h(z, t) : Bn × [0,∞) → C
n satisfy the following conditions:

(i) h( · , t) is a normalized holomorphic mapping on Bn and Re 〈h(z, t), z〉 ≥ 0 for

z ∈ Bn, t ≥ 0.

(ii) h(z, · ) is measurable on [0,∞) for z ∈ Bn.

Let f = f (z, t) : Bn×[0,∞) → C
n be a mapping such that f ( · , t) ∈ H(Bn), f (0, t) =

0, D f (0, t) = et In for t ≥ 0, and f (z, · ) is locally absolutely continuous on [0,∞)

locally uniformly with respect to z ∈ Bn. Assume that

∂ f

∂t
(z, t) = D f (z, t)h(z, t) a.e. t ≥ 0, ∀z ∈ Bn.

Further, assume that there exists an increasing sequence {tm}m∈N such that tm > 0,

tm → ∞, and

lim
m→∞

e−tm f (z, tm) = F(z)

locally uniformly on Bn. Then f (z, t) is a Loewner chain.

In this paper we study the notion of a convex subordination chain in several com-

plex variables. We obtain certain necessary and sufficient conditions for a mapping

to be a convex subordination chain and we give some examples of convex subordina-

tion chains on the Euclidean unit ball in C
n. Other results related to convex mappings

can be found in [2].

2 Convex Subordination Chains

We begin this section with the following subordination result, which provides a nec-

essary and sufficient condition for a mapping to be subordinate to a convex mapping.

In the case of one complex variable, see [25]. If g ≡ f , then the condition (2.1) re-

duces to the analytical characterization of convexity due to Suffridge (see [26, 27]).

Theorem 2.1 Let f : Bn → C
n be a convex mapping and g ∈ H(Bn) be such that

g(0) = f (0). Then g ≺ f if and only if

(2.1) Re 〈[D f (z)]−1( f (z) − g(u)), z〉 > 0, ‖u‖ < ‖z‖ < 1.
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Proof First assume that g ≺ f . Then there exists a Schwarz mapping ω = ω(z)

such that g(z) = f (ω(z)) for z ∈ Bn. Let z, u ∈ Bn be such that ‖u‖ < ‖z‖. Using

Suffridge’s characterization of convexity (see [26], [27]), we have

Re 〈[D f (z)]−1( f (z) − f (w)), z〉 > 0, ‖w‖ < ‖z‖ < 1,

and hence

Re 〈[D f (z)]−1( f (z) − g(u)), z〉 = Re 〈[D f (z)]−1( f (z) − f (ω(u))), z〉 > 0,

since ‖ω(u)‖ ≤ ‖u‖ < ‖z‖ < 1. Therefore the condition (2.1) holds.

We next assume that the condition (2.1) holds and prove that g ≺ f . Without loss

of generality, we may assume that f (0) = 0. Suppose g 6≺ f . Then g(Bn) 6⊆ f (Bn).

Since there exists some r ∈ (0, 1) such that g(Bn
r ) 6⊆ f (Bn

r ), there exists a point z0 ∈ Bn
r

such that g(z0) /∈ f (Bn
r ). Since g(0) = f (0) ∈ f (Bn

r ), there exists t0 ∈ (0, 1] such

that g(t0z0) ∈ f (∂Bn
r ). Hence there exists a point z1 ∈ ∂Bn

r such that g(t0z0) = f (z1).

Next, taking into account this equality and the relation (2.1), we obtain for z = z1

and u = t0z0 that

0 < Re 〈[D f (z1)]−1( f (z1) − g(t0z0)), z1〉

= Re 〈[D f (z1)]−1( f (z1) − f (z1)), z1〉 = 0.

This is a contradiction. Hence we must have g ≺ f , as desired. This completes the

proof.

We next introduce the notion of a convex subordination chain. In the case of one

complex variable, see [25].

Definition 2.2 Let J be an interval in R. A mapping f = f (z, t) : Bn × J → C
n is

called a convex subordination chain (c.s.c.) over J if the following conditions hold:

(i) f (0, t) = 0 and f ( · , t) is convex (biholomorphic) for t ∈ J.

(ii) f ( · , t1) ≺ f ( · , t2) for t1, t2 ∈ J, t1 ≤ t2.

We do not assume continuity in t , although this is needed in Theorem 2.9.

Example 2.3 If f ∈ K(Bn) and f (z, t) = et f (z) for z ∈ Bn and t ≥ 0, then f (z, t) =

et f (z) is a c.s.c. over [0,∞). For example, the mapping f (z, t) = et z/(1 − z1) is a

c.s.c. over [0,∞). Similarly, if Q : C
n−1 → C is a homogeneous polynomial of degree

2 such that ‖Q‖ ≤ 1/2 and e1 = (1, 0, . . . , 0) ∈ ∂Bn, then F : Bn → C
n given by

