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Abstract

Bilinear fractal interpolation surfaces were introduced by Ruan and Xu in 2015. In this paper, we present
the formula for their box dimension under certain constraint conditions.
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1. Introduction

Fractal interpolation functions (FIFs for short) were introduced by Barnsley in
1986 [1]. Their graphs are invariant sets of certain iterated function systems which
are effective in modelling natural curves [11]. In the classical case, the graphs
of FIFs are self-affine sets, and their box dimension was obtained by Hardin and
Massopust [8] and Barnsley et al. [2]. In 2015, Barnsley and Massopust constructed
one-dimensional bilinear FIFs and obtained the box dimension of their graphs under
certain conditions [3].

There are also results on the construction and the box dimension of FIFs on
rectangular grids (see, for example, [4, 6, 7, 9, 10, 12]). Ruan and Xu [13] presented a
general framework to generate FIFs on rectangular grids and also introduced bilinear
fractal interpolation surfaces (bilinear FISs). However, it seems too complicated to
obtain the box dimension of bilinear FISs if we use the method in [3]. In this paper,
we will calculate the box dimension of bilinear FISs by estimating the oscillation of
functions (see Theorem 3.8). Our method is more straightforward than that in [3],
although the basic ideas are similar. We remark that our method can also be used to
obtain the box dimension of the one-dimensional bilinear FIFs in [3].

The paper is organised as follows. In Section 2, we recall the definition of bilinear
FISs. In Section 3, we present the formula for the box dimension of bilinear FISs.
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2. Definition of bilinear FISs

We are given a data set {(xi, y j, zi j) ∈ R3 : i ∈ {0, 1, . . . ,N}, j ∈ {0, 1, . . . ,M}} with

x0 < x1 < · · · < xN , y0 < y1 < · · · < yM ,

where N, M ≥ 2 are positive integers. Ruan and Xu [13] constructed bilinear FIFs on
[x0, xN] × [y0, yM] as follows.

Denote ΣN = {1, 2, . . . , N}, ΣN,0 = {0, 1, . . . , N}. Similarly, we can define ΣM and
ΣM,0. Denote I = [x0, xN] and J = [y0, yM]. For any i ∈ ΣN and j ∈ ΣM , we denote
Ii = [xi−1, xi], J j = [y j−1, y j] and Di j = Ii × J j.

For any i ∈ ΣN , let ui : I → Ii be the linear function satisfying

ui(x0) = xi−1, ui(xN) = xi if i is odd,
ui(x0) = xi, ui(xN) = xi−1 if i is even.

Clearly, this implies that u1(x0) = x0, u1(xN) = u2(xN) = x1, u2(x0) = u3(x0) = x2 and
so on. Similarly, for any j ∈ ΣM , let v j : J → J j be the linear function satisfying

v j(y0) = y j−1, v j(yM) = y j if j is odd,
v j(y0) = y j, v j(yM) = y j−1 if j is even.

Let g be the bilinear function on I × J satisfying

g(xi, y j) = zi j for all (i, j) ∈ {0,N} × {0,M}.

Equivalently,

g(x, y) =
1

(xN − x0)(yM − y0)
((xN − x)(yM − y)z0,0 + (x − x0)(yM − y)zN,0

+ (xN − x)(y − y0)z0,M + (x − x0)(y − y0)zN,M).

Then we define h : I × J → R to be the function satisfying

h(xi, y j) = zi j for all (i, j) ∈ ΣN,0 × ΣM,0,

and such that h|Di j is bilinear for all (i, j) ∈ ΣN × ΣM .
Let {si j : (i, j) ∈ ΣN,0 × ΣM,0} be a given data set with |si j| < 1 for all i, j. We define

s : I × J → R to be the function satisfying

s(xi, y j) = si j for all (i, j) ∈ ΣN,0 × ΣM,0,

and such that s|Di j is bilinear for all (i, j) ∈ ΣN × ΣM .
For all (i, j) ∈ ΣN × ΣM , we define Fi j : I × J × R→ R by

Fi j(x, y, z) = s(ui(x), v j(y))(z − g(x, y)) + h(ui(x), v j(y)).

