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HIERARCHICAL INCOMPLETENESS RESULTS FOR
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Abstract. There has been a recent interest in hierarchical generalizations of classic
incompleteness results. This paper provides evidence that such generalizations are readily
obtainable from suitably formulated hierarchical versions of the principles used in the original
proofs. By collecting such principles, we prove hierarchical versions of Mostowski’s theorem
on independent formulae, Kripke’s theorem on flexible formulae, Woodin’s theorem on the
universal algorithm, and a few related results. As a corollary, we obtain the expected result
that the formula expressing “T is Σn-ill” is a canonical example of a Σn+1 formula that is
Πn+1-conservative over T.

§1. Introduction. There has been a recent interest in hierarchical generalizations
of classic incompleteness results [5, 23, 27, 40]. A sample result, generalizing the
Gödel–Rosser incompleteness theorem, and independently proved by both Kikuchi
and Kurahashi [23] and Salehi and Seraji [40], is:

Theorem 1.1. Let T be a Σn+1-definable, Σn-sound extension of PA. Then there is a Πn+1

sentence that is undecidable in T.

In this paper I argue that such hierarchical generalizations can often be obtained from
the original proofs by replacing certain principles used in the proofs by appropriately
formulated hierarchical versions, while the essence of the arguments remains the same.
The hierarchical principles, once appropriately formulated, are in turn often provable
by appropriate generalizations of the core concepts employed in the proofs of the
ordinary ones, but even so, there is no single source to which to turn for them. Both
Smoryński [45] and Beklemishev [1] give good partial accounts of the syntactical side,
and Poizat [35] gives a hierarchical perspective on the basic model theory of arithmetic,
including model-theoretic proofs of hierarchical versions of Gödel’s first and second
incompleteness theorems. Still, I find certain aspects lacking. With this in mind, one
aim of this paper is to collect a number of principles that may be useful to the reader who
herself wishes to prove hierarchical incompleteness results without having to reinvent
the wheel.

These principles are then put to use to prove a number of general incompleteness
results for arithmetically definable extensions of fragments of PA. The goal is not to
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HIERARCHICAL INCOMPLETENESS 625

prove the sharpest or most general results (in fact some of the results follow from
each other), but rather to exemplify how the hierarchical principles enter into more or
less well-known proof methods. Even so, the results presented here improve on some
results of Chao and Seraji [5], Kikuchi and Kurahashi [23], and Salehi and Seraji [40],
and sharpen some of Blanck [3], Hamkins [18], Lindström [28], and Woodin [48].
These sharpenings are in terms of gauging the amount of induction needed for
the proofs, bringing the (in this particular sub-field largely ignored) fragments-of-
arithmetic perspective to attention.

In order to state the results in a more general form, I have chosen to consider only
extensions of IΔ0 + exp, although under the somewhat unusual name IΣ0 + exp. This
allows for formulating results for extensions of, e.g., IΣn + exp, ensuring that partial
satisfaction predicates are well behaved even for n = 0. While it is sometimes possible
to push the background theory below IΣ0 + exp, I have refrained from doing so, to
instead focus on the more general hierarchical picture.

§2. Notation and conventions. The expressions ∃x ≤ tφ(x) and ∀x ≤ tφ(x) are
used as shorthand for ∃x(x ≤ t ∧ φ(x)) and ∀x(x ≤ t → φ(x)), where t is some term
in the language of arithmetic. The initial quantifiers of these formulae are bounded and
a formula containing only bounded quantifiers is a bounded formula. Let Δ0 = Σ0 = Π0

be the class of bounded formulae.
The arithmetical hierarchy is defined as follows. A formula is Σn+1 iff it is of the

form ∃x1 ... xm�(x1, ... , xm) where � is a Πn formula (that may contain other variables
than x1, ... , xm). Similarly, a formula is Πn+1 iff it is of the form ∀x1 ... xm�(x1, ... , xm)
where � is a Σn formula. Δn(M) (Δn(T)) is the set of Σn formulae that are equivalent to
Πn formulae in a given model M (theory T). Throughout the paper Γ denotes either
Σn+1 or Πn+1, and we always assume only that n ≥ 0.

Theories are understood as sets of sentences, thought of as the set of nonlogical
axioms of the theory. IΣn is the theory obtained by adding induction for Σn formulae
to Robinson’s arithmetic Q, while IΣ0 + exp is Q plus Σ0-induction plus an axiom
stating that the exponentiation function is total. We assume that all theories denoted
T, etc., are consistent, arithmetically definable, extensions of IΣ0 + exp.

T is Γ-sound iff for all Γ sentences γ, if T � γ, then N |= γ. The converse implication
is sometimes known as Γ-completeness: hence T is Γ-complete iff for all Γ sentences γ,
if N |= γ, then T � γ. S is Γ-conservative over T iff for all Γ sentences γ, if S � γ, then
T � γ.

We rely on a coding of finite sets and sequences in IΣ0 + exp, as developed
by Hájek & Pudlák [17, chap. I.1]. The set Σ0(X ) is obtained by adding atomic
formulae of the form t ∈ X (where t is any term) and closing under propositional
connectives and bounded quantifiers. The set Σ1(X ) is obtained from Σ0(X ) in the usual
manner.

Let ε be Ackermann’s membership relation: nεa expresses “the nth bit of the binary
expansion of a is 1.” In other words, a can be regarded as a code for the set consisting
of all n such that nεa. Then a is a z-piece of φ(x) if ∀n < z(nεa ↔ φ(n)).

If φ(x) is any formula, �φ(x)� denotes the numeral for the Gödel number of φ(x)
under some fixed Gödel numbering, but we make no typographical distinction between
natural numbers and the corresponding numerals. We use Feferman’s dot notation
�φ(ẋ)� to represent the Gödel number of the sentence obtained by replacing the
variable x with the actual value of x; hence x is free in �φ(ẋ)�. The notation := is used
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626 RASMUS BLANCK

to express equality between formulae. Let � := 0 = 0 and ⊥ := ¬�. Let φ0 := ¬φ and
φ1 := φ. 1

A relation X is numerated in T by a formula φ iff X = {〈k1, ... , kn〉 ∈ �n :
T � φ(k1, ... , kn)}, and binumerated by φ in T if ¬φ also numerates the complement
of X. A relation X is correctly numerated by φ if φ numerates X and for all k1, ... , kn,
T � φ(k1, ... , kn) iff φ(k1, ... , kn) is true. A function f is strongly representable in T iff
there is a formula φ(x1, ... , xn, y) that numeratesf(x1, ... , xn) = y in T, and moreover,
if f(k1, ... , kn) = m, then T � ∀y(φ(k1, ... , kn, y) → y = m).

Given a formula �(z), let Prf�(x, y) be a formula expressing “y is a proof of the
formula x from the set of sentences satisfying �(z).” Let Pr�(x) be the formula
∃yPrf�(x, y), and let Con� be the sentence ¬Pr�(�⊥�). Whenever �(z) is Σn+1, Pr�(x)
is equivalent to a Σn+1 formula in the real world. For any formula �(x), the notation
(� + z)(x) is used as shorthand for �(x) ∨ x = z. This convention is used in expressions
such as Prf�+z(x).

Models of arithmetic are denoted M, etc., while the respective domains are denoted
M, etc. The standard model is denoted N and its domain is �. If M is non-standard,
then the standard system of M, SSy(M), is the collection of sets X ⊆ � such that for
some a ∈M , X = {n ∈ � : M |= nεa}. Then X is coded in M, and a is a code for X.

A relation X ⊆Mn is Γ-definable in M (with parameters) iff there is a tuple
b ∈M and a formula φ(x1, ... , xn, y) ∈ Γ such that X = {〈m1, ... , mn〉 ∈Mn :
M |= φ(m1, ... , mn, b)}. Whenever this terminology is used without specifying a model
M, it is assumed that M = N. Thus, in particular, a Γ-definition of a theory T is a Γ
formula �(x) such that T = {φ : N |= �(�φ�)}.

