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UNSTEADY FLOW INDUCED BY A WITHDRAWAL POINT
BENEATH A FREE SURFACE
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Abstract

The unsteady axisymmetric withdrawal from a fluid with a free surface through a point
sink is considered. Results both with and without surface tension are included and placed
in context with previous work. The results indicate that there are two critical values
of withdrawal rate at which the surface is drawn directly into the outlet, one after flow
initiation and the other after the flow has been established. It is shown that the larger of
these values corresponds to the point at which steady solutions no longer exist.

1. Introduction

The study of withdrawal from stratified fluids such as those found in water storage
reservoirs, cooling ponds or solar ponds is important for both management planning
and water quality [17]. Our concern here is with the particular case in which the
stratification consists of two layers of different density and in particular where the
upper layer is air and the outlet is a point sink. Thus it is like the problem of water
flowing out of a bath tub. The equations are identical to the case of two layers of
different temperature (for example) in which the upper layer is assumed to be stagnant
[33] and where gravity, g, is replaced by a reduced gravity (moderated by the density
difference), that is, g' = (Ap/p)g, where Ap is the density difference and p is some
reference density [12].

It is known that in this situation all of the withdrawn fluid comes from the water
until a critical flow rate is reached after which air begins to be entrained into the
hole. In the bathtub example, this usually means the formation of a vortex, see for
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example Forbes and Hocking [4]. Experiments (performed in the two-layer fluid
situation) provide a range of different critical values (at which the transitions occur)
and flow patterns for the two-layer flow, depending on the geometry, density, type of
withdrawal (line or point sink), flow rate, initial configuration and a range of other
factors [7, 9, 11, 16, 18, 19, 20, 26, 31].

The main parameter that controls such flows into a point sink is the Froude number

where m is the sink strength, H is the sink depth beneath the undisturbed free surface
and g is gravitational acceleration. Note that m is the total flux into the point sink,
so increasing F means either increasing flow rate or decreasing the height of the fluid
above the sink.

In the analogous line sink case the equivalent parameter is

where fi is the withdrawal rate per unit width. In that case, steady-state flows have
been found to consist of two major types, cusp-like solutions [1, 10, 11, 24, 28, 30]
in which the free surface is drawn down into a cusp above the sink, and stagnation
point flows [3, 13, 22, 28, 30] in which it rises to a single stagnation point above the
sink. The unsteady version of this problem was considered in detail by Stokes et al.
[26] and Tyvand [29]. In summary, it has been found that at low values of F2D there
exist steady-state flows containing a stagnation point on the free surface (or interface).
As F2D rises (corresponding to higher withdrawal rate or shallower water depth), there
is a transition to a regime where no steady states exist. This unsteady regime ends
when a cusp solution forms at the Froude number just below the transition to a super-
critical flow in which the second layer is also drawn into the outlet [12, 14]. Unsteady
results also appear to indicate that there are two critical values of flow. It would seem
that if the value of F2D is large enough during initiation of the flow, the interface will
immediately draw down, but if not, it must wait until a higher value (assuming F2O

gradually increases as time proceeds corresponding to a drop in the water level).
Here we consider the three-dimensional analogue of this problem in which there

is a submerged point sink and the flow is radially symmetric. Calculations in three
dimensions are much more difficult than those in two dimensions, illustrated by the
relative scarcity of such solutions. To put this work in context we note that for
axisymmetric, subcritical flows the only existing known steady solutions are of the
stagnation point type in infinite depth [2] and in finite depth [6, 15]. Supercritical
flows including rotation can be found in Forbes and Hocking [4], while unsteady
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[3] Unsteady flow induced by a withdrawal point beneath a free surface 187

computations are given in Tyvand [29] and Xue and Yue [32]. The steady, subcritical
solutions all develop a standing wave close to r = 0 that rises up to be a secondary
stagnation line as the Froude number increases to the limiting value, F « 0.51. Note
that this Froude number is defined differently (by a factor of 4n) to that used in Forbes
and Hocking [2]. Beyond this, no steady states of any kind have been found. No cusp
solutions or general two-layer flows have been obtained for these axisymmetric flows,
although some similar flows have been computed [4, 5].