Now, for each (i, j) ∈ ΣN × ΣM , we define Wi j : I × J × R→ Ii × J j × R by

Wi j(x, y, z) = (ui(x), v j(y), Fi j(x, y, z)). (2.1)

Then {I × J × R,Wi j : (i, j) ∈ ΣN × ΣM} is an iterated function system.
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Theorem 2.1 [13]. Let {I × J ×R,Wi j : (i, j) ∈ ΣN × ΣM} be the iterated function system
defined in (2.1). Then there exists a unique continuous function f : I × J → R such
that f (xi, y j) = zi j for all (i, j) ∈ ΣN,0 × ΣM,0 and Γ f =

⋃
(i, j)∈ΣN×ΣM

Wi j(Γ f ), where
Γ f = {(x, y, f (x, y)) : (x, y) ∈ I × J} denotes the graph of f .

With the notation in Theorem 2.1, we call Γ f the bilinear FIS and f the bilinear
FIF with respect to the iterated function system {I × J × R,Wi j : (i, j) ∈ ΣN × ΣM}.

From Wi j(x, y, f (x, y)) ∈ Γ f , we have the following useful property:

f (ui(x), v j(y)) = Fi j(x, y, f (x, y)) for all (x, y) ∈ I × J. (2.2)

From the above construction, a bilinear FIS is determined by the interpolation
points {(xi, y j, zi j) : (i, j) ∈ ΣN,0 × ΣM,0} in conjunction with the vertical scaling factors
{si j : (i, j) ∈ ΣN,0 × ΣM,0}. A natural question is:

Question 2.2 [13, Question 5.1]. How can we obtain the box dimension of a bilinear
FIS?

By estimating the number of the squares in small columns covering the graph of the
interpolation function, Barnsley and Massopust [3] obtained the box dimension of a
one-dimensional bilinear FIF under the condition that xi = i/N, si ≥ 0 for 0 ≤ i ≤ N and
s0 = sN . However, dealing with FISs is more involved. In this paper, we will obtain
their box dimension by estimating their oscillation. This is a more straightforward
approach than that in [3].

3. Box dimension of bilinear FISs

For any k1, k2, . . . , kd ∈ Z and ε > 0, we call Πd
i=1[kiε, (ki + 1)ε] an ε-coordinate

cube in Rd. Let E be a bounded set in Rd andNE(ε) the number of ε-coordinate cubes
intersecting E. We define

dimBE = lim
ε→0

logNE(ε)
log 1/ε

and dimBE = lim
ε→0

logNE(ε)
log 1/ε

, (3.1)

and call them the upper box dimension and the lower box dimension of E, respectively.
If dimBE = dimBE, we use dimB E to denote the common value and call it the box
dimension of E. It is easy to see that in the definition of the upper and lower box
dimensions we need only consider εn = N−n, where n ∈ Z+. That is,

dimBE = lim
n→∞

logNE(εn)
n log N

and dimBE = lim
n→∞

logNE(εn)
n log N

. (3.2)

It is also well known that dimBE ≥ 2 when E is the graph of a continuous function on
a domain of R2. See [5] for details.

In this section, we will calculate the box dimension of Γ f , where f is the bilinear
FIF defined in Section 2. It is difficult to obtain the box dimension of general bilinear
FISs. In this paper, we always assume that M = N.
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For each n ∈ Z+, we define Σn
N = {i1i2 · · · in : ik ∈ ΣN for all k}. Further, for each

i = i1i2 · · · in ∈ Σn
N , we define ui = ui1 ◦ ui2 ◦ · · · ◦ uin . Similarly, we define vj for j ∈ Σn

N .
Denote Dij = ui(I) × vj(J) for i, j ∈ Σn

N . Define

O( f , n) =
∑

i,j∈Σn
N

O( f ,Dij),

where we use O( f , E) to denote the oscillation of f on E ⊂ I × J, that is,

O( f , E) = sup{ f (x′) − f (x′′) : x′, x′′ ∈ E}.

We will use the following simple lemma, which presents a method to calculate the
box dimension of the graph of a function from its oscillation. Similar results can be
found in [5, 14].

Lemma 3.1.