For each Γ, ThΓ(M) is the set of Γ sentences true in M, that is, the set {φ ∈ Γ :
M |= φ}. If M is a submodel of N , and for all a ∈M and γ(x) ∈ Γ, M |= γ(a) iff
N |= γ(a), thenN is a Γ-elementary extension of M. IfM |= � for some Σn+1 sentence
�, and N is a Σn-elementary extension of M, then N |= �. N is an end-extension of
M (or, equivalently, M is an initial segment of N ) iff M is a submodel of N , and
whenever a ∈M and b ∈ N , and N |= b < a, then b ∈M .

Let ∅(n) denote the nth Turing jump of the empty set (see, e.g., [39, p. 254]). For
each n, let 〈ϕni : i ∈ �〉 be an acceptable (in the sense of Rogers [39, exercise 2.10])
enumeration of the functions that are recursively enumerable (r.e.) in ∅(n); these are the
partial n-recursive functions. For each partial n-recursive function ϕne , let the eth n-r.e.
setWn

e be the domain of ϕne . If f is a function such that f � ϕne for some e, then e is
an n-index for f.

§3. Preliminary principles. This section presents a number of suitably formulated
principles that are useful in proving hierarchical incompleteness results of the kind
given in Theorem 1.1. The basic versions of these principles can be found scattered
across the literature, and none of them should be too surprising to the reader familiar
with, e.g., Hájek and Pudlák [17], Kaye [22], Lindström [29], and Smoryński [45].

The essence of the generalizations presented in this paper is that r.e. theories are
replaced by Σn+1-definable ones, and that the base theory is pushed down as far as it

1 The literature is not in total agreement about this convention. We follow Hájek and
Pudlák [17], while for example Lindström [29] has it the other way around. The mnemonic
here is that the superscript 1 signals that φ occurs positively.
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HIERARCHICAL INCOMPLETENESS 627

will go below PA. On some occasions the theories have to satisfy additional constraints
such as Σn-soundness or Πn-completeness for the generalization to go through, and
whenever this is the case that will be pointed out explicitly.

3.1. Basics, representability, recursion theory. Many textbooks in metamathematics
rely on some version of the fact that Robinson’s arithmetic Q is Σ1-complete: it proves
all true Σ1 sentences. This has the consequence that every r.e. set can be numerated in
Q by a Σ1 formula, which in turn allows for representing the theorem set of Q in Q and
proving the first incompleteness theorem. Many proofs of these facts rely on Δ0 being
closed under bounded quantification, and Q deciding all Δ0 sentences.

Since the aim of this paper is to generalize incompleteness results to Σn+1-definable
theories rather than r.e. ones, there is a need for establishing a similar correspondence
between Σn+1-definable sets and theories sufficient to represent them. On these higher
levels, the roles of Δ0 and Q are played by the classes Σ0(Σn) and the theories IΣn +
ThΠn (N), respectively. Establishing this relationship is the goal of this subsection.

The following four observations (see, e.g., [43, lemma 0.3], [16, lemma 2.2], [1, lemma
2.9], [23, proposition 3.7]) serve as the starting point for the analogy between Q and
IΣn + ThΠn (N).

Fact 3.2 (Basic properties of soundness and completeness).

1. T is consistent iff T is Σ0-sound.
2. T is Πn-complete iff T is Σn+1-complete.
3. T is Σn-sound iff T is Πn+1-sound iff T + ThΣn+1(N) is consistent.
4. If T is consistent and Πn-complete, then T is Σn-sound.

While the usual formulation of Gödel’s theorem pertains to r.e., consistent theories,
the hierarchically formulated Theorem 1.1 is stated for Σn+1-definable, Σn-sound
theories. In light of the preceding fact, consistency and Σ0-soundness are equivalent,
so the ordinary statement fits nicely into the hierarchical statement of the theorem.
However, inspection of the published proofs of Theorem 1.1 reveals that Πn-complete
theories enter the argument in an indispensable way. In the proof by Kikuchi &
Kurahashi [23], Πn-completeness of T can be explicitly assumed, since in the case where
T is not Πn-complete, it fails to prove all true Πn sentences and can hardly prove all
true Πn+1 sentences. By contrast, the proof by Salehi & Seraji [40] bypasses assuming
Πn-completeness of T by instead constructing a Πn+1 sentence that is independent
of the Πn-complete T + ThΠn (N), a theory whose consistency is guaranteed by the
Σn-soundness of T. That sentence is, a fortiori, also independent of T.

The most conservative generalization of “r.e., consistent” is therefore “Σn+1-
definable, Πn-complete, and consistent” rather than “Σn+1-definable, Σn-sound.” As
is clear from Theorem 1.1, the assumption of Πn-completeness of T is sometimes
excessively strong, and mere Σn-soundness is indeed enough for some further
applications as well. In those cases, the proofs rely on the consistency of T + ThΠn (N),
as in the proof by Salehi & Seraji [40]. In other cases, however, the Πn-completeness is
indispensable for the generalization to go through.2

2 One of the referees pointed out that even Πn-completeness is sometimes not enough for
a straightforward hierarchical generalization to hold: see, e.g., Theorem 11 of [27] for an
example.
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The analogy with regard to soundness and completeness therefore goes as follows.
Since Q is Π0-complete, it is also Σ1-complete, and since it is also consistent it follows
that Q is Σ0-sound and therefore also Π1-sound. Now consider ThΠn (N): This theory
is Πn-complete and therefore also Σn+1-complete; it is consistent and therefore Πn+1-
sound.

The role of IΣn in the analogy between Q and IΣn + ThΠn (N) becomes clear through
the next fact. Its proof will take up most of the remainder of this subsection.

Fact 3.3.

1. Every Σn- (or Πn-) definable relation on� is binumerated by a Σn (or Πn) formula
in Q + ThΠn (N).

2. Every Σn+1-definable relation on � is numerated by a Σn+1 formula in IΣn +
ThΠn (N).

3. Every function from �k to � that is recursive in ∅(n) is strongly representable by a
Σn+1 formula (with particularly nice properties) in IΣn + exp + ThΠn (N).3

The first item is immediately seen to be true, since Q + ThΠn (N) is consistent, Σn+1-
complete, and Πn+1-sound. The second and third items are elaborated on below, but
first we need a few more stepping stones to help out in the constructions.

Fact 3.4 (Parametric diagonal lemma).

1. For every Γ formula γ(x, y), we can effectively find a Γ formula 	(x) such that

Q � ∀x(	(x) ↔ γ(x, �	�)).

2. For every Γ formula γ(x, y), we can effectively find a Γ formula 	(x) such that,
for each k,

Q � 	(k) ↔ γ(k, �	(k)�)).

Bibliographical remark. Item 1. of the above is essentially due to Montague [33,
lemma 1]. The proof by Ehrenfeucht and Feferman [10, lemma 1] of 2. actually suffices
to prove 1.; see also [44] for a discussion of the development of the diagonal lemma.

Fact 3.5 (Generalized Craig’s trick). For any Σn+1-definable theory T, defined by a
Σn+1 formula �(z), there is a deductively equivalent theory S, defined by a formula �(x)
that is Πn in IΣn. Moreover, IΣn+1 � ∀x(Pr�(x) ↔ Pr�(x)).4

Bibliographical remark. Craig’s [7] formulation pertains to r.e. theories, for which
there exist deductively equivalent theories with primitive recursive definitions. An
early hierarchical generalization is due to Grzegorczyk et al. [14, theorem 2.2.C]. The
hierarchical formulation presented here follows by inspection of a proof by Kurahashi
[27, proposition 9].

3 As is well known, IΣ1 proves the totality of the exponential function, so the additional axiom
exp is only required in the case n = 0 to make sure that the partial satisfaction predicates used
to establish the particularly nice properties are well-behaved. A similar remark applies also
to many of the following facts, and to the statements of some of the theorems in Section 4.