It is the aim of this paper to investigate the axisymmetric case more deeply using
numerical techniques to analyse the unsteady flow. The numerical method is validated
by considering the first terms of relevant small time expansions, using an approach
similar to that of Miloh and Tyvand [21]. Comparison with asymptotic and numerically
computed steady states provide further validation of the method.

Evidence will be given to suggest that, as in the line sink case [26], there are
two critical drawdown values of the Froude number. One of these is related to the
initiation of the flow, and the other to the case of a fully developed flow subject to an
increase in Froude number (such as when the level of the water drops). These results
may help to explain the diversity in critical values obtained in experimental results
[7,9,11,16,18,19,20,31].

In addition, the flow with surface tension acting on the free surface will be con-
sidered. These results will also be compared with earlier steady results [2]. It turns
out that the inclusion of surface tension on the free surface has a stabilising effect that
improves the distinction between different types of solutions.

2. Problem formulation

In this paper we consider the axisymmetric, unsteady, irrotational flow of an in-
viscid, incompressible, (infinitely) deep fluid into a point sink beneath a free surface.
The assumption of radial symmetry means the problem can be reduced to finding the
free surface profile as a function of radial distance from the origin.

2.1. Model equations A point sink is initially situated at a depth H beneath the
undisturbed level of the free surface and has strength m. The free surface is assumed to
have surface tension S, although this parameter will often be set to zero. The problem
is to find the velocity potential <t>(r, z, t) within the fluid beneath the free surface with
kinematic and dynamic conditions on the surface and subject to the existence of the
point sink at z = — H.

Nondimensionalising the potential, time and length with respect to (m/4nH),
(4nHi/m) and H respectively, the problem becomes that of solving

V20 = O, z<r,(r,t), (r,z)j£ (0,-1), (2.1)
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subject to

and
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2 if) '

1,+(prrir-<t>z = 0 o n z = i ( r , t ) ,

with the extra condition that

4> -> (r2 + (z + 1)2)"'/2 as (r, z) -»• (0, -1 ) ,

= 0 on z = T)(r, t) (2.2)

(2.3)

(2.4)

since the sink is situated at z = —1 in the new system, and z = r\(r, t) is the location
of the free surface. Equation (2.3) is the dynamic condition and Equation (2.4) is the
kinematic condition. The important quantities are then the Froude number, F, and the
nondimensional surface tension, fl = S/(gH2).

Figure 1 shows the flow configuration including the results of actual calculations of
free surface shape at two different times (r =0.18,0.32) when F = 0.3 and ft = 0.

Radius (r)
(a) I = 0.18

1 0
Radius (r)

(b) t = 0.32

FIGURE 1. Free surface profiles for F = 0.3, fi = 0; numerical simulations —, small time expansion - -.
The sink is located at z = — 1.

It remains to consider the initial conditions on the flow. If the fluid is at rest it will
initially have a horizontal surface, that is, r)(r, 0) = 0. However, there are several
possible initial conditions on <p(r, z, t).

Miloh and Tyvand [21] and Xue and Yue [32] chose to use the condition that the
potential on the free surface (interface) is constant, so that

r > 0 , (2.5)

on the basis that this is the case before the sink flow is initiated. This has the effect
of imposing a purely vertical initial motion on the free surface, as if an image source
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were placed at z = 1. Their results can be found in the cited works, and so we will
only consider them as a comparison to the present results.

An alternative initial condition (see Stokes et al. [26]) is obtained by considering
the initial flow to be the potential due to the line sink. It is known that in stratified
flows, the initial flow is potential until buoyancy takes effect [33]. Thus along the free
surface we obtain the potential due to the sink flow, that is,

4>(r, 0,0) = (r2 + l)- ' / 2 , r > 0. (2.6)

These two initial conditions lead to very similar qualitative behaviour. Initial pulse
amplitudes on the free surface are of the order of the Froude number, O(F). The
condition of Miloh and Tyvand [21] leads to slightly higher amplitudes but retains
this general dependence. Drawdown occurs at different, but similar, values and the
general wave behaviour is the same.