F(z) =
z

1 − z1
+ Q

( z̃

1 − z1

)
e1, z = (z1, z̃) ∈ Bn,

is convex by a result of Muir and Suffridge (see [17, 18]). Hence, if F(z, t) = et F(z),

then F(z, t) is a c.s.c. over [0,∞).
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Remark 2.4. If f j(z j, t) is a c.s.c. on U over an interval J ⊆ R for j = 1, . . . , n, then

f (z, t) = ( f1(z1, t), . . . , fn(zn, t)), z = (z1, . . . , zn) ∈ Bn, t ∈ J,

need not be a c.s.c. on Bn over J for n ≥ 2. Indeed, if f j(z j, t) = et z j/(1 − z j) for

|z j| < 1, t ≥ 0 and j = 1, . . . , n, then f j(z j , t) is a c.s.c. over [0,∞). Moreover,

f (z, t) =

( et z1

1 − z1
, . . . ,

et zn

1 − zn

)
, z = (z1, . . . , zn) ∈ Bn, t ≥ 0,

is a Loewner chain, but is not a c.s.c. over [0,∞) for n ≥ 2. Indeed, the mapping

g(z) =

( z1

1 − z1
, . . . ,

zn

1 − zn

)
, z = (z1, . . . , zn) ∈ Bn,

is not convex in dimension n ≥ 2 (see [23, 24]).

On the other hand, if f j(z j, t) is a Loewner chain, which satisfies condition (2.2),

then we obtain the following.

Example 2.5 Let f j(z j, t) be a Loewner chain such that

(2.2)
∣∣∣

z j f ′ ′
j (z j, t)

f ′
j (z j, t)

∣∣∣ ≤ 1, |z j | < 1, t ≥ 0, j = 1, . . . , n.

Also let

f (z, t) = ( f1(z1, t), . . . , fn(zn, t)), z = (z1, . . . , zn) ∈ Bn, t ≥ 0.

Then f (z, t) is a c.s.c. over [0,∞).

Proof In view of [9, Theorem 3.4] (see also [16, Theorem 4.1]), we deduce that

f ( · , t) is a convex mapping for t ≥ 0. On the other hand, since f j(z j , t) is a Loewner

chain, it is easily seen that f (z, t) is a Loewner chain too.

The next result gives a necessary and sufficient condition for a mapping to be a

c.s.c. over an interval J ⊆ R.

Corollary 2.6 Let f = f (z, t) : Bn× J → C
n be a mapping such that f ( · , t) is locally

biholomorphic on Bn and f (0, t) = 0 for t ∈ J. Then f (z, t) is a c.s.c. if and only if

(2.3) Re 〈[D f (z, t2)]−1( f (z, t2) − f (u, t1)), z〉 > 0

for ‖u‖ < ‖z‖ < 1 and t1, t2 ∈ J with t1 ≤ t2.

Proof It suffices to apply Theorem 2.1. Indeed, if f (z, t) is a c.s.c., then f ( · , t) is a

convex mapping for t ∈ J and f ( · , t1) ≺ f ( · , t2) for t1, t2 ∈ J, t1 ≤ t2. Then the

condition (2.3) follows in view of (2.1).

Conversely, if the condition (2.3) holds, then

Re 〈[D f (z, t)]−1( f (z, t) − f (u, t)), z〉 > 0

for all z, u ∈ Bn with ‖u‖ < ‖z‖ and t ∈ J. Hence f ( · , t) is convex for t ∈ J

by [26]. Finally, it suffices to apply Theorem 2.1 to conclude that f ( · , t1) ≺ f ( · , t2)

for t1, t2 ∈ J, t1 ≤ t2, as desired.
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The basic separation theorem in convexity theory gives the following criterion for

a mapping to be a c.s.c. over an interval J ⊆ R. For the proof of Theorem 2.7, we use

an argument similar to that in the proof of Theorem 2.8.

Theorem 2.7 Let f = f (z, t) : B
n
× J → C

n be a mapping such that f ( · , t) is
continuous on B

n
, f ( · , t) is convex on Bn and f (0, t) = 0 for t ∈ J. Then f (z, t) is a

convex subordination chain over J if and only if

(2.4)

sup
‖z‖≤1

Re 〈 f (z, t1), w〉 ≤ sup
‖z‖≤1

Re 〈 f (z, t2), w〉, ∀w ∈ ∂Bn, t1, t2 ∈ J, t1 ≤ t2.

One of the aims of this paper is to give a generalization to several complex variables

of a theorem of Ruscheweyh on convex subordination chains over the interval (0, 1).

We give two criteria for a mapping to be a c.s.c. over this interval. The first uses the

maximum principle and ideas similar to Theorem 2.7.

Theorem 2.8 Let f = f (z, t) : B
n
× (0, 1) → C

n be a mapping such that f ( · , t) is

continuous on B
n
, f ( · , t) is convex on Bn and f (0, t) = 0 for t ∈ (0, 1). Then f (z, t) is

a convex subordination chain over (0, 1) if and only if for any w ∈ ∂Bn, the function gw

given by

gw(z) = Re
〈

f
( z

‖z‖
, ‖z‖

)
, w

〉
, z ∈ Bn \ {0},

satisfies the condition

(2.5) sup
‖z‖=t1

gw(z) ≤ sup
‖z‖=t2

gw(z), 0 < t1 ≤ t2 < 1.

Proof First, assume that condition (2.5) holds. We need to prove that f ( · , t1) ≺
f ( · , t2) for t1, t2 ∈ (0, 1), t1 ≤ t2. Since f ( · , t) is biholomorphic for t ∈ (0, 1), the

previous relation is equivalent to f (Bn, t1) ⊆ f (Bn, t2) for t1, t2 ∈ (0, 1), t1 ≤ t2.