4 For n = 0, it is known that IΣ1 suffices to show that the Craigified theory is deductively
equivalent to the original one [17, remark III.2.30]. By contrast, this is not true of IΣ0 +
exp [47].
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Convention. In light of Craig’s trick, we may assume that any Σn+1-definable theory
is in fact Πn-defined. In what follows, we write PrfT(x, y) to denote (ambiguously) any
formula Prf�(x, y) where � is a Πn binumeration of T in IΣn + ThΠn (N), and moreover,
this formula can be assumed to be Πn. Consequently, PrT(x) is Σn+1 and ConT is Πn+1

in IΣn.

Fact 3.6 [17, lemmata I.2.9 and I.2.14 and theorem I.2.25].

1. In IΣn, both Σn and Πn are closed under bounded quantifiers.5

2. IΣn � IΣ0(Σn).
3. Each Σ0(Σn) formula is Δn+1 in IΣn.

All the pieces are now in place to prove a, sometimes useful, lemma from which Fact
3.3(2) follows immediately. The proof highlights the steps where induction and the
additional truth from the standard model is required. For the statement of the lemma,
recall that a relation X is correctly numerated by φ in T if φ numerates X in T, and for
all k1, ... , kn, T � φ(k1, ... , kn) iff φ(k1, ... , kn) is true.

Lemma 3.7. Let T be any Σn+1-definable, Πn-complete, and consistent extension of
IΣn and let R(x1, ... , xm) be any Σn+1-definable relation. There is a Σn+1 formula
φ(x1, ... , xm) that correctly numerates R in T.

Proof. Let 
(x1, ... , xm) define R. We may assume that 
(x1, ... , xm) is of the form
∃z�(x1, ... , xm, z) with � ∈ Πn. Let φ(x1, ... , xm) be such that, for all k1, ... , km, IΣn +
ThΠn (N) proves

φ(k1, ... , km) ↔ ∃z(�(k1, ... , km, z) ∧ ∀y ≤ z¬PrfT(�φ(k1, ... , km)�, y)).

Recall that if T is Σn+1-definable, then there is a deductively equivalent Πn definition
of T, and PrfT(x, y) is therefore equivalent to a Πn formula in IΣn. Then

�(k1, ... , km, z) ∧ ∀y ≤ z¬PrfT(�φ(k1, ... , km)�, y)

is a Σ0(Σn) formula, and is therefore, by Fact 3.6, equivalent to a Δn+1 formula in IΣn.
It follows that φ is equivalent to a Σn+1 formula in IΣn.

Suppose R(k1, ... , km). Then N |= 
(k1, ... , km), so there is then an i such that N |=
�(k1, ... , km, i). Since � is Πn and ThΠn (N) is Πn-complete, it follows that IΣn +
ThΠn (N) � �(k1, ... , km, i). Suppose, for a contradiction, that T � φ(k1, ... , km). By
Fact 3.3(1),

IΣn + ThΠn (N) � ¬PrfT(�φ(k1, ... , km)�, p),

for all p. It follows that

IΣn + ThΠn (N) � ∀y ≤ i¬PrfT(�φ(k1, ... , km)�, y),

so IΣn + ThΠn (N) � φ(k1, ... , km), and T � φ(k1, ... , km).
Conversely, suppose T � φ(k1, ... , km), and let p be a proof of φ(k1, ... , km) in T.

Then IΣn + ThΠn (N) � PrfT(�φ(k1, ... , km)�, p). It follows that

IΣn + ThΠn (N) � ∀y ≤ z¬PrfT(�φ(k1, ... , km)�, y) → z < p.

Suppose, for a contradiction, that ¬R(k1, ... , km). Then for all i,

5 In fact, only the weaker principle of Σn-collection is required for this first item. However,
collection plays no prominent role elsewhere in this paper.
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IΣn + ThΠn (N) � ¬�(k1, ... , km, i).

It follows that IΣn + ThΠn (N) � ¬∃z < p�(k1, ... , km, z). We get

IΣn + ThΠn (N) � ¬∃z(�(k1, ... , km, z) ∧ ∀y ≤ z¬PrfT(�φ(k1, ... , km)�, y)),

whence IΣn + ThΠn (N) � ¬φ(k1, ... , km), and T � ¬φ(k1, ... , km).
It remains to show that T � φ(k1, ... , km) iff φ(k1, ... , km) is true. The implication

from right to left is trivial, since φ is Σn+1 in IΣn and ThΠn (N) is Σn+1-complete. For
the other direction, suppose T � φ(k1, ... , km), and let p be the least such proof. Then

IΣn + ThΠn (N) � ∀y ≤ z¬PrfT(�φ(k1, ... , km)�, y) → z < p.

Suppose further that there is no i < p such that �(k1, ... , km, i). Then, as before,
T � ¬φ(k1, ... , km), a contradiction. Thus there is an i < p such that �(k1, ... , km, i) is
true. Since p is minimal, ∀y ≤ i¬PrfT(�φ(k1, ... , km)�, y), so

∃z(�(k1, ... , km, z) ∧ ∀y ≤ z¬PrfT(�φ(k1, ... , km)�, y))

is true, and therefore φ(k1, ... , km) is true, as desired.

Bibliographical remark. The correct representability of Σ1 relations in Q is due to
Ehrenfeucht and Feferman [10]. The proof above mimics Lindström’s [29] version of
Shepherdson’s [42] proof of the same result.

Fact 3.3(2) follows directly from Lemma 3.7, and it only remains to give an argument
for Fact 3.3(3). For this we need two more facts, the first being a version of Post’s
theorem.

Fact 3.8 [36]. A relation is Σn+1 iff it is r.e. in ∅(n).

Fact 3.9 (The selection theorem). For each Σn+1 formula φ with exactly the variables
x1, ... , xk free, there is a Σn+1 formula Sel{φ} with exactly the same free variables, such
that:

1. IΣn � ∀x1, ... , xk(Sel{φ}(x1, ... , xk) → φ(x1, ... , xk));
2. IΣn � ∀x1, ... , xk, z(Sel{φ}(x1, ... , xk) ∧ Sel{φ}(x1, ... , xk–1, z) → xk = z);
3. IΣn � ∀x1, ... , xk–1(∃xkφ(x1, ... , xk) → ∃xkSel{φ}(x1, ... , xk)).

Proof sketch. We may assume that any given Σn+1 formula φ(x1, ... , xk) is on the
form ∃w�(x1, ... , xk, w) with � ∈ Πn. Let (w)i denote the ith element of the ordered
pair coded by w, and define Sel{φ}(x1, ... , xk) to be the formula

∃w(�(x1, ... , xk–1, (w)0, (w)1) ∧ ∀u ≤ w¬�(x1, ... , xk–1, (u)0, (u)1) ∧ (w)0 = xk).

By Fact 3.6, this formula is equivalent in IΣn to a Σn+1 formula. Using Σn-induction, it
is easy to check that it has the three desired properties.

Bibliographical remark. Smoryński [45, theorem 0.6.9] provides a proof of the
selection theorem for n = 0, and the generalization is straightforward. The numeration
below of partial recursive functions is also based on the treatment in Section 0 of his
book.

Fact 3.3(3) can now be established as follows: Let f be a k-ary partial n-recursive
function; then the relation f(x1, ... , xk) = y is Σn+1 by Fact 3.8. By Fact 3.3(2), this
relation is correctly numerated in IΣn + ThΠn (N) by some Σn+1 formula �(x1, ... ,
xk, y). Finally, by Fact 3.9, f is strongly represented in IΣn + exp + ThΠn (N) by the
Σn+1 formula Sel{SatΣn+1}(���, x1, ... , xk, y). This concludes the proof of Fact 3.3.
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Convention. The partial n-recursive function with index e, ϕne , can now be defined
to be the function whose graph is defined by Sel{SatΣn+1}(e, y1, ... , yk, z) in N. The
resulting enumeration is acceptable in the sense of Rogers [39]. Whenever convenient,
ϕne (m1, ... , mi) = k is used as a shorthand for Sel{SatΣn+1}(e,m1, ... , mi , k).