A third possible initial condition is one for which the vertical motion of the interface
is suppressed, so that

fc(r,0,0)=0,r>0. (2.7)

This is equivalent to placing a rigid lid on the surface, starting the withdrawal and
then removing the lid once the flow is established. This leads to disturbances of
order O(F2), a much smaller disturbance in general than the other two cases. Stokes
et al. [26] speculated that this would correspond to a situation in which the flux was
increased very slowly from zero up to the value of interest. The initial condition is
equivalent to initially assuming that

0(r,Z,O) = (r2 + (Z + l)2)-1/2 + (r2 + ( z - l ) 2 ) - ' / 2 , r > 0, (2.8)

which can be viewed as placing an "image sink" of equal magnitude as the submerged
sink and directly above it, one unit above the interface.

The numerical experiments shortly described show that the choice of initial con-
dition continues to have an effect even if the flow rate is increased fairly rapidly (by
increasing F) from zero to some constant value. However, if the flow rate is increased
from zero to a small value, then allowed to settle, and then ramped up again, the flow
behaves completely differently, and becomes independent of the initial condition, that
is, (2.6) or (2.5), and behaves like the simulations using (2.7)! Since in many applica-
tions this would be the real situation (for example in a reservoir, withdrawal is rarely
zero, but moves from low to high and high to low depending on the time of day), it is
of great interest to study this situation.
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3. Small time expansions

In this section we compute the first two terms in the small time expansions for the
two situations of interest to us. The "single sink" case, with initial condition (2.6)
has a sink beneath the surface at (0 , -1 ) , while the "image sink" case has this as
well as an image sink situated at (0, 1) outside of the fluid domain, in order to satisfy
condition (2.7). These calculations, together with the results given in Miloh and
Tyvand [21] using (2.5), provide a useful study of the initial behaviour of the free
surface and a check on the numerical method over relatively short times.

3.1. Series solution in the general case We seek solutions of the form

2 -- (3.1)

and

<t>{r, z, t) = <(>o(r, z) + r0,(r, z) + t2<h(r, z) + • • • . (3.2)

Expanding (3.2) in z about z = 0 gives

4>(r, z, t) = <po(r, 0) + t4>i(r, 0) + t2(p2(r, 0) + • • •

+ Z(t>oz(r, 0) + zt<piz(r, 0) + zt24>2t(r, 0) + • • •

+ \z2<j>0zi(r, 0) + l-z2t<f>Ul(r, 0) + X-Z2t2<t>2lz{r, 0) + • • • .

Equation (3.1) is substituted into this expression and into the equivalent expressions for
<!>,, <pr and <t>z, and the result is incorporated into (2.2) and (2.3). Equating coefficients
of powers of t up to degree zero in (2.2) and degree one in (2.3), we find <j>, = 4>u
(f>r = (f>Or and <pz = <j>Oz + t(j>Xz + z<t>ozz, where all are evaluated on the line z = 0 at time
t = 0. Now substituting (3.1) into each of these three equations and substituting the
result into (2.2), collecting powers of/ and equating the constant term and coefficients
of t to zero we obtain the dynamic condition

0. + \ (4>l+&)= 0, o n z = 0. (3.3)

Similarly, substituting into (2.3) and equating coefficients to zero gives the kinematic
condition at first order as

i7, -4>Oz = 0, on z = 0, (3.4)

and at second order,

~4>lz - *)l4>0zz + 1\r4>0r + 2r)2 = 0 , Oil Z = 0 . (3.5)

Thus it is possible to determine »ji from the kinematic condition (3.4), <f>\ from the
dynamic condition (3.3) providing <f>o is known, and then rj2 from the second-order
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kinematic condition (3.5). Notice that F and ft do not appear in these terms, so that
gravity and surface tension do not play a role in the early part of the flow.

3.2. Single sink case Here we assume, consistent with initial condition (2.6), that

1
<Po(r, z) = (z+O2)1/2'

representing a point sink immersed in the fluid at (0, —1). (Recall that the fluid-free
surface is at z = 0 initially.) The first-order kinematic condition, (3.4), then gives

1

Figure 2 shows a plot (solid line) of a cross-section of this shape. Thus a dip forms
and grows linearly with time.

5 4 3 2 1 0 1 2 3 4 5

FIGURE 2. Surface deflection coefficients rji(r) (solid) and r)2(r) (dashed) for the single sink case, with
initial condition (2.6).