Suppose that there exist t1, t2 ∈ (0, 1), t1 < t2, such that f (Bn, t1) 6⊆ f (Bn, t2). Then

f (Bn, t1) 6⊆ f (B
n
, t2), and hence there exists a point z0 ∈ Bn\{0} such that f (z0, t1) /∈

f (B
n
, t2). Let Y1 = { ft1

(z0)} and let Y2 = ft2
(B

n
) where ft j

(z) = f (z, t j), j = 1, 2.

Then Y2 is a nonempty closed and convex set in C
n, and since

d(Y1,Y2) = min
z∈B

n
‖ ft1

(z0) − ft2
(z)‖ > 0,

we deduce that there exists some l ∈ L(C
n, C) \ {0} such that

(2.6) sup
z∈B

n

Re [l( ft2
(z))] < Re [l( ft1

(z0))]

(see e.g., [13, p. 81]). Now, since l ∈ L(C
n, C) \ {0}, there exists a point w ∈ C

n \ {0}
such that l(z) = 〈z, w〉, z ∈ C

n. We may assume that ‖w‖ = 1. Hence, from (2.6) we

obtain

sup
z∈B

n

Re 〈 f (z, t2), w〉 < Re 〈 f (z0, t1), w〉,
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and thus

sup
‖z‖≤t2

Re
〈

f
( z

t2
, t2

)
, w

〉
< Re 〈 f (z0, t1), w〉.

In particular, we have

sup
‖z‖=t2

Re
〈

f
( z

‖z‖
, ‖z‖

)
, w

〉
< Re 〈 f (z0, t1), w〉,

and hence

sup
‖z‖=t2

gw(z) < Re 〈 f (z0, t1), w〉 ≤ sup
‖z‖≤1

Re 〈 f (z, t1), w〉.

Since the function Re 〈 f ( · , t1), w〉 is pluriharmonic on Bn, and hence harmonic

on Bn, and is continuous on B
n
, we deduce in view of the maximum principle for

harmonic functions that

sup
‖z‖≤1

Re 〈 f (z, t1), w〉 = sup
‖z‖=1

Re 〈 f (z, t1), w〉.

On the other hand, since

sup
‖z‖=1

Re 〈 f (z, t1), w〉 = sup
‖z‖=t1

gw(z),

we deduce from the above relations that

sup
‖z‖=t2

gw(z) < sup
‖z‖=t1

gw(z).

However, this relation is in contradiction to (2.5). Thus we must have f (Bn, t1) ⊆
f (Bn, t2) for t1 ≤ t2.

Conversely, assume that f (z, t) is a c.s.c. such that f ( · , t) is continuous on B
n

for

t ∈ (0, 1). Then there exists a Schwarz mapping v = v(z, t1, t2) such that

f (z, t1) = f (v(z, t1, t2), t2), z ∈ Bn, 0 < t1 ≤ t2 < 1.

Therefore, we obtain that

sup
‖z‖≤1

Re 〈 f (z, t1), w〉 = sup
‖z‖<1

Re 〈 f (z, t1), w〉

= sup
‖z‖<1

Re 〈 f (v(z, t1, t2), t2), w〉

≤ sup
‖z‖≤1

Re 〈 f (z, t2), w〉,

for all w ∈ ∂Bn and 0 < t1 ≤ t2 < 1. Since the function Re 〈 f ( · , t j), w〉 is harmonic

on Bn and continuous on B
n

for j = 1, 2, we deduce that

sup
‖z‖≤1

Re 〈 f (z, t j), w〉 = sup
‖z‖=1

Re 〈 f (z, t j), w〉, w ∈ ∂Bn, j = 1, 2,

by the maximum principle for harmonic functions. Hence the relation (2.5) follows,

as desired. This completes the proof.
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The next criterion is a generalization of a one-variable result of Ruscheweyh (see

[25, Theorem 2.40]).

Theorem 2.9 Let f = f (z, t) : B
n
× [0, 1) → C

n be a continuous mapping such that
f ( · , t) is convex on Bn for t ∈ (0, 1), and f (0, t) = f (z, 0) = 0 for t ∈ [0, 1) and

z ∈ Bn. For w ∈ ∂Bn, let Gw be the function defined by

(2.7) Gw(z) =

{
gw(z) z ∈ Bn \ {0}

0 z = 0.

If either

(i) Gw has no local maximum in Bn, for all w ∈ ∂Bn, or
(ii) Gw has no maximum in Bn

r , for all r ∈ (0, 1) and for all w ∈ ∂Bn,

then f (z, t) is a convex subordination chain over (0, 1).

Proof We will show that f (Bn, t1) ⊆ f (Bn, t2) for 0 < t1 < t2 < 1. Suppose on

the contrary that there exist t1, t2 and a point z0 ∈ Bn such that f (z0, t1) /∈ f (Bn, t2).

Since f (Bn, t1) is open and f (Bn, t2) is a bounded convex domain in C
n, by replacing

z0 by a nearby point if necessary, we may assume that f (z0, t1) /∈ f (B
n
, t2). This im-

plies that there exists z ′ ∈ ∂Bn such that f (z ′, t1) /∈ f (B
n
, t2), for otherwise convexity

would imply that f (Bn, t1) ⊆ f (B
n
, t2). By the basic separation theorem there exists

w ∈ ∂Bn such that

Re 〈 f (ξ, t2), w〉 < Re 〈 f (z ′, t1), w〉

for ξ ∈ B
n

(equivalently, for ξ ∈ ∂Bn). Letting z̃ = t1z ′, we have

0 ≤ sup
‖z‖=t2

Re
〈

f
( z

‖z‖
, ‖z‖

)
, w

〉
< Re

〈
f
( z̃

‖z̃‖
, ‖z̃‖

)
, w

〉
.

