
ON SEGREGATED RINGS AND ALGEBRAS

J. P. JANS

Segregated algebras have been nicely characterized by M. Ikeda [4]. In

this paper § 1, we consider segregated rings and study the structure of such

rings in Theorems 1.1 and 1.2. In §2, we specialize to the case of segregated

algebras of finite dimension over a field. Theorem 2.1 gives a new characteri-

zation of such algebras. Theorem 2.2 shows an interesting property of segre-

gated algebras two segregated algebras S and T, with radicals N and P re-

spectively, are isomorphic if and only if SIN2 and T/P2 are isomorphic.

§ 1. Segregated Rings

Following [3], if θ: A -» B is a ring homomorphism of A onto B, we

shall say that B is segregated in A if there exists a subring A1 of A such that

θ restricted to Af is an isomorphism. Clearly A = Λ' -fkernel β is a direct sum.

If B is a ring and M an abelian group we say that M is a (B, B) module if

M is both a left and right B module and the associativity condition @(mγ) =

(βm)γ holds for m in M and β, γ in B.

Consider a class S of rings with the property that if B belongs to (£ and

A is a subring of B then A belongs to S.

DEFINITION 1.1: A ring B is segregated in & will mean B belongs to &

and, when B is the homomorphic image of D belonging to (£, B is segregated

in D.

DEFINITION 1.2: A ring B is separated in (£ if, 1. B is segregated in S,

and 2. if B is a subring of D belonging to & and M i s a subset of D which is

a (B, B) module then M is completely reducible as a (B, B) module.

One sees that a separated ring with identity is the direct sum of a finite

number of simple ideals with identity and is therefore semisimple. (We would

like to say that B is separable if every (B, B) module is completely reducible,

and then prove a separable ring is segregated. Since we do not know that this
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can be done, we must assume this property in the definition. Perhaps this will

explain the use of the term "separated" in the above definition.)

The class of rings which motivated this investigation is the class ^Φ of

algebras of finite dimension over a field Φ. In this class the concepts of segre-

gated and separated defined above are equivalent to segregated and separable

in the usual sense [3]. We shall return to this class in 2 for applications of

the general results.

Let B be a ring and let M be a (B, B) module.

DEFINITION 1.3: Let M\ = Λf, Λfr+i = Mr x BM (Kronecker product over B)

r = 1, 2, . . . . See. [2] for definition and properties.

DEFINITION 1.4: Denote by F(B, M) the (weak) direct sum
1

Each Mr is a (B, B) module under the compositions β(nn1 x . . . x rmr) =

(βmii x . . . x πnr) and (nn, x . . . x mr)β = (nnx x . . . x nnrβ). Also Mr x βilί«

is isomorphic to Mr+n under the identification («ί, , x . . . x w/r) x (ntji x . . .

xπijn) x (m^x . . . x m, r x my, x . . . x m/J, see [2]. For simplicity we de-

note the elements of Mr by mr and the above compositions by βmTi mrβ, and

mrmn respectively. This defines a multiplication for generators of F(B, M) and

we have

LEMMA 1.1: Under the above compositions F(B, M) is a ring, the free ring

on B and M.

Proof'. By the definition of the product we have β(m,rmn) = {βmr)mni

mΛm-nβ) = (mrmn)βy and (mrβ)mn = mr{βmn), the latter because the product

was taken over B. In addition, Mr+n+p, (Mr x BMH) X εMp, and Mr x B(MH X BMP)

are all isomorphic under the identification of mr{ntnmp) and (mrnin)wip in

Mr+n+ρl see [2]. This assures associativity of the product. Distributivity of

the multiplication follows from the rules for Kronecker products, the fact that

F{B, M) is a {B} B) module, and the extension of the multiplication linearly

from generators of F(B,M).