(1) dimB(Γ f ) = 2 if limn→∞(log O( f , n)/n log N) ≤ 1, and
(2) dimB(Γ f ) = 1 + limn→∞ (log O( f , n)/n log N) if the limit exists and is larger

than 1,

where we define log 0 = −∞ according to the usual convention.

Proof. It is clear that

NΓ f (εn) ≥ ε−1
n

∑
i,j∈Σn

N

O( f ,Dij) = NnO( f , n).

Since dimB(Γ f ) is always larger than or equal to 2,

dimB(Γ f ) ≥ max
{
2, 1 + lim

n→∞

log O( f , n)
n log N

}
. (3.3)

On the other hand, we note that NE(ε) and NE(εn) can be replaced by ÑE(ε) and
ÑE(εn) in (3.1) and (3.2) respectively, where ÑE(ε) is the smallest number of cubes of
side ε that cover E (see [5] for details). In our case,

ÑΓ f (εn) ≤
∑

i,j∈Σn
N

(O( f ,Dij)
εn

+ 2
)

= NnO( f , n) + 2N2n.

Hence
dimB(Γ f ) ≤ 1 + lim

n→∞

log(O( f , n) + 2Nn)
n log N

. (3.4)

If limn→∞ log O( f , n)/n log N ≤ 1, then from (3.4) dimB(Γ f ) ≤ 2. Combining this
with (3.3) shows that dimB(Γ f ) = 2.

If limn→∞ log O( f , n)/n log N exists and is larger than 1, we denote it by t. From
(3.4) and t > 1, we have dimB(Γ f ) ≤ 1 + t. Combining this with (3.3) shows that
dimB(Γ f ) = 1 + t. �
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We say that the vertical scaling factors {si j : i, j ∈ ΣN,0} are steady if for each
(i, j) ∈ ΣN × ΣN all of si−1, j−1, si−1, j, si, j−1 and si, j are nonnegative or all of them are
nonpositive.

Lemma 3.2. Assume that the vertical scaling factors are steady, and∑
i, j∈ΣN

|s(ui(x0), v j(y0))|=
∑

i, j∈ΣN

|s(ui(x0), v j(yN))|

=
∑

i, j∈ΣN

|s(ui(xN), v j(y0))| =
∑

i, j∈ΣN

|s(ui(xN), v j(yN))|. (3.5)

Denote the common value by γ. Then for all (x, y) ∈ I × J,∑
i, j∈ΣN

|s(ui(x), v j(y))| = γ.

Proof. Define

s̃(x, y) =
∑

i, j∈ΣN

|s(ui(x), v j(y))| − γ, (x, y) ∈ I × J.

Since the vertical scaling factors are steady, s(x, y) is nonnegative or nonpositive
on Di j, for each (i, j) ∈ ΣN × ΣN . It follows that s(ui(x), v j(y)) is nonnegative or
nonpositive on I × J. As a result, s̃ is a bilinear function on I × J. But s̃ = 0 on
(x0, y0), (x0, yN), (xN , y0) and (xN , yN), so s̃ = 0 on I × J which proves the lemma. �

Remark 3.3. The vertical scaling factors are steady if si j ≥ 0 for all i, j ∈ ΣN,0, or
si j ≤ 0 for all i, j ∈ ΣN,0. Furthermore, if there exists d ∈ (−1, 1), such that si j = d
for all i, j ∈ ΣN,0, then the vertical scaling factors are steady, and (3.5) is satisfied with
γ = N2|d|.

Remark 3.4. In the one-dimensional case studied by Barnsley and Massopust [3], it is
assumed that si ≥ 0 for all i, and ui(x0) = xi−1 and ui(xN) = xi for all i ∈ ΣN . Thus their
assumption s0 = sN is equivalent to

∑
i∈ΣN

s(ui(x0)) =
∑

i∈ΣN
s(ui(xN)).

Example 3.5. Let N = 4 and s2 j = si2 = 0 for all i, j ∈ ΣN,0. In this case, (3.5) is
equivalent to

|s00| + |s04| + |s40| + |s44|= 2(|s01| + |s03| + |s41| + |s43|)
= 2(|s10| + |s14| + |s30| + |s34|) = 4(|s11| + |s13| + |s31| + |s33|).