The second-order kinematic condition (3.5) yields

and hence we must determine <p\z(r, 0).
Using the first-order dynamic condition from (3.3), we obtain

This condition and the Laplace equation for <f>i is solved by means of the Hankel
transform to give

<Pi(r,z) = j e"J0(xr)x\f <t>ds,0)J0(xs)s dsLf h
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However, it is 4>\z(r, 0) we seek; differentiating under the integral and letting z = 0
gives

JO

x)dx

= - ~ ((7 - 8*2)£2(*) - 4(1 -

where it = r /Vr2 + 1, and £i(&), £2(£) (sometimes denoted as F(k) and E(k), re-
spectively) are the complete elliptic integrals of the first and second kinds respectively.
In the above, the inner integral on the first line was evaluated using Gradshteyn and
Ryzhik [8, page 686]. Here, K{ is the modified Bessel function of the second kind of
first order. The final integral comes from Prudnikov et al. [23, page 366].

We now have a closed form for r)2, shown as a dashed line in Figure 2. Note that
this term reinforces the first-order dip. We expect that higher order terms might act to
oppose this initial dip.

3.3. Image sink case In this section we assume there is an image sink situated
above the free surface, thus satisfying initial condition (2.7), so that

<f>o(r, z) = , , . ,_ +
(r2 + (z - l)2)'/2

In fact this imposes a condition of no vertical component of velocity at / = 0 on
z = 0, as if a rigid lid was on the free surface and then instantaneously removed. This
turns out to provide a simulation very similar to results of any case in which the initial
flow was turned on, allowed to approach a steady state, and then the withdrawal rate
increased to the level of interest. The first kinematic condition gives fji(r) = 0, since
the initial vertical velocity of the free surface is everywhere zero.

The second kinematic condition gives r)2(r) — </>u(r, 0), and the first-order dynamic
condition gives

•0) = -(PTTp = "

Again using the Hankel transform and Gradshteyn and Ryzhik [8], we obtain

4>lz(r,0) = - f k3J0{xr)K,{x)dx+X- [ k4J0(xr)K2(x)dx
Jo 4 Jo
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which from Prudnikov et al. [23] is evaluated in terms of complete elliptic integrals as

(f>u(r, 0) = ^ 3 (2(19 - 44*2 + 24*4)E2(*) - (1 - *2)(23 - 24*2)£,(jfc))

" ; j ( ( 7 - ^2)E2(k) - 4(1 -

again with k = r/y/r2 + 1. This gives rise to the second-order profile z = t]2{r) as in
Figure 3. Note that the initial behaviour is for the central region to rise upward due to
the low pressure generated on the surface above the sink.

1 0 1
Radius (r)

FIGURE 3. Surface deflection coefficient ^ ( r ) for the image sink case, with initial condition (2.7).

4. The numerical method

We performed a series of simulations using an approach similar to that of Stokes
et al. [26] for the two-dimensional line sink case, based on the method described in
Scullen and Tuck [25] and Tuck [27]. It is a semi-Lagrangian approach in which we
follow the evolution of concentric rings centred above the sink on the free surface
subject to an evolving potential. (Radial symmetry guarantees that all points on such a
ring have the same elevation.) We use a recursive process to update the global velocity
potential and the heights of the N rings on the free surface at each time step. We can
specify the position of one such ring by giving its radius and height, thereby reducing
the description of the free surface to two parameters.

4.1. Equation formulation Initially, we assume the sample rings are at rest and in
some fixed positions (# f \ Z'0)) on the free surface. We then impose an instantaneous
velocity potential function <f>m(r, z) that assumes the presence of some sources and/or
sinks.

https://doi.org/10.1017/S1446181100009986 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009986


194 T. E. Stokes, G. C. Hocking and L. K. Forbes [10]

The recursive step modifies each ring's position and the value of the potential
function at it and hence everywhere in the fluid (by solving a Dirichlet problem).
Thus if at time step t, the /'th ring has coordinates (R?\ Zf') and the global velocity
potential is </><0(r, z) at all points (r, z) in the fluid, so that <&,-() = 4>(RJ'\ Z,'") is the
velocity potential function at the j'th point on the surface, then the time evolution of
all points is given by (dropping the time superscript for simplicity)