The ring F(ByM) also has a natural topology. Let K(B, M) = K be the
CO CO

subset Σ M r ; clearly K is an ideal of F(B,M). We see that # 2 = Σ M r and
1

in general Kn = Σ Mr. Since K is the direct sum of the modules Mr, we have
n

that ΠKn=(0).
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DEFINITION 1.5: Let Kn

y n = 1, 2, . . . be a basis for neighborhoods of (0)

in F(B,M). With respect to tlίe topology generated by these neighborhoods,

we see that F(B, M) is a topological ring.

The following theorem shows that under certain conditions on B and M,

the free ring F(B, M) on B and M is segregated.

THEOREM 1.1: If B is separated in (S, Ma (B, B) module and F(B, M)

belongs to S then F(B, M) is segregated in (£.

Proof'. Suppose that A belongs to & and there exists θ : A -> F(B, M), a

ring homomorphism onto F(B,M). Since β is a subring of F(B,M)> the set

Θ~1{B) is a subring of A. Then θ maps Θ~1(B) onto B and there exists a sub-

ring A! of Θ~1(B) such that 0 restricted to Af is an isomorphism of A1 onto B.

This is because B is separated in (£ and therefore segreated ih (£. Let 0 be the

inverse of θ restricted to A', ψ : B -» A'.

Let iVi = Θ~1(M) in A. iVi can be considered as a (B, B) module under the

compositions nβ = w0(/3) and βw = φ(0)n for β in B and w in Nι. With this

definition, θ restricted to iVΊ becomes a {B, B) homomorphism of iVΊ onto M.

Let iVo be its kernel. Since B is separated, No has a complementary (B,B)

submodule N in Λ7! and θ restricted to N is an isomorphism of N onto M. Let

0i be its inverse, ψι: M-> N.

Let C be the subring of A generated by A' and N. Since A* = ψ(B) and

iVis a (B, B) module under this identification, AW ϋ N, NA1 ϋ N and in general

A'Nr i iVr and NrA' E Nr. Thus C has the form A' + iV + iV2 . . .. We shall

show that θ restricted to C is an isomorphism onto KB, M).
<x>

Since F(B, M) is a direct sum B + *ΣjMr, it is enough to show that 0 re-
1

stricted to Nr is an isomorphism onto Mr. Inducing on r, we already have that

θ restricted to N is an isomorphism onto M. Assume that θ restricted to Nr

is an isomorphism onto Mr and let ψr be its inverse.

Since θlψΛβmr) - ψ(0)ψΛmr)l = βmr - βmr = 0, and θtψr(mrβ) - ψΛmr)φ{β)~]

= mr0 — wίrβ = 0 and θ restricted to N7' is an isomorphism, we have ψr(βfnr) =

ψ(β)ψr(mr) and ψr(mrβ) = ΦΛπιr)φ(β), for β in B and mr in Mr. By defining

βnr = φ(β)nr and nrβ-nrφ(β), φr becomes a (B,B) isomorphism of Mr onto

Nr. Now define ψr+Λmrm) equal to φr(mr)φi{m) in iVr+1 for mr in Mr and m

in M. This induces a (B, B) homomorphism of Mr+i onto Nr+1 since both Pr
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and ψi are onto Nr and N respectively. Let nr be in Nr and n in JV, then the

elements of the form nrn generate Nr+ι. But ψr+iLθ(nrn)l = Φr+ιίθ(nr)θ(n)Ί =

ψΛθ(nr))φi(θ(n)) = ??rW> so 0r+i# is identity on generators of Nr+1 and θ restric-

ted to Nr+1 is an isomorphism. Also we have βψr+i{mrm) = θίφr(mr)φi{m)l =

r̂/w for generators ?τzr̂  of Λfr+i. Thus 0<̂ -+i is identity on Mr+i and β re-

stricted to Λrr+1 maps it onto Mr+i. This completes the induction and the proof

of the theorem.