Let d ∈ [0, 1/4) and define s00 = s44 = 4d, s04 = s40 = −4d, s01 = s10 = s34 = s43 = 2d,
s03 = s30 = s14 = s41 = −2d, s11 = s33 = d and s13 = s31 = −d. Then the vertical scaling
factors are steady, while (3.5) is also satisfied with γ = 16d.

Lemma 3.6. Let f be the bilinear FIF determined in Section 2 with M = N. Assume
that the conditions of Lemma 3.2 are satisfied. Then there exists a positive constant C,
such that for all n ∈ Z+,

γO( f , n) −CNn ≤ O( f , n + 1) ≤ γO( f , n) + CNn.
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Proof. Notice that

O( f , n + 1) =
∑

i, j∈ΣN

∑
k,l∈Σn

N

O( f , ui(Ik) × v j(Jl)). (3.6)

Denote M∗ = max{| f (x, y)| : (x, y) ∈ I × J}. For (i, j) ∈ ΣN × ΣN and z∗ ∈ [−M∗, M∗],
we define

F̂i, j,z∗(x, y) = Fi j(x, y, z∗), (x, y) ∈ I × J.

Since s(ui(x), v j(y)), g(x, y), h(ui(x), v j(y)) are all bilinear functions on I × J,

Ci j = sup
(x,y)∈int(I×J)
z∗∈[−M∗,M∗]

‖∇F̂i, j,z∗(x, y)‖ <∞,

where int(I × J) = (x0, xN) × (y0, yN) and ‖ · ‖ is the standard Euclidean norm.
Given x ∈ Ik and y ∈ Jl, where k, l ∈ Σn

N , it is clear that

|Fi j(uk(x0), vl(y0), f (x, y)) − Fi j(x, y, f (x, y))| ≤
√

2Ci jεn. (3.7)

On the other hand, for all (x′, y′), (x′′, y′′) ∈ Ik × Jl, we know from the definition that

Fi j(uk(x0), vl(y0), f (x′, y′)) − Fi j(uk(x0), vl(y0), f (x′′, y′′))
= s(ui ◦ uk(x0), v j ◦ vl(y0))( f (x′, y′) − f (x′′, y′′)).

Combining this with (2.2) and (3.7),

| f (ui(x′), v j(y′)) − f (ui(x′′), v j(y′′))|

≤ |s(ui ◦ uk(x0), v j ◦ vl(y0))| · | f (x′, y′) − f (x′′, y′′)| + 2
√

2Ci jεn

so that

O( f , ui(Ik) × v j(Jl)) ≤ |s(ui ◦ uk(x0), v j ◦ vl(y0))| · O( f ,Dkl) + 2
√

2Ci jεn.

Denote C∗ = max{2
√

2Ci j : i, j ∈ ΣN}. From (3.6) and Lemma 3.2,

O( f , n + 1)≤
∑

k,l∈Σn
N

∑
i, j∈ΣN

|s(ui ◦ uk(x0), v j ◦ vl(y0))| · O( f ,Dkl) + C∗Nn+2

= γO( f , n) + C∗Nn+2.

Similarly, we have O( f , n + 1) ≥ γO( f , n) −C∗Nn+2 so that the lemma holds. �

The interpolation points {(xi, y j, zi j)}(i, j)∈ΣN,0×ΣN,0 are co-bilinear if zi j = g(xi, y j) for
all (i, j) ∈ ΣN,0 × ΣN,0. Since g is bilinear, we can easily see that the property holds if
and only if the following two conditions hold:

(1) for each i ∈ ΣN,0, the points {(xi, y j, zi j) : j ∈ ΣN,0} are collinear; and
(2) for each j ∈ ΣN,0, the points {(xi, y j, zi j) : i ∈ ΣN,0} are collinear.
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Lemma 3.7. Assume that the interpolation points {(xi, y j, zi j)} are not co-bilinear, and
satisfy the conditions of Lemma 3.2. Then there exists a positive constant δ such that,
for all n ∈ Z+,

O( f , n) ≥ γnδ.