—7— = Mi» — • — vi a n d — • = ~[("i)2 + (fi)2] — F~2(Zi •

Here «, = <t>r(Ri, Z,), u, = <&(/?,, Z,) and 7} is a surface tension term computed
numerically from the current set of free surface points, using the formula

where (r, z) specifies a ring of points on the free surface and the derivatives are with
respect to r following the free surface. (We used finite differences to perform these
slope and curvature calculations.) Hence the values of /?,-, Z; and $, can be evolved
forward one time step. The task remains to determine </>(/+1) from the <J>|'+1) values
just computed. To do this, we must solve a Dirichlet problem.

Assume radii and elevations P, = (/?,, Z,) for the TV free surface rings of points at
time step t, and values 4>, for 4> given at each. Choose the ring sink with radius and
elevation (p,, £,-) just "above" the free surface ring given by (/?,, Z,) and approximately
normal to the surface. (The exact means of determination in order to optimise the
numerical performance is discussed later.)

The potential at a given point (r, z), due to the sinks one unit above and below the
origin are <t>Sl (r, z) = (r2 + (z + l)2)"l/2, <t>J2(r, z) = (r2 + (z - 1)2)"1/2, respectively.
Additionally, for the j l h ring sink, the contribution to the total potential at the point
(x, y, z) = (r cos or, r sin a;, z) will be

<t>.fr 7) — I 8i AQ
h [r2 + p2 + (z-Si)

2-2rpicos(0-a)y2 '

multiplied by a strength factor to be determined.
Each such integral can be expressed as a linear combination of elliptic integrals of

the first and second kinds, and evaluated using standard series expansions.
Thus we assume a series that satisfies Laplace's equation everywhere within the

fluid, of the form

<f>(r, z) =

Here, 5, is 0 or 1 (or to repeat the results of Miloh and Tyvand [21], 5, = -1) . The
source strengths qt are unknown constants that are determined once the values of <p
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are given at N distinct points, from which we obtain N linear equations in the qt and
solve to give 4>(r,z).

Differentiating under the integral signs in the previously obtained expression for <f>
allows us to compute u = <j>r and v = <f>z, which again can be readily computed in
terms of elliptic integrals. This allows us to compute the M, and u, at time t + 1.

4.2. Computational details We followed Scullen and Tuck [25] and Tuck [27] in
distributing the discrete points along the free surface with even spacing near r = 0
and a geometric increase in spacing beyond a certain point. The sink locations were
chosen very much as in [26]. It was found that including a point sink above the surface
at r = 0 caused numerical instabilities, and so the smallest radius ring sink was placed
at r = Sr/2, where Sr was the local surface point separation distance. It was found
that reliable simulations could be obtained if the distance of the ring sinks above the
free surface was chosen to be double the local grid spacing, that is, 2Sr. Splines were
used to re-position points along the free surface according to the original /?-spacings,
using an arclength-type calculation as described in [26].

The combination of a wide computational domain and small time steps was suffi-
cient to ensure reliable, converged results. Typically, a time step of St = F/20 was
adequate for simulations with no surface tension (/} = 0). However, the introduction
of even a modest amount of surface tension necessitated a large reduction in step size,
for example with fi = 0.05, St = F/300 was required. The difference was due to
the appearance of the second derivative in the surface tension term. If the space step
Sr was made too small relative to the time step, the solutions began to exhibit some
numerical instability, so the space increment Sr = 0.025 was used in most cases.
(Recall that the sink depth is one unit.) The values of N, the total number of points
in the computational domain, and N\, the number of evenly spaced points before the
geometric expansion outward, never exceeded 200 and 100 respectively.

A Newton iteration scheme was developed based on this distributed sink technique,
in order to generate steady solutions. If the number of discrete points used to represent
the surface was n, the z-coordinates and the coefficients qt of the sink terms were
used as unknowns at fixed values of x. The equations to be satisfied are the steady
components of Bernoulli's equation, (2.2), and the kinematic condition, (2.3), both to
be satisfied at each of the n points. Laplace's equation is satisfied by the choice of
the basis functions. This gave 2n equations in 2n unknowns, and the usual iterative
Newton scheme was implemented. On most occasions, the starting values of the sink
strengths were set to zero and the surface height was set at z = 0.

