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SUBDIFFERENTIALS ARE LOCALLY MAXIMAL MONOTONE

S. SIMONS

In a recent paper, Fitzpatrick and Phelps introduced a new class of operators on a
Banach space, the locally maximal monotone operators, and showed that this kind
of operator can be approximated by a sequence of nicer maximal monotone oper-
ators. We give here an affirmative answer to a question posed in this paper: is the
subdifferential of a proper convex lower semicontinuous function necessarily locally
maximal monotone? Since a locally maximal operator is maximal monotone, our
result represents a strengthening of Rockafellar's maximal monotonicity theorem.

In a recent paper, Fitzpatrick and Phelps [2] introduced a new class of operators on
a Banach space, the locally maximal monotone operators, and showed that this kind of
operator can be approximated by a sequence of nicer maximal monotone operators. It is
clear from its definition that a locally maximal monotone operator is maximal monotone.
On the other hand, Fitzpatrick and Phelps pointed out in [2, Theorem 3.5] that the
range of a locally maximal monotone operator has a convex closure, and hence that an
example of Gossez (see [3]), shows that a maximal monotone operator is not necessarily
locally maximal monotone. [2] left open the question whether the subdifferential of a
proper convex lower semicontinuous function is necessarily locally maximal monotone.
In this note, we shall give an affirmative answer to this question. It follows from the
above comments that our result represents a strengthening of Rockafellar's maximal
monotonicity theorem.

Lemmas 2-4 will be proved in greater generality that is actually required for the
Main Theorem. Specifically, they will be phrased in terms of a sublinear functional T
satisfying only (0.1). (This greater generality does not seem to require any extra work;
on the contrary, it probably allows us to simplify the notion somewhat). For the Main
Theorem, we shall apply these Lemmas in the case where T is given by a simple specific
formula (see Lemma 5).

A word is in order about two proofs that we have given recently of the maximal
monotonicity theorem. The first (see [4]) relies on the formula for the subdifferential
of a sum, while the second (see [5]) relies on manipulating sublinear functional or
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466 S. Simons [2]

extended sublinear functionals (that is to say, sublinear functionals that can possibly
take the value +00). The advantage of the second method is that it is a more or
less mechanical procedure, which appears in the present paper in line (2.4), where the
sublinear functional is (1 + e)KT, and the extended sublinear functional is d+<f>(z)( ).
We have also applied this procedure to obtain a number of other results on the existence
of subtangents to proper convex lower semicontinuous functions. These include other
generalisations of the maximal monotonicity theorem. (See [6].) There is a feature in
this paper that does not appear in [4], [5] or [6]: the existence theorem (Lemma 2) uses
(g, h) G E x R such that <f>(q) > h > inf <j>{E) and the new feature (see Lemma 3) is the
pushing down of h to the lower end of this range in order to decrease K(q, h, <f>, T).
The only place in this paper where we use a result from [4], [5] or [6] is in line (0.3).

DEFINITION of the statement that &if> is locally maximal monotone.

With the notation explained below, this means that if

fc Hj a t -c

and Z7 is a convex open subset of E'

such that £f 9 a and If D -R(d^) ^ 0

then 3(z, 6) G dij> such that 6 G U and (z - q, b - a) < 0.

WHAT WE SHALL PROVE.

In fact, we shall prove the following result.

MAIN THEOREM. Let q G E, a e E' \ &ip(q) and e G R(drl>). Then

[a, e] n {b: 3z G E such that b G di/>(z) and (z - q, b - a) < 0} ^ 0.

The Main Theorem formally implies the following result, which in turn formally
implies that dij) is locally maximal monotone. The author is grateful to Professor S.
Fitzpatrick for pointing out that statement in the Main Theorem is in fact equivalent

to the statement that dij) is locally maximal monotone.

COROLLARY. Let q G E, a e E' \ drp{q) and C be a convex subset of E' such

that C 3 o and C ("1 R{d^)) ^ 0. Then

C n {b: 3z G E such that b G (hl>(z) and (z - q, b - o) < 0} # 0.

OTHER NOTATION. We suppose throughout that £ is a real Banach space and
<f>,xl>: E —*M.U {00} are proper, convex and lower semicontinuous.