To wrap up this subsection, we sketch a proof of a formalized version of the second
recursion theorem.

Fact 3.10 (Formalized second recursion theorem). Let f : �2 → � be n-recursive.
There is an e ∈ � such that

IΣn + exp + ThΠn (N) � ϕne (y) � f(e, y).

Proof. Let, by Fact 3.3(3), �(x, y, z) be a Σn+1 formula strongly representing f in
IΣn + exp + ThΠn (N). Let, by Fact 3.4, γ(y, z) be a formula such that

IΣ0 + exp � γ(y, z) ↔ Sel{SatΣn+1}(���, �γ�, y, z).
Then e = �γ� is as desired.

The recursion theorem is usually deployed in the following manner. Define an n-
recursive function f(z, x) in stages, using z as a parameter; the resulting function may
differ depending on the choice of z. By the recursion theorem, there is then an n-index
e such that ϕne (x) coincides withf(e, x). This legitimates self-referential constructions
where an index of f is being used in the construction of f itself.

Bibliographical remark. The recursion theorem is due to Kleene [24, theorem
XXVII]. Smoryński [45, theorem 0.6.12] shows how it can be formalized in (essentially)
IΣ0 + exp for (0-)recursive functions.

3.2. Strong provability predicates. A central piece in the proof of Gödel’s
incompleteness theorem for r.e. theories T is the use of formal provability predicates
PrT(x), expressing “x is provable in T.” In the current setting, with Σn+1-definable
theories in focus, the corresponding strong provability predicates PrT,Σn+1(x) express “x
is provable in T from true Σn+1 sentences.”6 To define these predicates, we first need to
introduce partial satisfaction predicates.

Fact 3.11 (Partial satisfaction predicates). For each k and Γ, there is a k + 1-ary Γ
formula SatΓ(x, x1, ... , xk) such that for every Γ formula φ(x1, ... , xk),

IΣ0 + exp � ∀x1, ... , xk(φ(x1, ... , xk) ↔ SatΓ(�φ�, x1, ... , xk)).

Hence there is also a Γ formula TrΓ(x) such that for every Γ sentence φ,

IΣ0 + exp � φ ↔ TrΓ(�φ�).

6 Similar provability predicates, PrT,Πn (x) appear in the literature under the name strong
provability, n-provability, and oracle provability [1, 20, 25, 47]. The difference is usually
only a matter of taste, since the theories T + ThΠn (N) and T + ThΣn+1 (N) are deductively
equivalent, and under reasonable assumptions this is reflected also in the formalized notions
PrT,Πn (x) and PrT,Σn+1 (x). However, the relationship between the related notions PrkT,Πn (x)

and PrkT,Σn+1
(x) (introduced below) is not as immediate, since there k bounds the length of

the proof of x and the Gödel number of the additional true Πn or Σn+1 sentence used in the
proof. Even though every Σn+1-provable sentence has a Πn-proof, this proof might be much
longer than the original one. We opt for the Σn+1 versions, since it helps in the proof of Fact
3.23 below, and since it makes (some of) the indices align nicely.
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Bibliographical remark. Modern proofs of this fact are due to Hájek and
Pudlák [17] and Kaye [22]. The use of partial satisfaction predicates, however, goes
back to Hilbert and Bernays [19].

Definition 3.12. Let, for each Γ, PrfT,Γ(x, y) be the formula

∃z(z ∈ Γ ∧ TrΓ(z) ∧ PrfT+z(x, y)).

Let PrT,Γ(x) := ∃yPrfT,Γ(x, y), and let ConT,Γ := ¬PrT,Γ(�⊥�).

We are mainly interested in the predicates PrT,Σn+1(x). These provability predicates
have many similarities with the usual provability predicate. Firstly, if T is Σn+1-definable,
then PrT,Σn+1(x) is Σn+1, and ConT,Σn+1 consequently Πn+1. Secondly, they satisfy
provable Σn+1-completeness and Löb’s derivability conditions. These notions also have
their roots with Hilbert and Bernays [19]; see also [11, theorem 5.4 and corollary 5.5].
The versions presented here are extracted from [1, propositions 2.10 and 2.11] and [45,
lemma 3.3.7].

Fact 3.13 (Provable Σm+1-completeness). Let T be a Σn+1-definable theory, and let
�(x1, ... , xk) be any Σm+1 formula. Then

IΣ0 + exp � ∀x1, ... , xk(�(x1, ... , xk) → PrT,Σm+1(��(ẋ1, ... , ẋk)�)).

Fact 3.14 (Löb conditions). If T is a Σn+1-definable extension of IΣ0 + exp, then, for
each m ≥ 0, and for all sentences φ, �,

L1. if T � φ, then IΣn + exp +ThΠn (N) � PrT,Σm+1(�φ�);
L2. IΣ0 + exp � PrT,Σm+1(�φ�) ∧ PrT,Σm+1(�φ → ��) → PrT,Σm+1(���);
L3. IΣ0 + exp � PrT,Σm+1(�φ�) → PrT,Σm+1(�PrT,Σm+1(�φ�)�).

Similar statements also hold for formulae:

L1’. if T � ∀xφ(x), then IΣn + exp +ThΠn (N) � ∀xPrT,Σm+1(�φ(ẋ)�);
L2’. IΣ0 + exp � ∀x(PrT,Σm+1(�φ(ẋ)�) ∧ PrT,Σm+1(�φ(ẋ) → �(ẋ)�)

→ PrT,Σm+1(��(ẋ)�));
L3’. IΣ0 + exp � ∀x(PrT,Σm+1(�φ(ẋ)�) → PrT,Σm+1(�PrT,Σm+1(�φ(ẋ)�)�)).

The stronger background theory used in items L1. and L1’. is enough to ensure the
numerability of the Σn+1-definable theory T. For r.e. theories T, IΣ0 + exp suffices.

We now turn our attention to the bounded provability predicates that feature
prominently in the sequel. Consider again the Σn+1 formula PrT,Σn+1(x) for a Σn+1-
definable T. We may assume that there is a Πn formula �(x, y) such that

IΣn � PrT,Σn+1(x) ↔ ∃y�(x, y).

Let PrkT,Σn+1
(x) be the formula ∃z ≤ k�(x, z).7 Then, by Fact 3.6, this formula is Πn

in IΣn, and therefore decidable in IΣn + exp + ThΠn (N).8 As a consequence, we have
strong reflection properties for the bounded proof predicates.

Fact 3.15 (Uniform small reflection). Let T be a Σn+1-definable, consistent extension
of IΣ0 + exp. For each φ(x) and k, we have:

7 In the notation of, e.g., [30], PrkT,Σn+1
(x) would be written k : PrT,Σn+1 (x).

8 The additional axiom exp is again only required for n = 0, to handle the partial truth
definition occurring in PrT,Σn+1 . Remarks of this type will hereafter be omitted.
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IΣn + exp + ThΠn(N) � ∀x(PrkT,Σn+1
(�φ(ẋ)�) → φ(x)).

Bibliographical remark. A forerunner to this reflection principle is proved by
Feferman [12, lemma 2.18]. The generalization to Σn+1-definable theories is straight-
forward; see also [17, lemma III.4.40] for some middle ground: reflection for proofs
from true Σn+1 sentences for r.e. theories.

Fact 3.16 (Formalized small reflection). Let T be a Σn+1-definable, consistent extension
of IΣn+1. Then we have:

IΣ0 + exp � ∀φ∀zPrT,Σn+1(�PrżT,Σn+1
(�φ�) → φ�).

Bibliographical remark. Verbrugge & Visser [46] show how the small reflection
principle can be formalized in (theories weaker than) IΣ0 + exp. I am grateful to one
of the referees for pointing out a crucial error in an earlier statement of this fact.