Together with the assumption that f (z, 0) = 0, for z ∈ Bn, this implies that the

corresponding function Gw given by (2.7) has a maximum in Bn
t2

, and hence a local

maximum in Bn. This is a contradiction.

Remark 2.10. Let f = f (z, t) : Bn × (0, 1) → C
n be a mapping such that f ( · , t) ∈

H(Bn), f (0, t) = 0, D f (0, t) = a(t)In, t ∈ (0, 1), where a : (0, 1) → C is a continuous

function such that |a( · )| is increasing on (0, 1) and a(t) 6= 0, t ∈ (0, 1). Assume that

f (z, t) = a(t)z +

∞∑

k=2

Ak(t)(zk), z ∈ Bn

is the power series expansion of f ( · , t) on Bn for t ∈ (0, 1). If

∞∑

k=2

k2‖Ak(t)‖ ≤ |a(t)|, t ∈ (0, 1),

then f ( · , t) is convex on Bn by [24] and further, f ( · , t) extends as a homeomor-

phism to B
n

for t ∈ (0, 1) (see [5]; cf. [10, Corollary 4.6]).
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We next apply Theorem 2.9 to obtain an example of a c.s.c. over (0, 1] (cf. [25,

Theorem 2.41]). This result is one of the motivations for the study of c.s.c. in several

complex variables. It would be interesting to see if Theorem 2.11 remains true for

any mapping f ∈ K(Bn), n ≥ 2. If n = 1, the answer is positive (see [25, Theorem

2.41]).

Theorem 2.11 For a normalized holomorphic mapping f on Bn, let

s f (z, t) =
1 − t2

1 + t2
D f (tz)(tz) + f (tz).

Also let

f (z) = z +

∞∑

k=2

Ak(zk), z ∈ Bn.

If

(2.8)

∞∑

k=2

k2‖Ak‖ ≤ 1,

then s f (z, t) is a c.s.c. over (0, 1].

Proof Note that condition (2.8) implies that f ∈ K(Bn) by [24, Theorem 2.1]. Let

bk = sup
0<t≤1

{(1 − t2)k + (1 + t2)}tk−1.

Then bk = 2 for all k ≥ 2. Since

s f (z, t) =
2t

1 + t2
z +

∞∑

k=2

tk
( 1 − t2

1 + t2
k + 1

)
Ak(zk),

we obtain that

∞∑

k=2

k2tk
( 1 − t2

1 + t2
k + 1

)
‖Ak‖ ≤

t

1 + t2

∞∑

k=2

k2bk‖Ak‖ ≤
2t

1 + t2
.

Therefore, s f ( · , t) is convex on Bn and extends as a homeomorphism to B
n

for t ∈
(0, 1) by Remark 2.10. It is clear from the formula for s f (z, t) that this mapping is

continuous on B
n
× [0, 1). Let z, w ∈ ∂Bn and

(2.9) Fz,w(ζ) =

{
Re

〈
s f

(
ζz

‖ζz‖ , ‖ζz‖
)

, w
〉

ζ ∈ U \ {0}

0 ζ = 0.

Then Fz,w is real analytic on U and is a solution of the elliptic equation

∂2F

∂ζ∂ζ
+

2

1 − |ζ|4

(
ζ
∂F

∂ζ
+ ζ

∂F

∂ζ

)
= 0.
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By Hopf ’s maximum principle (see e.g., [1]), Fz,w cannot have a local maximum on

U unless it is constant.

Now suppose that for some w ∈ ∂Bn and for some r ∈ (0, 1) the function Gw

constructed using s f has a maximum in Bn
r . This maximum cannot occur at 0, for

otherwise the function Fz,w given by (2.9) would be identically 0 for all z. This would

imply Gw(z) is identically 0. Then Gw(z) → 0 as ‖z‖ ր 1. On the other hand, since

‖D f (z)(z)‖ =

∥∥∥ z +

∞∑

k=2

kAk(zk)
∥∥∥ ≤ ‖z‖

[
1 +

∞∑

k=2

k‖Ak‖ · ‖z‖k−1
]

≤ 1 +
1

2

∞∑

k=2

k2‖Ak‖ ≤
3

2
, z ∈ Bn,

by condition (2.8), we deduce that

lim
‖z‖ր1

[ 1 − ‖z‖2

1 + ‖z‖2
Re 〈D f (z)(z), w〉

]
= 0.

Then

0 = lim
‖z‖ր1

Gw(z) = lim
‖z‖ր1

Re 〈 f (z), w〉,

and thus Re 〈 f (z), w〉 = 0 for z ∈ ∂Bn. This relation implies that Re 〈 f (z), w〉 ≡ 0.

Therefore

0 = lim
r→0

Re
〈 f (rw)

r
, w

〉
= Re 〈D f (0)(w), w〉.

However, this is impossible since ‖w‖ = 1.