We used Fortran77 to perform the simulations and then viewed the results using
MATLAB. The result was a series of "movies" of the evolution of the free surface in
cross-section.
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5. Results of numerical experiments

[12]

5.1. The single sink case Here we used initial condition (2.6). Regardless of
Froude number F and surface tension coefficient fi, the free surface was always
initially pulled downwards at r = 0 by an amount having magnitude of order O(F),
in excellent agreement with the small time expansion. If F was large enough the
surface would draw down, and at smaller values it would rebound: see Figure 1.

In the zero surface tension case, for F > 0.28, there was a direct drawdown of the
free surface into the sink, with the central point leading the way. For F < 0.27, the
free surface rebounded as a precursor to either a gradual movement to a steady state
or perhaps to some unsteady flow, possibly involving breaking waves (see Figure 4).
The work of Miloh and Tyvand [21] and Xue and Yue [32] gives qualitatively similar
results, but the critical values are lower.

Radius(r)

FIGURE 4. Single sink case with F = 0.22, p = 0, t = 0.58 just before breakdown, showing small
breaking waves.

The picture was not changed radically with the introduction of surface tension,
although the critical drawdown value increased with /}, and for subcritical F the
simulations generally ran longer and moved more clearly towards steady states due to
the smoothing effect of the surface tension.

The lowest curve on Figure 5 shows the critical value of F for drawdown as
a function of 0 (solid line), indicating a smooth increase with increasing surface
tension, similar to what was found in the line sink case [26]. (Figure 5 also shows
results for the image sink case discussed below.)

An interesting sidelight to these results is that there appear to be two critical depths.
If (and only if) no point on the surface dropped below z = —0.5, drawdown was
averted regardless of p. In addition, if the level of the free surface did not drop below
z ~ —0.25, then the central point was always the global minimum, while if the central
point dropped below this point, then the global minimum would occur away from the
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0.2 0.4 0.6
Surface tension (fi)

0.8

FIGURE 5. Critical Froude number, F, against surface tension, fi, for the ramped up image sink case, from
simulations (solid top curve—minimal F to guarantee drawdowns), dashed curve maximal F for possible
steady states from Newton's method, and the single sink critical Froude number, F\ (lowest curve).

centre as other points continued to drop after the. centre had rebounded.

5.2. The image sink case Here we used initial condition (2.7). In all cases, there
was an initial upward movement of the central point of size O(F2), and a dip in the
surface at around r = 1. For ft = 0, agreement with the small time expansion was
good for sufficiently small time.

The picture regarding drawdown was more complex. There appeared to be two
kinds of drawdown, direct and indirect. In the indirect drawdown case, a ring of points
offset from the origin would draw down first, with a cigar-shaped region directly above
the point sink being pinched off: see Figure 6 (a). Such indirect drawdowns occurred
for higher values of the Froude number.

0.5

U
-0.5

A

-0.5

2 1 „ , . 0 % 1 2

Radius (r)

(b) F = 0.38, / = 0.85

FIGURE 6. Image sink case: two profiles with fi = 0 and different large F.

1 „ j .O s 1
Radius (r)

(a) F = 0.78, t = 0.88
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For ft = 0, the value F = 0.38 seemed significant. Above this value, the free
surface was still descending at the moment the simulations broke down, suggesting a
drawdown was likely, and the higher the Froude number, the more likely it appeared
that this drawdown would be indirect (Figure 6 (a)). At around F = 0.38, the central
point slowed to a stop before the breakdown, and there was no sign of a continued
descent anywhere along the surface, with a breaking wave apparently the cause of the
breakdown of the numerical scheme (Figure 6 (b)). Below the value F « 0.38, the
simulations ran for progressively longer periods before breakdown (due to reflections
from the boundary of the computational domain), and for sufficiently low values
of F would settle toward a steady state. Such steady states were computed using
Newton's method up to F < 0.32. Figure 7 shows a comparison between them and
the simulations at (a) F = 0.14, t = 1.5 and (b) F = 0.07, t = 1.5. The simulation
in case (b) is very close to the steady solution, and even (a) looks likely to reach the
steady solution once the few remaining small waves propagate away. As F increased,
it became more difficult to decide what would happen.

xIO- xlQ-
2

1

0

- 1

- 2

- 3

- 4

3

^ ^

2 1

(b)F

_/V

Radius (r)
= 0.07, t =

^ - ~

1 2 3

1.5

FIGURE 7. Image sink case: two profiles with /} = 0 and different small F. The dashed lines are known
steady solutions.