3.3. Model theory of arithmetic. The remainder of this section concerns the model
theory of arithmetic, building up to a characterization of Πn-conservativity in the spirit
of Orey, Hájek, Guaspari, and Lindström. A first step toward that goal is the following
miniaturization of the arithmetized completeness theorem in the style of McAloon [31,
theorems 1.7 and 2.2].

Fact 3.17 (The arithmetized completeness theorem). Fix m ≤ n. If M |= IΣn+1, and
T is a theory that is Σn+1-definable in M such that M |= ConT,Πm , then there is a
Σm-elementary end-extension of M satisfying T.

The proof of the arithmetized completeness theorem rests on the following version
of the low basis theorem by Hájek & Pudlák [17, corollary I.3.10(1)]:

Fact 3.18 (Low basis theorem). Provably in IΣn+1, each dyadic unbounded Δn+1 tree
has an unbounded LLn+1 branch.

Here, a tree is a set of finite binary sequences that is closed under taking initial
segments. A branch through a tree is a subtree that is linearly ordered under the relation
“being an initial segment of.” See [17, chap. I.3(b)] for more details. A definition of the
class LLn+1 used in the statement of the low basis theorem can be found in [17, chap.
I.2(d)]. The only properties ofLLn+1 sets that are used in the proof of the arithmetized
completeness theorem are that IΣn+1 proves induction for Σ1(LLn+1) sets, and that
every set recursive in an LLn+1 set is itself LLn+1 [17, I.2.78–79)].

For the proof of the arithmetized completeness theorem, we also rely on IΣn+1 being
able to define formalized versions of syntactic and semantic notions such as “formula,”
“term,” “theory,” “satisfaction,” and “model,” so that the relevant constructions can be
carried out within IΣn+1 itself. The reader is again referred to [17], especially Chapter
I.4, for a detailed development of these concepts. The generalization to Σn+1-definable
theories is straightforward, and fits safely within IΣn+1.

Proof of the arithmetized completeness theorem. Fixm ≤ n. Let M |= IΣn+1 and let
T be a theory Σn+1-definable in M such that M |= ConT,Πm . Reason in M:

Since T is Σn+1 and we have IΣn+1, we may assume T to be Πn-defined and
Henkinized. Let �0, �1, ... be an enumeration of all sentences. Define a dyadic tree T
by

s ∈ T iff there is no p ≤ s such that p is a proof of contradiction in
T from the true Πm sentences plus {�(s)i

i : i < l(s)}.
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The proof relation for T + ThΠm (M) is Πn in M, so the tree T is at most Δn+1

in M. Then IΣn+1 suffices to show that T is unbounded, so by Fact 3.18 there is an
unbounded LLn+1 branch B = {b0, b1, ... } through T.

Let T̂ = {�i : bi = 1}. Then T̂ is recursive in the LLn+1 branch B, and is therefore
LLn+1 itself. A term model K satisfying T + ThΠm (M) can then be read off T̂ in the
usual way. Finally, note thatK is recursive in T̂ and thereforeLLn+1. Using induction for
Σ1(LLn+1) (provided by IΣn+1), we can now define anLLn+1 embedding f ofMonto an
initial segment ofK by lettingf(0) = 0K andf(x + 1) = theK-successor off(x).

The next few facts are used in the proof of the generalized Orey–Hájek characteri-
zation.

Fact 3.19 (Overspill). Let M |= IΣn+1. Suppose that a ∈M and that φ(x, y) is a
Σ0(Σn+1) formula such that M |= φ(k, a) for all k ∈ �. Then there is a b ∈M \ � such
that M |= ∀x ≤ bφ(x, a).

Bibliographical remark. The notion of overspill is originally due to Robinson [38],
while the hierarchical version stated here is from [17, corollary IV.1.16].

Fact 3.20. If M is a non-standard model of IΣn+1, and φ(x) is a Σn+1 formula which
may include parameters from M, then {k ∈ � : M |= φ(k)} is coded in M.

It follows that if M |= IΣn+1, then ThΣn+1(M) is coded in M.

Fact 3.21 [32], cf. [8]. If M is a countable non-standard model of IΔ0, and T is Σ1-sound,
then for every non-standard c ∈M , there is a non-standard initial segment of M below
c that is a model of T.

Fact 3.22 (Refined Friedman embedding theorem). If M and N are countable non-
standard models of IΣn+1 then the following are equivalent:

1. M is embeddable as a Σn-elementary initial segment of N ;
2. SSy(M) = SSy(N ) and ThΣn+1(M) ⊆ ThΣn+1(N ).

Bibliographical remark. This refinement of Friedman’s [13] embedding theorem for
n = 0 is due to Ressayre [37, theorem 1.I] and Dimitracopoulos and Paris [9, corollary
2.4], independently. The hierarchical generalization is straightforward, and has been
worked out by Cornaros [6, corollary 15].

We are now ready to prove the final fact: an excerpt of a generalization of the Orey–
Hájek–Guaspari–Lindström characterization of interpretability. For extensions of PA,
the equivalence of 1. and 3. is due to Guaspari [15, theorem 6.5(1)]. The equivalence
of 1. and 2. for finitely axiomatizable theories seems to have been known to experts
for some time, while the equivalence of 2. and 3. for r.e. extensions of fragments of
PA is stated without proof by Blanck and Enayat [4, theorem 2.11]. With the previous
facts of this section in place, the generalization to Σn+1-definable theories presents no
further difficulties.

Fact 3.23 (OHGL characterization). Let S and T be Σn+1-definable, consistent
extensions of IΣn+1, and suppose that S is also Πn-complete. The following are equivalent:

1. S is Πn+1-conservative over T;
2. for all k ∈ �, T � ConkS,Σn+1

;
3. every countable model M of T with S ∈ SSy(M) has a Σn-elementary extension

to a model of S.
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Proof. 1. ⇒ 2. Suppose that S is Πn+1-conservative over T. By Fact 3.15 and Πn-
completeness of S, S � ConkS,Σn+1

for all k ∈ �. But ConkS,Σn+1
is at most Πn+1, so

T � ConkS,Σn+1
for all k ∈ �.

2. ⇒ 3. Suppose T � ConkS,Σn+1
for all k ∈ �. Let M be a countable model of T and

suppose that S ∈ SSy(M). Since T extends IΣn+1, it follows that ConkS,Σn+1
is at most

Πn+1, and we can use overspill to get M |= ConcS,Σn+1
for some non-standard c ∈M .

By Fact 3.21, there is a submodel M0 |= PA of M, all of whose elements are below
c, and there is some non-standard a below c that codes ThΣn+1(M). This ensures that
M0 |= ConS+{m:mεa}, so Fact 3.17 guarantees the existence of an end-extension K of
M0, satisfying S + {m : mεa} and therefore also S + ThΣn+1(M).

At this point, the situation is that SSy(M) = SSy(M0) = SSy(K), M and K are
countable, and ThΣn+1(M) ⊆ ThΣn+1(K). Then Fact 3.22 ensures that M can be
embedded as a Σn-elementary initial segment of K.

3. ⇒ 1. Prove the contrapositive statement by assuming that S is not Πn+1-
conservative over T. Then there is a Πn+1 sentence � such that S � � but T + ¬�
is consistent. Let M |= T + ¬�. If K |= S were a Σn-elementary extension of M, then
K would satisfy both � and ¬�, a contradiction.

§4. Applications. The goal of this section is to prove a handful of hierarchical
incompleteness results, using the tools we reviewed in the previous one. The first such
result stems from Mostowski [34, theorem 2], who proved that whenever {Ti : i ∈ �}
is an r.e. family of consistent, r.e. theories extending Q, then there is a Π1 formula that
is simultaneously independent over these theories. Here, we understand the concept of
an independent formula in the following way:

Definition 4.24. A formula 	(x) is independent over T if, for every g : � → {0, 1}, the
theory T + {	(k)g(k)} is consistent. Recall that 	(k)0 = ¬	(k) and 	(k)1 = 	(k).