Hence the maximum of Gw in Bn
r occurs at a point z0 6= 0 and has a value greater

than 0. But now let z̃ = z0/‖z0‖ and consider the function Fz̃,w. This function has a

local maximum when ζ = ‖z0‖ and is not constant, which is a contradiction. Hence

by Theorem 2.9, s f (z, t) is a c.s.c. over the interval (0, 1).

The only remaining step is to show that s f (z, t) is actually a c.s.c. over the interval

(0, 1]. This may be seen by applying a version of the Carathéodory convergence theo-

rem in several complex variables (see [11, Theorem 2.1]). The proof is complete.

In view of Theorem 2.11 we obtain

Example 2.12 Let A : C
n × C

n → C
n be a symmetric bilinear operator such that

‖A‖ ≤ 1/4. Also let

L(z, t) =
2t

1 + t2
z +

3t2 − t4

1 + t2
A(z2), z ∈ Bn, t ∈ (0, 1].

Then L(z, t) is a c.s.c. over (0, 1].

Proof It suffices to apply Theorem 2.11 with f (z) = z + A(z2).

From Theorem 2.11 we obtain the following consequence (compare with [25]):
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Corollary 2.13 Let f : Bn → C
n be a normalized holomorphic mapping which satis-

fies condition (2.8). Then

1 − t2

1 + t2
D f (tz)(tz) + f (tz) ≺ f (z), z ∈ Bn, t ∈ (0, 1].

Proof Indeed, in view of Theorem 2.11, s f (z, t) is a c.s.c. over (0, 1], and hence

s f (z, t) ≺ s f (z, 1) for z ∈ Bn.

The following sufficient condition for injectivity is related to Theorem 2.8. Note

the strict inequality in (2.10).

Theorem 2.14 Let f = f (z, t) : B
n
× (0, 1) → C

n be a mapping such that f ( · , t) is

continuous and injective on B
n
, f ( · , t) is convex on Bn and f (0, t) = 0 for t ∈ (0, 1).

If for any w ∈ ∂Bn, the function gw given in Theorem 2.8 satisfies the condition

(2.10) sup
‖z‖=t1

gw(z) < sup
‖z‖=t2

gw(z), 0 < t1 < t2 < 1,

then the mapping F(z) = f
( z

‖z‖
, ‖z‖

)
is injective on Bn \ {0}.

Proof By Theorem 2.8, f (z, t) is a c.s.c. over (0, 1). Let v = v(z, s, t) be the transi-

tion mapping associated to f (z, t). Using arguments similar to those in the proof of

Theorem 2.8, we obtain that

(2.11) f (B
n
, t1) ⊂ f (Bn, t2), 0 < t1 < t2 < 1.

We argue by contradiction. If there exist t1, t2 ∈ (0, 1) such that t1 < t2 and

f (B
n
, t1) 6⊂ f (Bn, t2), then there exists a point z0 ∈ B

n
\ {0} such that f (z0, t1) /∈

f (Bn, t2). Let Y1 = { ft1
(z0)} and let Y2 = ft2

(Bn). Then Y2 is a nonempty open

and convex set in C
n, Y1 is also a convex set in C

n and Y1 ∩ Y2 = ∅. In view of a

separation theorem by hyperplanes (see e.g., [13, p. 179]), we deduce that there exist

some l ∈ L(C
n, C) and c ∈ R such that Re [l( ft2

(z))] < c ≤ Re [l( ft1
(z0))], ∀z ∈ Bn.

Hence supz∈B
n Re [l( f (z, t2))] ≤ Re [l( f (z0, t1))]. Then as in the proof of Theorem

2.8, we obtain a contradiction (to the strictness of the inequality in (2.10)). Hence

the condition (2.11) holds. Since ft1
is continuous on B

n
, it follows that

vt1 ,t2
(z) = v(z, t1, t2) = f −1

t2
( ft1

(z)), z ∈ B
n
, 0 < t1 < t2 < 1,

defines a continuous extension of vt1 ,t2
to B

n
and

(2.12) vt1 ,t2
(B

n
) ⊂ Bn, 0 < t1 < t2 < 1.

Now, let z1, z2 ∈ Bn \ {0} be such that F(z1) = F(z2). Let t j = ‖z j‖ for j = 1, 2.

We have one of the following possibilities:

(i) t1 = t2. Then f (z1/t1, t1) = f (z2/t1, t1) and since f ( · , t1) is injective on B
n
, we

deduce that z1 = z2.
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(ii) t1 6= t2. Suppose that t1 < t2. We have

f
( z2

t2
, t2

)
= f

( z1

t1
, t1

)
= f

(
v
( z1

t1
, t1, t2

)
, t2

)

and since f ( · , t2) is injective on B
n
, we deduce that

v
( z1

t1
, t1, t2

)
=

z2

t2
∈ ∂Bn.

However, this is a contradiction to (2.12).

In conclusion, we must have z1 = z2, as desired. This completes the proof.

Taking into account the proof of Theorem 2.14 and in view of Theorem 2.7, we

obtain the following.

Theorem 2.15 Let f = f (z, t) : B
n
× (0, 1) → C

n be a mapping such that f ( · , t) is

continuous and injective on B
n
, f ( · , t) is convex on Bn and f (0, t) = 0 for t ∈ (0, 1). If

sup
‖z‖≤1

Re 〈 f (z, t1), w〉 < sup
‖z‖≤1

Re 〈 f (z, t2), w〉, ∀w ∈ ∂Bn, 0 < t1 < t2 < 1,

then f (z, t) is a convex subordination chain over (0, 1) and the mapping

F(z) = f
( z

‖z‖
, ‖z‖

)

is injective on Bn \ {0}.