We would like to prove a converse to Theorem 1.1, i.e. that every ring

segregated in & has the form F(B, M) where B is separated and M is a (B,B)

module. Since we have been unable to do this, we give next the closest thing

to a converse to Theorem 1.1 that we have been able to prove.

THEOREM 1.2: If S is segregated in & and S = B + L direct sum, where B

is a separated subring, L an ideal of S such that L- M+ L2, (B, B) direct sum

and M generates L as a subring, then if F(B, M) belongs to (£ S is a dense

subring of F(B,M).

Proof: We have F(B,M) = £-f MH-M24- . . . and we can define a ring

homomorphism θ of F(B,M) into S by θ(β) = β for β in B and θintiX . . . xmr)

= mi. . . mr for m\X . . . xmr in Mr and extending linearly to F\B,M). Since

L is generated by M and S = B + L, 6 is onto S.

Since F{B,M) is assumed to be in & and S is segregated in (£, there exists

So, a subring of F(B,M) such that θ restricted to So is an isomorphism. We

show that So is dense in F(B,M). Let ψ be the inverse of θ restricted to So,

ψ : S-»So^F(B, M).
CO

The kernel of θ is contained in K2 = Σ Mr because 0 restricted to B + M
2

is an isomorphism onto B + M in S and S is B-\-M + L2 (direct). Also for x

in FXB,M), x-ψ(θ(x))*is in the kernel of θ. Hence, for any set T in F(B,M)9

(1) T + kernelθ = φ(θ{T))+ kernel0 or

(10

Applying this equation when T = M, we have

(2) K = M+K2 = φ( β(M))

and when T = £ + ikΓ we have

(3) MS,Λf) = 5 + M + K2 = φ(d(B)) 4
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Equation (2) can be used recursively to show

(4) Kr^ψ(e{Mr)) + Kr+\

for assuming (4) and multiplying (2) and (4), we have

(5) Kr+1 = ψ(θ(M))ψίθ(Mr))+Kr+2 or

(5') Kr+1 +\

thus proving (4) by induction on r.

Using (2), (3), and (4) for r = 1, 2, . . . , n, we see

(6) F(B,M)=ψ(θ(B))+ibψ{d(Mr)) + Kn+1 or
1

(60 F(B, M) = ψ(β(F(B, M)))+ Kn+\

Since this latter equation holds for all n, ψ(θ(F(B,M))) =S 0 is dense in F{B,M).

The following lemma is useful in deciding when a ring is not segregated.

LEMMA 1.2: Let R be a ring and L an ideal of R with the property that

if a set S satisfies S -f L2 = L then S generates L as a subring. If L2=iP, P an

ideal of R^ (0), then R/P is not segregated in R under the natural homomor-

phism.

Proof: Suppose R0 + P=R a direct sum and Ro is a subring of R. Then

L Π Ro + P = L and L2 Π Ro 4- P = L\ Let S be the set {s I s e L Π i?0, 5 φ L2 Π i?0}

U (0), then S + L 2 Π β + P equals S+L2 = L. By the assumptions on £, S gener-

ates L. But S E Ro so L S i?0 and hence ( 0 ) ^ P i i ? o . This contradicts the

assumption that the sum i?o 4- P was direct.

In particular we note the following corollary to Lemma 1. 2.

LEMMA 1. 3: If a ring R contains a nilpotent ideal L and L2 ϋ P # (0), P

£m έrfέα/ ί'w i?, ί/ẑ ẑ R/P is not segregated in R under the natural homomorphism.

Proof: Let S-j-L2 = L. We show that S generates L as a subring. Lr+1 =

(0) so S r + 1 = (0), let Sθ - S U (0). By induction on n So + Ln+1 = ZΛ for assuming

this equation and multiplying by SQ + L2 = L, we have S%+1+ Ln+2 ^ Ln+\ The

distributive law holds for set multiplication because all the sets contain 0, see
r

[1]. But then ΣS? = I, so the subring generated by S is L. Lemma 1.2 then
1

gives the result.
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§ 2. Finite Dimensional Algebras over a Field

In the following we consider the class $Φ of algebras finite dimensional

over a field Φ. Here the concept of segregated is equivalent to segregated in

the usual sense [3]. Also we have

LEMMA 2.1: B is separated in $Φ if and only if B is separable.