While one of Mostowski’s accomplishments was the simultaneous independence
over a whole r.e. family of theories, this aspect of his result is deliberately ignored
here. Instead, we focus on how to construct formulae independent over Σn+1-definable
theories.

Theorem 4.25. Let T be a Σn+1-definable, Σn-sound extension of IΣn + exp. Then there
is a Σn+1 formula 	(x) that is independent over T.

Proof. Define a function f(x) by the stipulation that f(m) = k iff there is a proof
p of ϕnm(m) �= k in T, and for each q < p and k0 ≤ k, q is not a proof of ϕnm(m) �= k0

in T.
Since T is Σn+1-definable, there is a deductively equivalent Πn-definition of T. Hence,

the relationf(x) = y is r.e. in ∅(n), and therefore partial n-recursive. Let e be an n-index
for f, and let 	(x) be the formula

∃z(ϕne (e) = z ∧ SatΣn+1(z, x)).

Since T extends IΣn, we may assume that both ϕnx(y) = z and 	(x) are equivalent in T
to Σn+1 formulae. The proof that 	(x) is as desired has two parts. The first part shows
that T + ϕne (e) = k is consistent for each k ∈ �.

Suppose, for a contradiction, that T + ϕne (e) = k is inconsistent for some k ∈ �.
We may assume that k is the least such number. Then T � ϕne (e) �= k with some
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minimal proof p, so f(e) = ϕne (e) = k by definition. With T extending IΣn, we have
T + ThΠn (N) � ϕne (e) = k by Fact 3.3(3). But then T + ThΠn (N) is inconsistent, which
by Fact 3.2 contradicts the assumption that T is Σn-sound. Hence the theory T +
ϕne (e) = k is consistent for any choice of k ∈ �.

In this final part of the proof, we show that 	(x) is independent over T. Let g be any
function from � to {0, 1} and let X = {	(k)g(k) : k ∈ �}. Let Y be any finite subset
of X, and let Z be the set {k : 	(k) ∈ Y}. Let �(x) := xεa, where a is a code for the
finite set Z; then � binumerates Z in Q.

Reason in the consistent theory T + ϕne (e) = ���:

If 	(x), then ϕne (e) = z ∧ SatΣn+1(z, x) for some z. But z is unique
and ϕne (e) = ���, so SatΣn+1(���, x) and therefore �(x).

Conversely, observe that sinceϕne (e) = ���, 	(x) follows from �(x)
by Fact 3.11 and ∃-introduction.

Hence the theory T + ∀x(	(x) ↔ SatΣn+1(���, x)) is consistent. If k ∈ Z, then T �
SatΣn+1(���, k), so T + ∀x(	(x) ↔ SatΣn+1(���, x)) � 	(k), and similarly for k /∈ Z.
Hence the consistent theory T + ∀x(	(x) ↔ SatΣn+1(���, x)) proves all the sentences
in Y, so T + Y is consistent. By compactness, it follows that T + X is consistent, and
therefore 	(x) is independent over T.

The Gödel–Rosser incompleteness Theorem 1.1 for arithmetically definable theories
follows immediately from the result above. While the generalization to arithmetically
definable theories is new, the basic idea of this proof is due to Kripke [26, corollary
1.1], who used it to rederive Mostowski’s result from his own theorem on the existence
of flexible formulae. Here, we understand flexibility in the following sense:

Definition 4.26. A formula γ(x) is flexible for Γ over T if, for every (x) ∈ Γ, the
theory T + ∀x(γ(x) ↔ (x)) is consistent.

The definitions used by Kripke obscure the original content of his theorem, but, in
hindsight, his proof yields that for every consistent, r.e. extension T of IΣ0 + exp, there
is a Σn+1 formula that is flexible for Σn+1 over T. Striving for some unification, we derive
a hierarchical version of Kripke’s theorem by generalizing a result of Lindström’s [28,
proposition 2]; which in turn is a generalization of both Mostowski’s and Kripke’s
results, as well as of Scott’s famous lemma used to realize countable Scott sets as
standard systems of models of PA [41].

Theorem 4.27. Let T be a Σn+1-definable extension of IΣm + exp, withm ≥ n. For every
Σm formula φ(x), there is a Σm+1 formula γ(x) such that for every g : � → {0, 1}, if

Tg = T + {φ(k)g(k) : k ∈ �}

is Σn-sound, then γ(x) is flexible for Σm+1 over Tg .

Proof. Fix n and let φ(x) ∈ Σm, with m ≥ n. Let f(s, ���) = ��� iff the following
holds:

1. s is binary sequence of length k + 1;
2. there is a proof p of ¬∀x(�(x) ↔ �(x)) in T + φ(0)(s)0 + ··· + φ(k)(s)k ;
3. for every q < p and any ��0� ≤ ���, q is not a proof of ¬∀x(�(x) ↔ �0(x)) in

T + φ(0)(s)0 + ··· + φ(k)(s)k .
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Here (s)k denotes the kth element of the sequence s.
Since T is Σn+1-definable, there is a deductively equivalent Πn-definition of T. Hence,

the relation f(x, y) = z is r.e. in ∅(n), and therefore partial n-recursive. Let e be an n-
index for f.

Let Seqφ(x) be the formula

∀y < l(x)(yεx ↔ φ(y)),

where l(x) denotes the length of x (this is the formula “x is a l(x)-piece of φ”).
Whenever φ(x) is Σm, Seqφ(x) is Σ0(Σm), and since T � IΣm, it is Δm+1 in T. Let, by
Fact 3.4, γ(x) be such that

T � ∀x(γ(x) ↔ ∃s∃z(Seqφ(s) ∧ ϕne (s, �γ�) = z ∧ SatΣm+1(z, x))).

Since T � IΣm and m ≥ n, the formula strongly representing f in T + ThΠn (N) is
equivalent to a Σn+1 formula in T. It follows that γ(x) is equivalent to a Σm+1 formula
in T.

Suppose, for a contradiction, that there is a g : � → {0, 1} and a �(x) ∈ Σm+1 such
that Tg is Σn-sound, but Tg + ∀x(γ(x) ↔ �(x)) is inconsistent. If there are more than
one such �(x) for a given g, consider the one with the least Gödel number. There is
then an initial subsequence s of g, of length k + 1 for some k, such that p is a proof of
¬∀x(γ(x) ↔ �(x)) in T + φ(0)(s)0 + ··· + φ(k)(s)k . Let s be the initial subsequence of
g corresponding to the least such p.

It is now clear that neither p nor any q < p can be a proof of ¬∀x(γ(x) ↔ �0(x)) in
T + φ(0)(s)0 + ··· + φ(k)(s)k for any formula �0(x) whose Gödel number is less than
���. Hence, by definition, f(s, �γ�) = ���, and by Fact 3.3,

T + ThΠn (N) � ϕne (s, �γ�) = ���.

By choice of s, Tg � Seqφ(�s�), so Tg + ThΠn (N) � ∀x(γ(x) ↔ �(x)) by an argument
similar to that in the proof of Theorem 4.25. Then Tg + ThΠn (N) is inconsistent,
contradicting the assumption that Tg was Σn-sound.

By choosingφ(x) as� in the construction above, we obtain the expected hierarchical
version of Kripke’s theorem. A similar, but not entirely correct, claim is made by Blanck
[3, theorem 4.8].

Corollary 4.28. Let T be a Σn+1-definable, Σn-sound extension of IΣn + exp. For all
m ≥ n, there is a Σm+1 formula γ(x) that is flexible for Σm+1 over T.

Mostowski’s theorem for r.e. extensions of IΣ0 + exp then follows immediately by
using the method described in the proof of Theorem 4.25. A similar argument also
yields Scott’s lemma.

The next objective is to show how the hierarchical version of Kripke’s theorem can
be formalized in Πn-complete extensions of IΣn+1. A similar, but not entirely correct,
claim is made by Blanck [3, theorem 5.8]. The present proof is a minor modification
of an argument of Blanck [3, theorem 5.1].