Combining the results of Theorems 2.9 and 2.14, we obtain the following suffi-

cient condition of injectivity.

Corollary 2.16 Let f = f (z, t) : B
n
× [0, 1) → C

n be a continuous mapping such

that f ( · , t) is convex on Bn, f ( · , t) is injective on B
n

for t ∈ (0, 1), and f (0, t) =

f (z, 0) = 0 for t ∈ [0, 1) and z ∈ Bn. If the function Gw defined in Theorem 2.9 has

no maximum in Bn
r , for all r ∈ (0, 1) and for all w ∈ ∂Bn, then f (z, t) is a convex

subordination chain over (0, 1) and the mapping F : Bn → C
n given by

F(z) =

{
f
(

z
‖z‖ , ‖z‖

)
z ∈ Bn \ {0}

0 z = 0

is injective on Bn.

Proof Since condition (ii) of Theorem 2.9 holds, it is not difficult to see that con-

dition (2.10) holds too. Thus F is injective on Bn \ {0}. Since F(0) = 0 and f ( · , t)

is injective on B
n

for t ∈ (0, 1), it follows that f (z/‖z‖, ‖z‖) 6= 0 for z ∈ Bn \ {0}.

Hence F is injective on Bn. This completes the proof.

In view of Theorem 2.11 and Corollary 2.16, we obtain the following consequence.
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Corollary 2.17 Let f : Bn → C
n be a normalized holomorphic mapping which satis-

fies condition (2.8). Then the mapping F : Bn → C
n given by

F(z) =
1 − ‖z‖2

1 + ‖z‖2
D f (z)(z) + f (z)

is injective on Bn.

Proof Taking into account the proof of Theorem 2.11, we deduce that the mapping

s f (z, t) satisfies condition (ii) of Theorem 2.9. Also s f ( · , t) is convex on Bn and has a

continuous and injective extension to B
n

for t ∈ (0, 1), by the proof of Theorem 2.11.

Then it is easy to see that s f (z, t) is continuous on B
n
× [0, 1). Hence we deduce from

Corollary 2.16 that the mapping F is injective on Bn, as desired.

We next obtain another example of a c.s.c. over (0, 1).

Example 2.18 Let A : (0, 1) → L(C
n, C

n) be a continuous mapping such that

det A(t) 6= 0, t ∈ (0, 1), and let f (z, t) = A(t)(z) for z ∈ Bn and t ∈ (0, 1). Then

f (z, t) is a c.s.c. over (0, 1) if and only if

(2.13) ‖A∗(t1)(w)‖ ≤ ‖A∗(t2)(w)‖, 0 < t1 ≤ t2 < 1, w ∈ ∂Bn,

where A∗(t j) is the adjoint operator of A(t j), j = 1, 2. In addition, if the strict

inequality holds in (2.13) for 0 < t1 < t2 < 1 and w ∈ ∂Bn, then the mapping

F(z) = A(‖z‖)(z/‖z‖) is injective on Bn \ {0}.

Proof Clearly f ( · , t) is convex on Bn and is continuous on B
n

for t ∈ (0, 1). On the

other hand, since

sup
‖z‖≤1

Re 〈 f (z, t), w〉 = sup
‖z‖≤1

Re 〈A(t)(z), w〉 = sup
‖z‖≤1

Re 〈z, A∗(t)(w)〉

= ‖A∗(t)(w)‖,

for t ∈ (0, 1) and w ∈ ∂Bn, we deduce that relation (2.4) reduces to condition (2.13).

From Theorem 2.7 we deduce that f (z, t) is a c.s.c. over (0, 1) if and only if (2.13)

holds, as desired. The second part follows from Theorem 2.15.

3 Examples of Convex Subordination Chains Over [0,∞)

We next obtain some examples of c.s.c. over [0,∞) on Bn by starting with convex

subordination chains over [0,∞) on the unit disc.

Example 3.1 If f (z1, t) is a c.s.c. over [0,∞) on the unit disc U such that f ′(0, t) =

et , t ≥ 0, and if

Φn( f )(z, t) =

(
f (z1, t), z̃et/2( f ′(z1, t))1/2

)
, z = (z1, z̃) ∈ Bn, t ≥ 0,

then Φn( f )(z, t) is a c.s.c. over [0,∞) on Bn. We choose the branch of the power

function such that ( f ′
t (z1))1/2|z1=0 = et/2 for t ≥ 0, where ft(z1) = f (z1, t).
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Proof Indeed, since f (z1, t) is a c.s.c. such that f ′(0, t) = et for t ≥ 0, it follows that

gt = e−t f ( · , t) ∈ K for each t ≥ 0. Fix t ≥ 0 and let

G(z, t) = Gt (z) =

(
gt (z1), z̃(g ′

t (z1))1/2
)

, z = (z1, z̃) ∈ Bn.

Then Gt ∈ K(Bn) by [23] (see also [6] and [3]) and since Φn( f )(z, t) = et G(z, t), we

deduce that Φn( f )( · , t) is a convex mapping on Bn. Next, since f ( · , t1) ≺ f ( · , t2)

for 0 ≤ t1 ≤ t2 < ∞, we deduce that there exists a Schwarz function vt1 ,t2
(z1) =

v(z1, t1, t2) such that

f (z1, t1) = f (v(z1, t1, t2), t2), z1 ∈ U , t2 ≥ t1 ≥ 0.