Proof. Since the interpolation points {(xi, y j, zi j)} are not co-bilinear, we can assume
without loss of generality that the points {(xi, y`, zi`) : i ∈ ΣN,0} are not collinear for
some ` ∈ ΣN,0. Thus, there exists k with 0 < k < N, such that (xk, y`, zk`) does not lie
on the line passing through (x0, y`, z0`) and (xN , y`, zN`). Set λ = (xN − xk)/(xN − x0).
Then

δ := | f (xk, y`) − (λ f (x0, y`) + (1 − λ) f (xN , y`))|
= |zk` − (λz0` + (1 − λ)zN`)| > 0.

Since λ ∈ (0, 1),

max{|z0` − zk`|, |zN` − zk`|} ≥ |zk` − (λz0` + (1 − λ)zN`)|

so that

O( f , I × J) ≥ δ.

For all i, j ∈ ΣN , we define θi j = 1 if s(x, y) is nonnegative on Di j, and define θi j = −1
otherwise. Then |s(x, y)| = θi js(x, y) for all x, y ∈ Di j. From (2.2),

θi j f (ui(xk), v j(y`)) = |s(ui(xk), v j(y`))|( f (xk, y`) − g(xk, y`)) + θi jh(ui(xk), v j(y`))

so that∑
i, j∈ΣN

θi j f (ui(xk), v j(y`)) = γ( f (xk, y`) − g(xk, y`)) +
∑

i, j∈ΣN

θi jh(ui(xk), v j(y`)).

Similarly,
∑

i, j∈ΣN
θi j f (ui(x0), v j(y`)) and

∑
i, j∈ΣN

θi j f (ui(xN), v j(y`)) can be expressed in
the same way. From

g(xk, y`) = λg(x0, y`) + (1 − λ)g(xN , y`),
h(ui(xk), v j(y`)) = λh(ui(x0), v j(y`)) + (1 − λ)h(ui(xN), v j(y`)),

it follows that∑
i, j∈ΣN

| f (ui(xk), v j(y`)) − (λ f (ui(x0), v j(y`)) + (1 − λ) f (ui(xN), v j(y`)))|

≥

∣∣∣∣∣ ∑
i, j∈ΣN

θi j f (ui(xk), v j(y`)) − λ
∑

i, j∈ΣN

θi j f (ui(x0), v j(y`))

− (1 − λ)
∑

i, j∈ΣN

θi j f (ui(xN), v j(y`))
∣∣∣∣∣

= γ| f (xk, y`) − (λ f (x0, y`) + (1 − λ) f (xN , y`))|.
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Thus

O( f , 1) =
∑

i, j∈ΣN

O( f ,Di j) ≥ γδ.

Continuing the above process, for all n ≥ 2,∑
i,j∈Σn

N

| f (ui(xk), vj(y`)) − (λ f (ui(x0), vj(y`)) + (1 − λ) f (ui(xN), vj(y`)))| ≥ γnδ

so that

O( f , n) =
∑

i,j∈Σn
N

O( f ,Dij) ≥ γnδ.

This completes the proof of the lemma. �

Theorem 3.8. Let f be the bilinear FIF determined in Section 2 with M = N, and
satisfying the conditions of Lemma 3.2. If γ > N and the interpolation points
{(xi, y j, zi j)} are not co-bilinear, then

dimB Γ f = 1 +
log γ
log N

.

Otherwise, dimB Γ f = 2.

Proof. If the interpolation points {(xi, y j, zi j)} are co-bilinear, then f = g so that
dimB Γ f = 2.

Otherwise, from Lemma 3.6, there exists a constant C > 0, such that for all n ≥ 1,

O( f , n + 1) ≤ γO( f , n) + CNn.

In the case where N , γ,

O( f , n) ≤ γn−1O( f , 1) +
CN(Nn−1 − γn−1)

N − γ
,

and in the case where N = γ,

O( f , n) ≤ Nn−1(O( f , 1) + (n − 1)C).

Thus
lim
n→∞

log O( f , n)
n log N

≤ max
{
1,

log γ
log N

}
. (3.8)

If γ ≤ N, from Lemma 3.1, dimB Γ f = 2. If γ > N, from Lemma 3.7,

lim
n→∞

log O( f , n)
n log N

≥
log γ
log N

.

Combining this with (3.8) and Lemma 3.1 gives dimB Γ f = 1 + log γ/ log N. �
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