Theorem 4.29. Let S be a Πn-complete, consistent extension of IΣn+1, and let T be
Σn+1-definable. For all m ≥ n, there is a Σm+1 formula γ(x) such that:
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1. IΣn+1 � ConT,Σn+1 → ∀x¬γ(x);
2. if �(x) ∈ Σm+1, then every model of S + ConT,Σn+1 has a Σn-elementary extension

to a model of T + ∀x(γ(x) ↔ �(x)).

Proof. Fix n, and let φ(x, z) be the Σn+1 formula PrT,Σn+1(�ϕnẋ(ẋ) �= ż�). Let e be
the Gödel number of φ(x, z).

Recall that ϕnx(y) = z is shorthand for Sel{SatΣn+1}(x, y, z). Therefore, by Fact
3.9(1) we have

IΣn+1 � ∀z(ϕne (e) = z → SatΣn+1(e, e, z)), (1)

so by construction of φ(x, z) and choice of e,

IΣn+1 � ∀z(ϕne (e) = z → PrT,Σn+1(�ϕne (e) �= ż�)). (2)

By Fact 3.13,

IΣn+1 � ∀z(ϕne (e) = z → PrT,Σn+1(�ϕne (e) = ż�)), (3)

so (2) and (3) together with Fact 3.14 give

IΣn+1 � ∀z(ConT,Σn+1 → ϕne (e) �= z). (4)

Now, observe that

IΣn+1 � ∃z¬ConT+ϕne (e)=ż,Σn+1
↔ ∃zPrT,Σn+1(�ϕne (e) �= ż�). (5)

By construction of φ(x, z), the right hand side of the equivalence of (5) is identical to
∃zφ(e, z), and by Fact 3.11, we have

IΣn+1 � ∃zφ(e, z) ↔ ∃zSatΣn+1(e, e, z). (6)

Therefore, by Fact 3.9(3) and the convention on ϕne , (5) gives

IΣn+1 � ∃z¬ConT+ϕne (e)=ż,Σn+1
↔ ∃z(ϕne (e) = z). (7)

Together with (4), this implies

IΣn+1 � ∀z(ConT,Σn+1 → ConT+ϕne (e)=ż,Σn+1
). (8)

Then the Σm+1 formula γ(x) := ∃z(ϕne (e) = z ∧ SatΣm+1(z, x)) is as desired, and the
first part of the theorem follows directly from (4). For the second part, let M be any
model of S + ConT,Σn+1 , and let �(x) be any Σm+1 formula. By (8), we immediately get
M |= ConT+ϕne (e)=���,Σn+1

. Moreover, since S is a Πn-complete extension of IΣn+1, and
T is Σn+1-definable, the theory T + ϕne (e) = ��� is Σn+1-definable in M, using Craig’s
trick. By Fact 3.17, there is then a Σn-elementary end-extension K of M that satisfies
T + ϕne (e) = ���. SinceK satisfiesϕne (e) = ���, it follows thatK |= ∀x(γ(x) ↔ �(x)),
as desired.

Corollary 4.30. Let S be a Σn+1-definable, Πn-complete, and consistent extension of
IΣn+1, and let γ(x) be as in the proof of Theorem 4.29. Then, for each �(x) ∈ Σm+1 with
m ≥ n, S + ∀x(γ(x) ↔ �(x)) is Πn+1-conservative over S + ConS,Σn+1 .

The next theorem has a different flavor than the earlier ones, and is a generalization of
Woodin’s theorem on the universal algorithm [48]; see also [4, theorem 3.1]. A version
for r.e. extensions of PA is independently due to Hamkins [18, theorem 18], and the
proof presented here uses a method that I learned from Shavrukov. The particular
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Solovay-style construction used in the proof is similar to the ones used by Berarducci
[2] and Japaridze [21].

Theorem 4.31. Let T be a Σn+1-definable, Πn-complete, and consistent extension of
IΣn+1. There is a Σn+1-definable setWe such that:

1. IΣn+1 + ThΠn (N) � “We is finite”;
2. IΣn+1 + ThΠn (N) � ConT,Σn+1 →We = ∅;
3. for each countable model M |= T, if s is an M-finite set such that M |=We ⊆ s ,

then there is a Σn-elementary extension of M satisfying T +We = s .

Proof. The setWe is defined (in IΣn+1 + ThΠn (N) and in the real world) as follows,
using the formalization of the recursion theorem (Fact 3.10). At the same time, an
auxiliary function r(x) is defined.

Stage 0: SetWe,0 = ∅, and r(0) = ∞.9

Stage x + 1: Suppose r(x) = m. There are two cases:

Case A: s is a finite set such that s ⊇We,x , k < m, and x witnesses
a Σn+1 formula �(s) such that k is a proof in T + ThΣn+1(N) of
∀t(�(t) →We �= t). Should there be more than one eligible candidate
for either k or s, then choose the least such k, and then the least s
corresponding to that k. Then setWe,x+1 = s and r(x + 1) = k.
Case B: Otherwise, setWe,x+1 =We,x and r(x + 1) = m.

LetWe =
⋃
x We,x .

To prove 1., reason as follows: Since the proof relation for T + ThΣn+1(N) is Δn+1

in IΣn+1 + ThΠn (N), We is r.e. in ∅(n), and therefore Σn+1 by Fact 3.8. Provably in
IΣn+1 + ThΠn (N), we have that We,x+1 ⊇We,x , and r(x + 1) ≤ r(x), so by the Σn+1-
least number principle (which is available thanks to Σn+1-induction), there is a limitR =
limx r(x). For each x with We,x+1 �=We,x , IΣn+1 + ThΠn (N) proves r(x + 1) < r(x),
whence there can only be finitely many such x. So IΣn+1 + ThΠn (N) � “We is finite.”

Note also that T � R > k for all k ∈ �. To show this, fix k ∈ � and argue in T:

Suppose R ≤ k. Let y be minimal such that r(y + 1) = R. Then
We =We,y+1 = s for some s such that R is a proof in T + ThΣn+1(N)
of ∀t(�(t) →We �= t), where �(s) is a true Σn+1 formula.

But, by Fact 3.15,

since ∀t(�(t) →We �= t) is proved from a true Σn+1 sentence with a
proof not exceeding k, it must be true. Since �(s) is true, We �= s is
also true, and the contradiction proves R > k.

To prove 2., argue for the contrapositive statement in IΣn+1 + ThΠn (N):

IfWe = s �= ∅, then PrmT,Σn+1
(�∀t(�(t) →We �= t)�) for some m and

some true Σn+1 formula �(s). The relation s ⊆We,x is Δn+1 by Fact
3.6(3), so PrT,Σn+1(�ṡ ⊆We�) follows by Fact 3.13. Now reason inside
PrT,Σn+1 :

9 Here ∞ is a formal symbol that by definition is greater than all the natural numbers.
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There is some u =We with u ⊇ s , so by construction, �′(u) is true,
and PrkT,Σn+1

(�∀t(�′(t) →We �= t)�) for some k ≤ m and some Σn+1

formula �′(u).

Apply Fact 3.16, and continue reasoning inside PrT,Σn+1 :

Then ∀t(�′(t) →We �= t) and �′(u), soWe �= u.

Then PrT,Σn+1(�∃u(We = u ∧We �= u)�), so Fact 3.14 gives
¬ConT,Σn+1 as desired.

To prove 3., first fix m ∈ �. By Fact 3.15, there is a proof k in T of

∀t(PrmT,Σn+1
(�We �= ṫ�) →We �= t).

Now reason in T:

Consider any finite s ⊇We , and suppose x is a proof ≤ m ofWe �= s
in T + ThΣn+1(N). Then s ⊇We,x+1, and therefore r(x + 1) ≤ k by
construction of r(x + 1): here PrmT,Σn+1

(�We �= ṡ�) is IΣn+1-equivalent
to a true Σn+1 sentence playing the role of�(s). Butk < R ≤ r(x + 1),
and the contradiction proves ConmT+We=ṡ,Σn+1

.