Proof: We see that B is separable over Φ if and only if every (B,B)

module is completely reducible; this is equivalent to the vanishing of the first

cohomology groups of B, see [31 Also B separable implies B segregated [3].

Thus B separable implies B is separated in 8^. The converse is clear.

DEFINITION 2.1: The (J5, JB) module M is nilpotent if Mr = (0) for some r.

Clearly, in that case Mr+k - (0) for k ^ 0.

From the definition of F(B, M) if (B : Φ) < oo and (M: Φ) < °°, we have

(F(B, M) : Φ) < oo if and only if M is nilpotent. We now prove a structure

theorem for segregated algebras over Φ.

THEOREM 2.1: The algebra S is segregated over Φ if and only if S/N is

separable and S is isomorphic to F(S/N, N/N2), N the radical of S.

Proof: If S/N is separable and S is isomorphic to F(S/N, N/N2), then the

latter belongs to $Φ and by Theorem 1.1 it is segregated in gΦ.

Conversely, assume S is segregated. By Ikeda's Theorem [4], we have

S/N is separable. Then S can be written S = S' + M -f N2 where S' is a sub-

algebra isomorphic to S/N} and N^M+N2 where Mis the (S', SO complement

of N2 in N. The natural homomorphism of S onto S/N when restricted to S'

is an isomorphism and the natural homomorphism of Λf onto N/N2 is an iso-

morphism when restricted to M. Under these identifications it is clear that

F(Sf>M) is isomorphic to F(S/N,N/N2). It is more convenient to work with

the former.

By the proof of Theorem 1.2, there exists a homomorphism θ of F{S\M)

onto S, where the kernel of θ is contained in K2 = Σ Mr- Suppose that Nr+1 =
2

(0). Then the kernel of β contains KγJrn for n ^ 1. But then S is the homomor-

phic image of F(S', M)/Kr+n which is finite dimensional and has the nilpotent

radical K/KrSrn. Since S is segregated, Lemma 1.3 shows that kernel θ = Kr+n

for n ^ 1. But Kr+1 = Kr+2 implies that M is a nilpotent module and the al-
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gebra F(S', M) is finite dimensional. Theorem 1.2 then implies that S is iso-

morphic to a dense subring So of F(S\ M). But since Kr+ί = (0) the topology

is discrete and So = F( S', M).

The structure theorem just proved has an interesting corollary:

THEOREM 2.2: If S and T are segregated algebras over Φ, where N is the

radical of S and P the radical of T, then S and T are isomorphic if and only

if S/N2 and T/P2 are isomorphic.

Proof'. Clearly S and T isomorphic implies that S/N2 and T/P2 are iso-

morphic under the induced isomorphism.

Conversely, let S and T be segregated and let θ ' S/N2 -* T/P2 be an iso-

morphism. This induces an isomorphism of S/N onto T/P and each is sepa-

rable. Identifying isomorphic images, β restricted to N/N2 becomes an (S/N,

S/N) isomorphism onto P/P2

f where N/N2 and P/P2 are considered as (S/N,

S/N) modules. This induces an isomorphism of F(S/Ny N/N2) onto F(T/P,P/P2).

Theorem 2.1 then gives the result.

Addendum: For further investigations concerning algebras and rings with

these properties, see "On the Dimensions of Modules and Algebras, VII" by the

author and T. Nakayama, which appears later in this volume. This joint paper

is a combination of the author's rather meager results with some truely fine

investigations by Professor Nakayama. The author wishes to express his grati-

tude to Professor Nakayama for his generosity in making it a joint paper.
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