Let 0 < m < M < 00. Let T: E —> R be a sublinear functional such that

(0.1) m| | | | < r < M | | || o n £ .
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[3] Subdifferentials 467

Write T = m/M. r measures the "degree of asymmetry" of T. We note for future
reference that

(0.2) TT ^ m || || on E.

Define Tq: E -* R by
Tq(y):=T(q-y) (y G E).

Tq is a convex, continuous function on E. If q G E and 4>{q) > h > inf <f>(E), we write

, fc, *, T) := sup *ZM = sup
( ) J l ? y ) ( )

It was proved in [4, Lemma 2.2(a), p.130] and [5, Theoreme 2(a)] that

(0.3) 0 < K(q, h, *, || ||) < oo.

If z G E, the iubdifferential, d(j>(z), of <j> at z is defined by

{c:ce E\ Vy G E, <j>(z) - <f>(y) < (z - y, c » ,

where E' is the adjoint of E. We write d4> for {(z, c): z G £ , c G d<f>(z)} C E x E'

and i i ( ^ ) for {d: 3w e E such that d G d<j>(w)} C JB'.

If z G dom <f> and « G £ then the directional derivative of ^ at z in the direction

v is defined by

Since the limit in the above expression can be replaced by an infimum, it follows that

(0.4) ^(z + tO^d+^(z)( i ; )+^(z) .

LEMMA 1 . Let a,/3 > 0, y e domip and if>(y) < inf ̂ (E) + a@. Tien

3z G dornV- such that \\z - y\\ < a and, Vw G E, d+il>(z)(v) ^ -0 \\-v\\.

PROOF: We choose 7 < a so that ij){y) < inf V>(£) + 7/?- From [1, Theorem 1,
p.444] with e := 7/3 and d(u, v) := ||u — w|| /j, 3z G dom^ such that

||z - 2/H h *k 1 and, Vw G E, ^{w) 2 ^{z) - 7/? ||z - w|| / 7 .

The required result follows from the definition of directional derivative by putting w :=

z + 0v and letting « -»0+ . D
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LEMMA 2 . Let q G E and <)>{q) > h > inf <f>(E), K := K(q, h, <f>, T) and e G

(0, 1). Then:

(a) 0<Jir<oo.
(b) 3y G E such that

f, + KTq){y) < inf (<f> + KTq)(E) + remK \\q - y\\.

(c) 3(z, c) G d<f> such that

(q -z,c)^(l- e)KTq(Z) > 0 and c < ( 1 + e)KT on E.

PROOF: (a) This follows from (0.1) and (0.3).

(b) Let y e E. If <f>{y) ^ h then h ^ (<f> + KTq)(y). If <f>(y) < h then

from which, again, h ^ {<j> + KTq)(y). Taking the infimum over y,

(2.1) h^in{(<t> + KTq)(E).

Since K(l - er2) < K, from the definition of K, 3y G E such that

from which y ^ q and K(l - er2)Tt(y) + </>(y) < h,

that is (4 + KTq)(y) <h + eKT2Tq(y).

(b) follows by combining this with (0.2) and (2.1).

(c) From (b) and Lemma 1 with I{J := <j> + KTq, a := \\q — y\\ and /? := remK,

3z G dom((f> + KTq) = dom$ such that \\z — y\\ < \\q — y\\ (thus z ^ q, from which
Tq(z) > 0) and,

(2.2) W G E, d+(<t> + KTq)(z){v) > -eKrm \\-v\\ > -eKrT(-v).

We first prove that,

(2.3) V« G E, d+<f>(z){v) + (1 + e)*T(9 - z - i») ^ (1 - e )^^ (^ ) -

To this end, let v £ E. Then since r < 1,

- z - u) ^ d+^(z)(«) + KTq{z + v) + EKTT,{Z + v),
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[5] Subdifferentials 469

from (0.4) (applied to i/> := KTq),

^ d+<j>(z)(v) + d+KTq(z)(v) + KTq(z) + eKrTq(z + v),

from (2.2) (since d+<f>(z)(v) + d+KTq(z)(v) = d+(<f> + KTq)(z)(v)),

> -eKrT(-v) + KTq(z) + eKrTq(z +v) = -eKrT(-v) + KTq(z) + eKrT(q -z-v)

since T is sublinear,

> KTq(z) - £KTT(Z -q)2(l- e)KTq(z),

since, from (0.1) and (0.2), TT(Z - q) ^ m \\z - q\\ = m \\q - z\\ < T(q - z) = Tq(z).
This completes the proof of (2.3). We define a function S on E by

(2.4) S(w) := inf{d+<j>(z)(v) + (1 + e)KT(w -v):v£E}.