Now it is known that steady states exist up to F % 0.50: see [2]. This suggests that
at least some of those steady solutions may be unstable flows, or simply cannot be
reached as the evolution of a sink flow. Alternatively, it could be that after a transient
phase in which there may be breaking waves, the flow will approach a steady flow
right up to F = 0.50.

The introduction of moderate to high amounts of surface tension made things much
clearer, with critical values for the two kinds of drawdown becoming clearly defined,
and movement to a steady state appearing likely for F below the lower of these critical
values. For surface tension (5 > 0.05, steady solutions (calculated using Newton's
method) appeared to exist right up to and slightly beyond the critical drawdown
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values. For example, for ^ = 0.1, movement to a steady state appeared to occur
for F < 0.54, a direct drawdown appeared to occur for 0.54 < F < 1.15, and an
indirect drawdown involving the pinching off of a cigar-shaped region occurred for
greater Froude numbers. Figure 8 shows the free surface profiles around the time of
breakdown for F = 1.25, 1.15 and 1.14 respectively, with ^ = 0.1.

Radius (r)

(c)F = 1.14

FIGURE 8. Image sink case: three profiles near the critical value of F for direct drawdown, /3 = 0 . 1 .

5.3. Variable flow conditions A series of simulations was carried out in which
the flow was initiated at some small value F) (using each of the initial conditions
considered above), allowed to reach a quasi-steady state, and then subjected to a large
increase in F to Ff » Ft. It was clear that such flows behaved almost exactly like the
image sink case just discussed with initial condition (2.7), run from t = 0 and with
the final value Ff prevailing throughout.

Also considered was an image sink case in which the flow rate was varied, starting at
one low Froude number, then slowly increasing up to some final value (corresponding
either to a gradual drop in the level of the free surface or a gradual rise in the withdrawal
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rate). The free surface appeared to evolve through the corresponding steady states
leading to movement to a steady state over a slightly wider range of (final) Froude
numbers. These simulations also produced slightly higher critical drawdown values
of F, almost completely closing the small gap between critical drawdown value and
largest F for which steady states could be found (at least for fi > 0.05). The resulting
critical values of Froude number F are those in Figure 5 (the upper solid curve). The
dashed curve indicates the largest value of F for which steady states were found using
Newton's method.

6. Conclusions

These results are very similar to the line sink situation [26]. In both cases there are
at least two effective critical values of Froude number depending on the flow history.
Drawdown from an impulsive start depends on the initial dip formed in the surface,
but if this is avoided, then the flow will progress for some time (up to a higher Froude
number) before eventual drawdown. Coupled with the results of Miloh and Tyvand
[21] and Xue and Yue [32], who used different initial conditions, it suggests that flow
history is important in understanding the drawdown behaviour, and may be the reason
for the many different critical values obtained in experiments. It also suggests that an
analysis of the stability of the existing steady-state flows may be very enlightening for
understanding the process.

The most intriguing result of this work is that once the solution has approached a
steady state, if the flow rate is gradually varied upward, there is an apparent progression
through steady-state flows rather than any initiation of significant surface oscillations.
This means the existing steady-state solutions [2] provide a very useful representation
of the flows.

This has particular relevance to reservoir flows, since withdrawal from a reservoir
rarely begins from rest. Thus if the flow ever approaches a steady state, it will
henceforth behave like the image sink case, that is, if the flow-rate begins below the
drawdown value for a single sink, then the free surface (or interface) will move through
the appropriate steady states with disturbances of 0{F2) as the flow rate is adjusted,
rather than initiating a new set of O(F) waves. In particular, drawdown will occur at
the higher values depicted in Figure 5 rather than the lower values.
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