Therefore for all m ∈ �, T � ∀s ⊇We ConmT+We=ṡ,Σn+1
.

For the final part of the proof, letM be any countable model of T, and let s be anyM-
finite set such thatM |=We ⊆ s . Since T is a Σn+1-definable, Πn-complete extension of
IΣn+1, Facts 3.11 and 3.20 imply that T + ThΣn+1(M) +We = s ∈ SSy(M). Since T �
ConmT+We=ṡ,Σn+1

for all m ∈ �, Fact 3.23 guarantees the existence of a Σn-elementary
extension of M satisfying T +We = s , which concludes the proof of the theorem.

Corollary 4.32. With T as in Theorem 4.31, ¬ConT,Σn+1 is Πn+1-conservative over T.

Proof. Every countable model of T has a Σn-elementary extension satisfyingWe �=
∅, and therefore also T + ¬ConT,Σn+1 by the theorem. By Fact 3.23, the conclusion
follows.10

The setWe defined in Theorem 4.31 can be used to prove results of a more Kripkean
variety, by using the information contained inWe as codes for other sets. The next result
is of this kind, and improves on Theorem 7.21 of [3] by generalizing to arithmetically
definable theories. A version for r.e. extensions of PA is independently due to Hamkins
[18, theorem 22(1)], who also noted that there is a very short proof of it from Theorem
4.31.

Theorem 4.33. Let T be a Σn+1-definable, Πn-complete, and consistent extension of
IΣn+1. For all m ≥ n, there is a Σm+2 formula γ(x) such that:

1. IΣn+1 + ThΠn (N) � ConT,Σn+1 → ∀x¬γ(x);
2. for every �(x) ∈ Σm+2, every countable model of T has a Σn-elementary extension

satisfying T + ∀x(γ(x) ↔ �(x)).

10 As pointed out by one of the referees, adapting Kreisel’s original proof of the Π1-
conservativity of ¬ConT over T is a simpler way to establish Corollary 4.32 than going
via Theorem 4.31.
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Proof sketch. It is straightforward to adapt the construction in the proof of Theorem
4.31 to produce an M-finite binary sequence Se , rather than a set [4, 18, 48]. Assume
an enumeration of Σm+2 formulae in which every Σm+2 formula occurs infinitely often,
and that every finite binary sequence codes such a formula. Let γ(x) be the formula
∃z(Se = z ∧ SatΣm+2(z, x)). Since Se = z is at most Σn+2 and m ≥ n, it follows that
γ(x) is Σm+2.

Pick any�(x) ∈ Σm+2, letMbe any countable model of T and let s beSe as calculated
within M. By assumption on the enumeration of Σm+2 formulae, there is an M-finite
sequence t ⊇ s such that t codes ��(x)�. By the sequence version of Theorem 4.31,
there is a Σn-elementary extension K of M in which Se = t. Then γ(x) coincides with
�(x) in K, and therefore is as desired.

The question remains to which extent m + 2 can be replaced by m + 1 in the
statement of Theorem 4.33. Some partial answers are already available: Theorem 4.31
gives a positive answer restricted to Σm+1 formulae �(x) whose extension is M-finite
and for which M |= ∀x(γ(x) → �(x)), while Theorem 4.29 can be seen as giving a
partial positive answer that is restricted to models of T + ConT,Σn+1 . Blanck [3, chap.
7.4] lists several other partial answers to this question in a setting where T is an r.e.
extension of PA and n = 0. By using the principles of Section 3 of the present paper,
those constructions can be easily modified to give equally unsatisfactory answers in
the present setting. The salient remaining question is as follows:

Question. Let T be a Σn+1-definable, Πn-complete, and consistent extension of IΣn+1.
Is there a Σn+1 formula γ(x) such that:

1. IΣn+1 + ThΠn (N) � ConT,Σn+1 → ∀x¬γ(x);
2. for every �(x) ∈ Σn+1, every countable model of T + ∀x(γ(x) → �(x)) has a

Σn-elementary extension satisfying T + ∀x(γ(x) ↔ �(x))?

§5. Discussion. By inspecting the results proved in Section 4, we see two classes of
Σn+1-definable theories emerging:

1. Σn-sound extensions of IΣn + exp; and
2. Πn-complete, consistent extensions of IΣn+1.

As suggested by Theorem 1.1, theories in the first class are strong enough for some
applications. These include the results of Salehi & Seraji [40] and Kikuchi & Kurahashi
[23], together with Theorems 4.25 and 4.27 (and their corollaries) of the present paper.
This success relies on the fact that Σn-soundness of T guarantees the consistency of
T + ThΠn (N), in which the n-recursive functions can be strongly represented by a
formula that is Σn+1 in the presence of Σn-induction.

The second class of theories is required to prove results on Σn-elementary extensions
of models of Σn+1-definable theories, for example results on partial conservativity
via the OHGL characterization (Theorem 4.29 and onward). In these cases, Πn-
completeness of T ensures that every model M of T is a Σn-elementary extension
of the standard model, which in the presence of Σn+1-induction suffices for T to be
Σn+1-definable in M by using Craig’s trick. Σn+1-induction is also used to prove the
arithmetized completeness theorem for Σn+1-definable theories, which is indispensable
for constructing the Σn-elementary extensions.

https://doi.org/10.1017/S1755020321000307 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000307


642 RASMUS BLANCK

The facts listed in Section 3 should be enough to derive hierarchical generalizations
for arithmetically definable extensions of fragments of PA of many of the theorems
in, e.g., Lindström’s classic Aspects of Incompleteness [29]. As suggested by the results
in the present paper, some of these generalizations would apply only to Πn-complete
theories, while in other cases mere Σn-soundness would do. Others might not be prone
to such generalizations at all, as shown by Kurahashi [27, theorem 11] and pointed out
to me by one of the referees. In fact, it would be interesting to see which of the results
in, say, the first five chapters of Aspects (where the results do not depend on T being
essentially reflexive) that are prone to such generalizations, using these principles.
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[29] ———, (2003). Aspects of Incompleteness (second edition). Lecture Notes in
Logic, Vol. 10. Natick, MA: A. K. Peters.

[30] Lindström, P., & Shavrukov, V. Yu. (2008). The ∀∃ theory of Peano Σ1
sentences. Journal of Mathematical Logic, 8(2), 251–280.

[31] McAloon, K. (1978). Completeness theorems, incompleteness theorems and
models of arithmetic. Transactions of the American Mathematical Society, 239,
253–277.

[32] ———, (1982). On the complexity of models of arithmetic. The Journal of
Symbolic Logic, 47(2), 403–415.

[33] Montague, R. (1962). Theories incomparable with respect to relative inter-
pretability. The Journal of Symbolic Logic, 27(2), 195–211.

[34] Mostowski, A. (1961). A generalization of the incompleteness theorem.
Fundamenta Mathematicae, 49(2), 205–232.

https://doi.org/10.1017/S1755020321000307 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000307


644 RASMUS BLANCK

[35] Poizat, B. (2000). A Course in Model Theory. New York: Springer.
[36] Post, E. L. (1948). Degrees of recursive unsolvability. Bulletin of the American

Mathematical Society, 54(7), 641–642.
[37] Ressayre, J.-P. (1987). Nonstandard universes with strong embeddings, and

their finite approximations. In Simpson, S., editor. Logic and Combinatorics.
Contemporary Mathematics, Vol. 65. Providence, RI: American Mathematical
Society, pp. 333–358.

[38] Robinson, A. (1963). On languages which are based on non-standard
arithmetic. Nagoya Mathematical Journal, 22, 83–117.

[39] Rogers, H., Jr. (1967). Theory of Recursive Functions and Effective Computabil-
ity. New York: McGraw-Hill.

[40] Salehi, S., & Seraji, P. (2017). Gödel–Rosser’s incompleteness theorem,
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