Let Vt1 ,t2
: Bn → C

n be given by

Vt1 ,t2
(z) =

(
vt1 ,t2

(z1), z̃e(t1−t2)/2(v ′
t1 ,t2

(z1))1/2
)

, z = (z1, z̃) ∈ Bn, t2 ≥ t1 ≥ 0.

We choose the branch of the power function such that (v ′
t1 ,t2

(z1))1/2|z1=0 = e(t1−t2 )/2.

Then Vt1 ,t2
is a holomorphic mapping on Bn, Vt1 ,t2

(0) = 0, and taking into account

the Schwarz–Pick Lemma, we obtain that

‖Vt1 ,t2
(z)‖2

= |vt1 ,t2
(z1)|2 + ‖z̃‖2et1−t2 |v ′

t1 ,t2
(z1)|

≤ |vt1 ,t2
(z1)|2 + ‖z̃‖2 1 − |vt1 ,t2

(z1)|2

1 − |z1|2
< 1,

for all z = (z1, z̃) ∈ Bn and t2 ≥ t1 ≥ 0. Hence Vt1 ,t2
is a Schwarz mapping and it is

easy to see that

Φn( f )(z, t1) = Φn( f )(Vt1 ,t2
(z), t2), z ∈ Bn, t2 ≥ t1 ≥ 0.

Consequently, Φn( f )( · , t1) ≺ Φn( f )( · , t2), and thus Φn( f )(z, t) is a c.s.c. over

[0,∞), as desired.

Before giving another example of a c.s.c. over [0,∞), we introduce the following

definitions.

Definition 3.2 Let Ln be the set of all Loewner chains on Bn × [0,∞). The set L1

is denoted by L. Let L
0
n be the set of all Loewner chains f (z, t) on Bn × [0,∞) such

that {e−t f (z, t)}t≥0 is a normal family. (Equivalently, L0
n is the set of Loewner chains

whose initial element f ( · , 0) has parametric representation; see [7, 8, 21]). We also

denote by LCn the set of all convex subordination chains f (z, t) over [0,∞) on Bn

such that D f (0, t) = et In for t ≥ 0. The set LC1 is denoted by LC.

We note that L
0
1 = L and LCn ⊆ L

0
n. Any Loewner chain f (z, t) is locally abso-

lutely continuous on [0,∞) locally uniformly with respect to z ∈ Bn (see [7, 8]).

In view of Example 3.1, Φn(LC) ⊆ LCn. In [7, 8] it is shown that the operator Φn

has the property that Φn(L) ⊆ L
0
n.

The following definition is motivated by the recent work of Muir [14].
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Definition 3.3 Let Q : C
n−1 → C be a homogeneous polynomial of degree 2. For

any function f ∈ L, define the mapping Φn,Q( f ) : Bn × [0,∞) → C
n by

Φn,Q( f )(z, t) =
(

f (z1, t)+Q(z̃) f ′(z1, t), z̃et/2( f ′(z1, t))1/2
)
, z = (z1, z̃) ∈ Bn, t ≥ 0.

We choose the branch of the power function such that ( f ′(z1, t))1/2|z1=0 = et/2 for

t ≥ 0.

Remark 3.4. Note that Φn,0 = Φn, where Φn is the operator given in Example 3.1.

It is easy to see that e−t
Φn,Q( f )( · , t) ∈ S(Bn) for t ≥ 0. Also, since f (z1, t) is a

Loewner chain, f (z1, · ) is locally absolutely continuous on [0,∞) locally uniformly

with respect to z1 ∈ U . Then Φn,Q( f )(z, · ) is also locally absolutely continuous on

[0,∞) locally uniformly with respect to z ∈ Bn.

Theorem 3.5 If Q : C
n−1 → C is a homogeneous polynomial of degree 2, then

Φn,Q(LC) ⊆ LCn if and only if ‖Q‖ ≤ 1/2.

Proof First, assume ‖Q‖ ≤ 1/2. Let f = f (z1, t) ∈ LC. Also let F(z, t) =

Φn,Q( f )(z, t) for z ∈ Bn and t ≥ 0. Then F(0, t) = 0 and since f ′(0, t) = et

and Q is homogeneous of degree 2, it follows that DF(0, t) = et In. It is not difficult

to deduce that F( · , t) is biholomorphic on Bn. On the other hand, since f (z1, t) is a

Loewner chain, f (z1, · ) is locally absolutely continuous on [0,∞) locally uniformly

with respect to z1 ∈ U , and there is a function p(z1, t) such that p( · , t) ∈ H(U ),

p(0, t) = 1, Re p(z1, t) > 0, |z1| < 1, t ≥ 0, and

∂ f

∂t
(z1, t) = z1 f ′(z1, t)p(z1, t) a.e. t ≥ 0, ∀z1 ∈ U .

Moreover, there is an increasing sequence {tm}m∈N such that 0 < tm → ∞ and the

limit

lim
m→∞

e−tm f (z1, tm) = g(z1)

exists locally uniformly on U (see [20] and [7]). Clearly g is a holomorphic function

on U and since g(0) = 0, g ′(0) = 1, we deduce by Hurwitz’s theorem that g ∈ S.