From (2.3), S(q - z) ^ (1 - e)KTq(z) > 0. 5 is real-valued and sublinear. From the
one-dimensional Hahn-Banach theorem, there is a linear functional c on E such that
c ^ 5 on E and

(q -z,c) = S(q -z)>(l- e)KTq{z) > 0.

Since c s £ 5 on E, c ^ (1 + e)KT and c < d+<f>(z) on E. From (0.1), c £ E', hence
c 6 d<j>(z). This completes the proof of (c). D

LEMMA 3 . Let qe E and <f>(q) > inf <f>(E). Suppose that N > 0, d € R(d<f>) and
d < NT on E. Then there is h such that </>(q) > h > inf </>(E) and K(q, h, <j>, T) < N.

PROOF: We first suppose that inf <)>{E) - - o o . Let w 6 E be such that d € d<f>{w)
and write h := <j>(w) + (q — w, d) - 1. Then <f>(q) > <f>(q) — 1 ^ h > —oo = inf

Further, Vy G £ ,

+ NTq(y) > <f>(y) + {q-y,d)> <j>(w) + (y - w, d) + (q - y, d) = h + 1 ^ h,

from which the result follows. If, on the other hand, inf <f>(E) > —oo, we first choose
p such that <j>{q) > p > in{</>(E), then S > 0 so that (\\q - y\\ < 6 => <f>(y) > p) and,

finally, h so that

min{inf <j>(E) + mSN, p}> h> inf <f>{E).

If 4>{y) < h then <f>(y) < p, hence ||g - y|| ^ *, from which Tq(y) > m^. The result

follows since h — </>(y) ^ mSN. D

LEMMA 4 . Let q e E and <f>{q) > ini<f>(E). Suppose that 0 < N < 1, d 6 R(d<j>)

and d ^ NT on E. Then 3(z, c) e d<f> such that (q - z, c) > 0 and c^T on E.

PROOF: We choose h as in Lemma 3. Since K(q, h, <j>, T) ^ N < 1, we can
choose e G (0, 1) so that (1 + e)K(q, h, <f>, T) ^ 1. The result follows from Lemma
2(c). D
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LEMMA 5 . Let q G E with <£(g) > ini<f>(E), d G R(d<f>) and rj > 0. Tien
3(z, c) G d<t> and A G [0, 1] such that {q- z, c) > 0 and ||c - Ad|| < 77.

PROOF: We define T: E->Rby

T(x) := 77 ||x|| + max{0, (x, d)}.

Then T is sublinear, and (0.1) is satisfied with m := TJ and M := r\ + \\d\\. We choose
N so that

Then d ^ NT on E. We find (z, c) G d<j> as in Lemma 4. Let A be the weak* compact
convex subset {e + Ad: e G E', \\e\\ ^ 77, A G [0, 1]}. Then,

Vx G E, T(x) = max{x, 4 ) .

Since c ^ T on E, from the bipolar theorem, c G A. This gives the required result. D

LEMMA 6 . Let q £ E with <j>{z) > inf <j>{E) and d G R(d<j>). Then

[0, d]n{c:3zeE such that c G d<t>{z) and (q - z, c) > 0} ^ 0.

([0, d] stands for the line segment joining 0 and d.J

PROOF: From Lemma 5, Vn ^ 1, 3(zn , cn) G d<j> and An G [0, 1] such that
(q - zn, cn) > 0 and \\cn - And|| ^ 1/n. Let A be a limit point of { A n } n ^ ! . Then Ad
is in the intersection in the statement of the lemma. D

MAIN THEOREM. Let q G E, a G E' \ d^j){q) and e G R(dif>). Then

[a, e] n {b: 3z G E such that b G di/>(z) and {z - q, b - o) < 0} ^ 0.

PROOF: Let <f>: =j>-a. Then 0 ^ d<f>(q), hence <j>{q) > inf <f>(E). Let d:=e-a.

Then d G R{d<j>). If / is in the intersection of Lemma 6 then a + f is in the intersection
in the statement of the Theorem. D
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