Then F(z, · ) is also locally absolutely continuous on [0,∞) locally uniformly with

respect to z ∈ Bn and

lim
m→∞

e−tm F(z, tm) = Φn,Q(g)(z, 0)

locally uniformly on Bn. Now, let

h(z, t) =

(
z1 p(z1, t) − Q(z̃),

z̃

2

(
1 + p(z1, t) + z1 p ′(z1, t) + Q(z̃)

f ′ ′(z1, t)

f ′(z1, t)

))
,

for all z ∈ Bn and t ≥ 0. Then h( · , t) is a normalized holomorphic mapping on

Bn for t ≥ 0 and h(z, · ) is measurable on [0,∞) for all z ∈ Bn. Using elementary

computations and the equality, based on Vitali’s theorem (see e.g., [20, Chapter 6]),

∂

∂t

( ∂ f

∂z1

)
(z1, t) =

∂

∂z1

( ∂ f

∂t

)
(z1, t) a.e. t ≥ 0, ∀z1 ∈ U ,
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we obtain that

∂F

∂t
(z, t) = DF(z, t)h(z, t) a.e. t ≥ 0, ∀z ∈ Bn.

On the other hand, since e−t f ( · , t) ∈ K , t ≥ 0, it follows that

(3.1)
∣∣∣

1 − |z1|
2

2
·

f ′ ′(z1, t)

f ′(z1, t)
− z1

∣∣∣ ≤ 1, |z1| < 1, t ≥ 0,

(see e.g.. [7]). Next, using the fact that ‖Q‖ ≤ 1/2, the above inequality and

arguments similar to those in the proof of [8, Theorem 2.1], we obtain that

Re 〈h(z, t), z〉 ≥ 0 for z ∈ Bn and t ≥ 0. Indeed, if z̃ = 0, then

Re 〈h(z, t), z〉 = |z1|
2Re p(z1, t) ≥ 0, |z1| < 1.

Next, we assume that z̃ 6= 0. Then it is easy to see that h( · , t) is holomorphic in

a neighborhood of each point z = (z1, z̃) ∈ B
n

with z̃ 6= 0. Let us write z = λZ

for Z = (Z1, Z̃) ∈ ∂Bn such that Z̃ 6= 0 and 0 < |λ| ≤ 1. Then the inequality

Re 〈h(z, t), z〉 ≥ 0 is equivalent to

Re
〈 h(λZ, t)

λ
, Z

〉
≥ 0.

The left-hand side of the above expression is the real part of a holomorphic function

of the complex variable λ ∈ U , and hence is harmonic. Taking into account the

minimum principle for harmonic functions, the minimum of the above expression

occurs for some λ ∈ ∂U , and hence z ∈ ∂Bn. Consequently, it suffices to prove that

Re 〈h(z, t), z〉 ≥ 0, z = (z1, z̃) ∈ ∂Bn, z̃ 6= 0, t ≥ 0.

Since p(0, t) = 1 and Re p(z1, t) > 0, it follows that (see e.g., [7])

(3.2) |p ′(z1, t)| ≤
2

1 − |z1|2
Re p(z1, t), |z1| < 1, t ≥ 0.

Fix t ≥ 0 and let z = (z1, z̃) ∈ ∂Bn with z̃ 6= 0. In view of relations (3.1) and (3.2),

we obtain

Re 〈h(z, t), z〉 =
1 + |z1|

2

2
Re p(z1, t) +

1 − |z1|
2

2
Re [z1 p ′(z1, t)]

+
1 − |z1|

2

2
+ Re

[
Q(z̃)

{ 1 − |z1|
2

2
·

f ′ ′(z1, t)

f ′(z1, t)
− z1

}]

≥
(1 − |z1|)

2

2
Re p(z1, t) +

1 − |z1|
2

2
− (1 − |z1|

2)‖Q‖ ≥ 0,

whenever ‖Q‖ ≤ 1/2. Taking into account Lemma 1.1, we deduce that F(z, t) is a

Loewner chain.
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Next, let qt (z1) = e−t ft(z1). Then qt ∈ K and since

e−tF(z, t) =

(
qt(z1) + Q(z̃)q ′

t (z1), z̃(q ′
t (z1))1/2

)
, z ∈ Bn, t ≥ 0,

we conclude by [14, Theorem 3.1] that e−tF( · , t) ∈ K(Bn), t ≥ 0. Therefore

Φn,Q( f ) ∈ LCn.

For the converse, suppose that ‖Q‖ > 1/2. Let f (ζ, t) = etζ/(1 − ζ) for |ζ| < 1

and t ≥ 0. Then f (ζ, t) is a c.s.c. over [0,∞). Also F(z, t) = et G(z) where

G(z) =

( z1

1 − z1
+

Q(z̃)

(1 − z1)2
,

z̃

1 − z1

)
, z = (z1, z̃) ∈ Bn.

Muir and Suffridge [18] proved that G /∈ K(Bn) if ‖Q‖ > 1/2, and hence F(z, t)

cannot be a c.s.c. over [0,∞). This completes the proof.

Remark 3.6. Using arguments similar to those in the above proof, it is possible to

show that Φn,Q(L) ⊆ L
0
n if and only if ‖Q‖ ≤ 1/4 (see [12]). Note that Theorem 3.5

has also recently been proved by Muir [15].
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